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We study the formulation of QCD on anisotropic lattices with different couplings in space 
and time directions of a four-dimensional hypercube. A non-perturbative determination of the 
ratio of lattice spacings, ~ = ao/a~, as well as the ratio of A-parameters has been performed in the 
scaling regime of SU(3) gauge theory. We apply these results to the thermodynamics of QCD on 
anisotropic lattices. 

1. Introduction 

Most lattice simulations of QCD are performed on isotropic lattices, i.e. lattices 
with identical lattice spacings in the space and time directions. This is certainly the 

most  natural  approach for many problems. However, in particular the analysis of 
temperature  effects on isotropic euclidean lattices is limited in several respects. The 

temperature  is related to the time-like extent of the lattice through 1 / T =  N~a, 

where N, denotes the number of lattice sites in this direction and a is the lattice 
spacing. Thus, the highest temperature one can reach on an isotropic lattice is 

limited by Tm~ x = 1 / a .  It has recently been observed that this is a severe limitation 
in the analysis of the SU(2) Higgs model where the symmetry-restoring phase 
transition seems to take place at temperatures which are of the order of a-1  [1,2]. 
Clearly, having only one site in the time direction will also lead to large finite-size 
effects. Moreover, the introduction of an anisotropy, i.e. different lattice spacings in 
space and time directions, may help in this case. 

Another  problem of considerable interest is the calculation of spectral functions 
for QCD at finite temperature. This is relevant for the calculation of transport 
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coefficients in the QCD plasma phase [3] or for the temperature dependence of 
hadron masses [4]. This, however, requires the knowledge of thermal correlation 
functions at several Matsubara frequencies. The number of modes that can be 
determined is limited by N,/2. Thus, introducing a smaller lattice spacing (a , )  in 
the time direction than in the space direction (a) allows us to introduce more sites 
in the time direction, while keeping the temperature T=  (N,a~) -1 and the spatial 
cut-off fixed. 

Anisotropic lattices have been used in the past to study various aspects of QCD 
[5-7]. For instance, it turns out that anisotropic lattices can be used to disentangle 
finite-temperature and bulk phase transitions in large N SU(N) gauge models [6]. 
They also give additional information on the approach to asymptotic scaling in 
SU(N)  models [7]. In all these numerical approaches the anisotropy 7 = K~(-~-~, 
Ko(K,) denoting the couplings for space-(time-)like plaquettes, has been interpreted 
as the ratio of lattice spacings, i.e. 7 = ao/a,. This, in fact, is the interpretation of 7 
in the naive continuum limit neglecting quantum corrections [8, 9]. It is the purpose 
of this paper to study these quantum corrections in more detail and show how the 
ratio of lattice spacings, ~ = ao/a,, can be extracted from measurements of physical 
observables on lattices with given anisotropy 7. This is important in order to keep 
control over the physical temperature which is related to ~ rather than the input 
parameter 7. 

This paper is organized as follows. In sect. 2, we discuss the formulation of QCD 
on anisotropic lattices and summarize some perturbative results. Sect. 3 deals with a 
non-perturbative determination of the ratio of lattice spacings ~ and the ratio of A 
parameters A~/A1 which characterize different regularization schemes. We show 
Monte Carlo results for SU(3). In sect. 4, we discuss the thermodynamics on 
anisotropic lattices and present further Monte Carlo data for SU(2). Sect. 5 contains 
our conclusions. 

2. Anisotropic lattices 

An anisotropy can be introduced into standard SU(N) lattice gauge theory by 
choosing different couplings for plaquette variables in different planes of a hyper- 
cubic lattice. We will restrict ourselves here to the special case of two different 
couplings, i.e., a coupling K,, for space-space plaquettes and K~ for space-time 
plaquettes. The standard Wilson action for pure SU(N) lattice gauge theory reads 
then 

S = Ko E Px,,j + K, E Px,o,, (2.1) 
x y 

i > j q : O  iq=O 

with 

1 
Px,~, = 2N Tr(1 - Ux,~,Ux+j," vUj + v,~U£ + ~) + h.c.. (2.2) 
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Let us define two new couplings 
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(2.3) 

in terms of which the action, eq. (2.1), becomes 

Px, , j+v  £ Px,o, • 

i>j%o i~o , 

(2.4) 

Thus, for y = 1 we have the standard isotropic lattice formulation, while "~ ¢ 1 
introduces an explicit anisotropy. In the naive continuum limit (13 --* ~ ,  ~, fixed) "~ 
has to be interpreted as the ratio of lattice spacings in space (a =- a , )  and time (a , )  
directions. For finite fl, however, this is no longer true. In the weak-coupling limit a 
relation between ~, and the ratio of lattice spacings, ~ -  a / a , ,  can still be estab- 
lished [8, 9] 

= ( 2 . 5 )  

with 

~1 = 1 + N ( c ~ ( ~ )  - c ~ ( ~ ) ) / f l  + 0( ]{ -2 ) .  (2.6) 

The functions co(~), c,(~) are given in ref. [9]. At intermediate couplings, however, 
the relation between ~/ and ~ is, a priori, unknown and has to be determined 
non-perturbatively, for instance, by checking rotational invariance on the aniso- 
tropic lattice [9]. We will explore this in sect. 4 in order to extract ~ from Wilson 
loop measurements. 

When comparing physical observables calculated on lattices with different ani- 
sotropy y, one has to take into account that the A parameters depend on these 
different regularization prescriptions [8, 9] 

l l N  ]- ' l /121exp{_ 4~ 2 / ,  
aA~ = ( 8Tr2 fl ] 1--~fl  j (2.7) 

A J A I =  exp{-12~r2 co(~))} + (2.8) 

In an actual Monte Carlo simulation we calculate dimensionless observables, i.e. 
physical, dimensional quantities in units of the lattice cut-offs, as functions of fl and 
"f. In the validity regime of eqs. (2.5)-(2.8), we can extract the corresponding 
dimensional quantities and express them in terms of a unique scale A1. In general, 
however, this requires the knowledge of ~ as well as the ratio A ~/A 1, which may 
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bo th  depend  on 3' and /7". For  given 3' and /3 ,  we can determine B and A~/A~ by 
c o m p a r i n g  two physical  quanti t ies with corresponding measurements  on an iso- 
t ropic  lattice. This will be  used in the following to calculate ~ and A J A ~  in the 
scaling regime of SU(3) gauge theory. 

3. Non-perturbative determination of ~1 and A ~ / A  1 

In  this section we per form a numerical  analysis for the pa ramete r  ~ and A~ 
appear ing  in eqs. (2.5) and (2.7). We do this for the gauge group SU(3) because 

viola t ions  of  asympto t ic  scaling are known to be large in this case [11]. We therefore 
expect  sizable deviat ions f rom the weak-coupl ing results for ~ and A j A  1 reviewed 
in sect. 2 as long as the asymptot ic  scaling regime has not  been reached, i.e. for 

/3 ~< 6.0. 
First  we will discuss a de terminat ion of ~(/3, y)  f rom Wilson loop measurements  

[9]. We  measure  space - space  (Woo)- and s p a c e - t i m e  (Wo~)- like Wilson loops of size 
n, × n~20) and  n I X n(2 "), respectively. We parametr ize  the results in terms of a 

universal  funct ion f ( x ,  y)  and arbi t rary  normal iza t ion factors coo and co,, i.e. 

Wo,,( nt, n(') ) = cooexp { f(n,a, n~°)a )),  

Wo, ( n t, n ;  ) ) = co~.exp { f (  n,a, n(2")a ) } .  (3.1) 

I f  ro ta t iona l  symmet ry  is restored, V ( x ) =  - l i m y ~ ( 1 / y ) f ( x ,  y)  gives the heavy 
quark  potent ia l  which has to be independent  of  the an iso t ropy** .  This mot ivates  

the above  ansatz.  Thus, if we know ~ = a / a , ,  it should be  possible to match  all Wo, 
and  Wo, da ta  up to an overall normal izat ion 

Co. r 
w o . ( , , , , . i . ,  = = - -  W o o ( . , , . i o , ) .  

Co o 
(3.2) 

For  a given anisot ropy y we then find ~/ f rom eq. (2.5) as 

- 1  n ( r )  
= v n~o~, (3 .3 )  

with n(2 ~), n(2 °) being those values for which the match ing  condit ion eq. (3.2) holds. 

* In principle, they can also depend on N o, IV,. However, we will ignore these finite-size effects in the 
following discussion. For free Bose and Fermi systems these effects have been analyzed in ref. [10]. 

** In some cases we performed simulations on lattices which are not completely symmetric, i.e. 
N o :~ "~N T. These finite-size effects for the potential, however, are small as long as we stay in the 
confined phase. 
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We have calculated Wilson loops on 83× N,, N T = 4 . . . . .  16 lattices for various 
anisotropies "y and r-values (5.55 ~</3 ~< 5.75). We used a standard Metropolis 
algorithm. In fig. la, we show the two sets of Wilson loops for the 83 x 16 lattice at 
/~ = 5.65 and ~, = 2. The data are plotted on a double logarithmic scale. The scale of 
the space-space loops has been "rescaled" relative to that for space-time loops 
according to eq. (3.3), assuming ~ = 1. Apparently, the two sets of Wilson loops do 

not match with this assumption. Note that varying the free parameter co,/coo 
corresponds to a shift of the vertical scale while a shift of the horizontal scale 
corresponds to a change of ~. In fig. lb, we show the same data replotted using 

= 1.32. A good agreement between both sets of Wilson loops can now be found 
for all n 1, n 2 values. The value required for coo/c,~ deviates only a little from 1; this 
turns out to be true also in the rest of the cases, but as we are not interested in the 
value of co,/coo, we shall not mention its value in the following. 

In fig. lc, we show results at /~ = 5.7, ~, = 2. The "best  fit" for ~ gives 77 = 1.29. 
The "best  fit" for ~ is done by eye, shifting the double logarithmic plots. A real fit 
would imply an interpolation assumption for the various n l, n 2 values and therefore 
it would be only more objective in appearance. In fig. 2 we show data on a simply 
logarithmic scale, to illustrate again the rescaling equation (3.2) and at the same 
time to show that no simple nl, n 2 dependence can be found which could be used 
for an objective fit. The results are given in table 1. The errors quoted are estimated 
on the basis of the errors for the Wilson loops. They are very subjective but we 
consider them as rather conservative. From table 1, we see that in our small range of 
fl values we could not detect a systematic B-dependence of ~. The measured values 
for ~ are considerably larger than predicted on the basis of the perturbative 
relation, eq. (2.6). 

In order to compare physical quantities calculated on lattices with different 
anisotropy y, it is necessary to know the ratio of scale parameters A j A  1 for these 
different regularizations. In the asymptotic scaling regime this ratio will be a 
/~-independent function of ~ which has been calculated in perturbation theory [eq. 
(2.8)]. However, we know that for fl < 6, violations of asymptotic scaling are large 
[11]. Assuming the validity of the RG equation, eq. (2.7), these scaling violations 
may be parametrized by a r-dependent  A parameter. First calculations by Thacker 
and Sexton [7] on anisotropic lattices, however, seem to indicate that also below 
fl = 6, the ratio A~/A 1 follows the perturbative prediction despite the apparent 
violations of asymptotic scaling*. 

Knowing the value 71 from our Wilson loop measurements, we can determine the 
ratio A j A I  by demanding that an observable measured on lattices with ~, = 1 and 
~, ~ 1, respectively, yields the same physical value independent of the regularization 
scheme used. We have chosen the deconfinement temperature as an observable to 

* Note that Thacker and Sexton use a somewhat different approach. They introduce an anisotropy in 
one of the space directions, This way they did not have to determine T/. 
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Fig. 1. Double logarithmic plots for Wilson loops. Wo,(n l, n~ ")) - e m p t y  symbols -  and 
Woo(n 1, n~ ")) - full symbols - are plotted versus n~ "), n~ °), respectively. Here, n 1 = 1 ( h i ) ,  2 (zx,A), 3 
(v,v) and 4 (©,e). To indicate the shifts we give both pairs of co-ordinate axes. The lattice size is 
83 × 16. (a) fl = 5.65, -( = 2. The data are plotted shifted according to *1 = 1. (b) Same data, replotted 
shifted according to the "best fit" 7/= 1.32. (c) fl = 5.70, 7 = 2. The data are plotted shifted according to 

the "best fit" ~/= 1.29. 

ex t rac t  A j A  1 f rom M C  s imula t ions .  W e  d e t e r m i n e  the  cri t ical  coup l ings  fl~ a n d  tic ~ 

o n  a la t t ice  w i th  , / =  1 a n d  N,  i sites in  the t ime  d i rec t ion  a n d  , / ¢  1 a n d  N, ~ sites, 

respect ive ly .  N,  ~ has  b e e n  chosen  such that  N~ = ,/N~. F r o m  eq. (2.7) we f ind  t hen  

for  the  cr i t ica l  t empera tu re s  

A 1 
, /=1 .  

T~ 

, / 4 1 :  
A_A = N?) 

(3.4) 

D e m a n d i n g  tha t  the  cr i t ical  t empera tu re s  are , / - i n d e p e n d e n t  we f ind  

A~ - 1 R ( f i c ~ )  (3.5)  

a-T R(B:) " 
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Fig. 2. Simply logarithmic plots for Wilson loops versus n~ °) (same symbols as in fig. 1). (a) 83 × 12 
lattice,/3 = 5.55, y = 3. The 14/o, points are plotted and rescaled according to the "bes t  fit" ~/= 1.39. (b) 
8 3 x  16 lattice, /~= 5.55, 7 = 4 .  The W,, points are plotted and rescaled according to the "bes t  fit" 

= 1.54. The lines connecting the points are only meant  to guide the eye and to indicate the deviations 
from a linear dependence. 

TABLE 1 
Values of ~ obtained by Wilson loop analysis. All the results are obtained in the confined phase 

y Lattice fl 

1.05 83 × 12 5.70 1.02 + 0.03 
1,1 83 × 12 5.66 1.03 ± 0.03 

5.68 1.05 ± 0.05 
5.70 1.07 ± 0.04 
5.72 1.05 ± 0.05 

2,0 83 × 12 5.70 1.32 ± 0.07 
83 × 16 5.65 1.32 ± 0.05 

5.70 1.29 ± 0.05 
5.75 1.31 ± 0.07 

2,2 83 × 16 5.70 1.39 ± 0.07 
2.5 83 × 12 5.70 1.43 ± 0.06 

3,0 83 × 12 5.55 " ~" + 0.08 
t.~v _ 0.05 

4.0 83 × 16 5.55 1.54 ± 0.07 
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Fig. 3. j ~  as a function of 3  ̀ on lattices 83× N, with N, = 43,. The large errors are due to strong 
metastabilities in the phase transition region. 

TABLE 2 
A j A  1 obtained from the critical couplings for the deconfinement temperature (last column) using 
eq. (4.5). Also given is the perturbative result from eq. (2.8). The value of ~ is taken from table 1. 

The resulting value for the ratio of lattice spacings is displayed in the fourth column 

N, 3  ̀ 7/ ( =  ~/3  ̀ fl~ A J A r  (pert.) A U A  1 (MC) 

4 1 1 1 5.689 ! 0.002 1 1 
8 2 1.31 __+ 0.03 2.62 +__ 0.12 5.67 + 0.01 0.815 0.78 :L 0.02 

12 3 1.39 + 0.07 4.17 __+ 0.21 5.645 + 0.015 0.799 0.76 + 0.04 
16 4 1.54 4- 0.07 6.16 + 0.28 5.55 + 0.02 0.813 0.77 ± 0.04 

Note that eq. (3.5) defines lines of constant temperature in the /3-  3̀  coupling plane. 
Lines at constant spatial cut-off a are given by eq. (3.5) with ~ - 1. In fig. 3 we 
show results for the critical couplings /3~ obtained from simulations on 83× N, 
lattices with N,/~, = 4 and 7 = 1, 2, 3, 4. As can be seen, the critical coupling gets 
shifted to smaller values. Using the values for 77 from table 1 and the measured 
critical couplings/3c ~, we can obtain A j A  1 from eq. (3.5). The results are given in 
table 2. Indeed, the measured values for A J A ]  agree rather well with the perturba- 
tive prediction which is given in the last column of table 2. This indicates that 
asymptotic-scaling violations are indeed to a large extent independent of 3' [7], 
although we find systematically lower values than predicted by weak-coupling 
perturbation theory. Our results for ~ and A~/A 1 are summarized in figs. 4 and 5. 
Here we also show the weak-coupling predictions [9]. 

4. Thermodynamics on anisotropic lattices 

We want to illustrate how the discussion of the previous sections becomes 
relevant for the analysis of the thermodynamics of a ghion gas on anisotropic 
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Fig. 4. ~ versus 3' as determined from Wil- 
son loops (table 1). For illustration we also 
show the ~'s which we obtain from the 
critical temperature data using the perturba- 
tive ratio of A-parameters, eq. (2 .8)-  full 
points. The dotted line shows the weak-cou- 
pling (one-loop) result, eq. (2.6), for B values 
of 5.65 + 0.10. The full line is a fit to the 

data; ~ = 1 + c(1/~/~ - 1) with c =  -1.069 
+ 0.060. 

< 

1.o 
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t 
1.0 

Fig. 5. A j A  1 for SU(3). The points are taken from 
the numerical analysis (table 2, last column) at 
~ = 2, 3 and 4. The curve represents A J A  l from eq. 
(2.8), the weak-coupling result to one loop. Notice 
that here the abcissa is ~ = ~/y. 

lattices. In particular, we will analyze the energy density calculated on anisotropic 
lattices and show that results consistent with standard calculations on isotropic 
lattices can be obtained. As mentioned before, the true advantage of the anisotropic 
formulation should show up in the calculation of thermal correlation functions [3, 4]. 
This will be discussed elsewhere. 

We want to evaluate the energy density [10] 

(~)3 OlnZ 
e / T  4 ~" - 2  (4.1) 

= ~ 0~ a fixed 

Using eqs. (2.4) and (2.5) we find 

3 [ d B o  . 2 d B ,  - 
E / T  4 = 3N4B.y-4n 3[fro _ V2ff,] _ 3N)(3,n) [ - ~ -  ,, fixed if° -~ (')IT/) --'~'- a fixed rr  

(4.2) 
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where we have defined the space- and time-like couplings rio, ]3~, as 
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13o = ]37, ]3, = ]3/n (4 .3)  

Po (P,)  denote space-space (space-time) plaquette expectation values, which we 
have normalized by subtracting the zero-temperature contribution 

Po(,) = <Po(,)>N, < Uo~-  (Po(,)>N,=No~" (4.4)  

Here the zero-temperature lattice has been approximated by a lattice of size 
N 3 × AfT, with N, = "~N o. The energy density depends explicitly on the two couplings 
]3 and ~,. However, in addition it involves ~ and the derivatives of ]3° and ]3~ with 
respect to ~. Some care has to be taken as these derivatives have to be evaluated 
along lines of constant a, i.e. by varying ~, we have to change/3 according to eq. 
(3.5) with 7 / -  1". We thus have 

d]3o d]3 dn 
d~ = ~ -  + ]3~-1 d-~'  

d]3, d]3 d~ (4.5) 
d~ - - ~ - ~ - - ] 3 ~  3 d-~' 

where we have used d y / d ~ = ~  -1. The derivative d ~ / d y  we extract from our 
measured T-values shown in fig. 4 and d]3/d~ from the A j A  1 ratios. As the latter 
turned out to be close to the perturbative values, we have used the perturbative 
expression 

d]3 
d~ - 3(Co(~) + c , (~)) .  (4.6) 

The derivative d*l/d'r we got from a fit to our measured data. The resulting 
derivatives dflo(~)/d~ are given in table 3. We note that these are about a factor 2-3 
larger in magnitude than those which are perturbative. This is also important for 
simulations on isotropic lattices, where often the perturbative results for the 
derivatives are used in the scaling regime. 

Let us finally discuss the thermodynamics of SU(2) gauge theory. In contrast to 
SU(3), we expect here that the perturbative relations for 7/ and A~/A 1 hold in the 
whole scaling regime as scaling violations are known to be small for SU(2) above 
fl > 2.1 [13]. In fact, using the perturbative value for 7/ and aflot~)/3~, we find an 
energy density which is independent of the anisotropy. In fig. 6, we show ,13 e / T  4 
from a MC simulation on a 83× N~ lattice with N~ and "y chosen such that 

* For  a different approach to determine these derivatives non-perturbatively, see ref. [12]. 
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TABLE 3 
Derivatives of space- and time-like couplings defined in eq. (4.3). Columns 3 and 5 give perturbative 

results from ref. [9]. Columns 2 and 4 have been obtained from a fit to the data in fig. 4 

a/3o/a~ aK/a~ 
MC Weak coupl. MC Weak coupl. 

1 3.26 _+ 0.17 1.21 -2 .84  _+ 0.17 -0 .79  
2 0.88 +_ 0.09 0.33 -0 .42 + 0.09 -0.18 
3 0.43 _+ 0.08 0.12 -0.21 + 0.08 -0 .10  
4 0.24 +_ 0.05 0.06 -0 .10  + 0.05 -0 .07 

N~/~ = 2. The rise of ~/3 e / T  4 with increasing T is obvious. This reflects the fact 
that ~ < 1 for T > 1 and the factor ~/3 has still to be divided out to get the physical 
energy density e//T 4. Using 7/ from eq. (2.6) we find e / T  4 which is also shown in 
fig. 6. This is roughly T-independent. In fact, the slight decrease of the data can be 
understood in terms of slightly different finite-size corrections for different T [10]. 
Taking these corrections into account we get results indicated by crosses in fig. 6. 

The data shown in fig. 6 have been obtained at fixed /3. From the discussion in 
sects. 2 and 3 we know that this, in fact, corresponds to different temperatures, 
because with varying T also the A-parameter changes in units of which the 
temperature is determined. The comparison in fig. 6 is insensitive to this as above 
Tc, e /T  4 is roughly constant. This is different in fig. 7 where we show the energy 
density on a 8 3 x 12 lattice with anisotropy y = 3 and the Polyakov loop expectation 
value in a large temperature interval that includes the transition region. Here we 

I T - m  

8 3 x N r 

J ~ q" 
0.5 1.0 

I / ~  

Fig. 6. "//3~//T4 (dots) versus T I for SU(2) on a 8 3 x N T lattice at /3 = 2.2. N~ and y have been chosen 
such that N~/~ = NTO/y = 2. Here the perturbative relation, eq. (2.6), has been used to determine 7. Also 
shown is ~ / T  4 (squares) and e/T4R(T)  (crosses) where R(T) is a correction factor for finite-size effects 

[10] normalized to 1 for 3' = 1. 
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Fig. 7. e/esB versus T / A  t for SU(2) on a 8 3 × N, lattice with N, / , /=  4, "f = 3 (dots) and Polyakov loop 
expectation value (squares). 

used the perturbative ~ values, eq. (2.6) and A j A t  ratio, eq. (2.8), to fix the 
temperature scale. We also took into account that finite-size effects on these small 
lattices are ~-dependent [10]. Clearly, the overall behaviour is similar to the one 
found on isotropic lattices. 

Thus, we see that for SU(2) the perturbative formulas for 77 and A J A  1 hold well 
and identical results on anisotropic and isotropic lattices can be obtained. 

5. Conclusions 

We have analyzed the formulation of QCD on anisotropic lattices. We have 
shown that the naive interpretation of the anisotropy as ratio of space- and time-like 
lattice spacings does not hold in general. Quantum corrections (~ > 1) are im- 
portant. Even in the regime where these corrections can be calculated perturbatively, 
they may lead to strong modifications; for instance, in the energy density these 
effects are clearly visible (see fig. 6). 

We have shown that the ratio of lattice spacings as well as A~/A 1 can be 
determined non-perturbatively. In the scaling regime of SU(3) we find large devia- 
tions of 71 from the perturbative value while A~/A 1 agrees rather well with 
perturbation theory. The latter has been observed before [7] and indicates that 
violations of asymptotic scaling are to a large extent universal, i.e. y-independent. 

Although somewhat more computational effort is involved, we find that aniso- 
tropic lattices reproduce the physical results obtained from isotropic lattices. More- 
over, they have the advantage that time resolution can be varied independently of 
the spatial resolution. This should make them more suitable for the determination of 
spectral functions [2, 3] and the simulation of very high temperatures at fixed spatial 
cut-off, as it is needed for the Higgs transition [1]. 
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