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We present a discussion of problems that have arisen in attempts to understand the behavior 
of lattice QCD at high densities. The effects observed in the lattice simulations do not seem to bc 
consistent with what we expect from the usual ideas of chiral symmetry breaking. In particular, at 
zero quark mass, there does not seem to be a massive baryon at finite density. 

1. Introduction 

The picture of hadrons provided by QCD implies that there should be a number 
of interesting effects observed in nuclear matter at high temperature and pressure: 
one expects both deconfinement, producing a quark-gluon plasma, and a restoration 
of the chiral symmetry whose breaking is a characteristic of the low-energy interac- 
tions of nucleons. These effects might be observed in high-energy heavy-ion colli- 
sions and in astrophysical phenomena such as neutron stars [1]. 

It is possible to study both these effects numerically in lattice simulations of 
QCD. Including nonzero temperature in the simulations is quite easy since one 
merely makes a virtue of the finite extent of the lattice, and there have been many 
studies of these transitions both using the "quenched" approximation and with 
dynamical fermions [1,2]. There have also been a number of theoretical papers 
addressing the problem of high density by including a nonzero chemical potential. 
The earliest of these addressed the basic methods of adding a chemical potential on 
the lattice [3-5] while more recent papers have been using standard mean field 
techniques to analyze the chiral restoration transition [6, 7]. Relatively few numeri- 
cal simulations have been published, however [3, 7-9]. This is probably not due to a 
lack of effort - but more due to puzzlement over the interpretation of the results, as 
they do not fit in with expectations. 
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In the case of the gauge group SU(2) the puzzle is transient: a detailed analysis at 
nonzero/ t  shows that the most straightforward mean field ansatz is incompatible 
with the Monte Carlo simulations (both quenched and unquenched), but in this case 
it is possible to obtain agreement with a much more refined ansatz which takes into 
account the degeneracy of the baryons and mesons and the possibility of the 
vacuum realigning in the presence of baryonic matter [7]. 

The real problems begin with the larger nonabelian groups. Monte Carlo simula- 
tions for SU(N), N > 2 gauge theories are difficult due to the appearance of a 
complex fermion determinant [9,10]. However this does not seem to be the major 
problem. Mean-field as well as (quenched) Monte Carlo calculations seem to 
indicate that, contrary to expectations, QCD at zero temperature and finite density 
has either a lowest baryon excitation level with a mass given by mbaryon = -~m. or a 
state of quark matter which has a bulk energy per baryon corresponding to this 
mass. Thus it seems that, in the limit of zero quark mass, there is no massive baryon 
at finite/z on the lattice. This paper is devoted to discussing calculations that lead us 
to this puzzling state of affairs. 

The first section will review the effects of including a chemical potential for the 
Kogut-Susskind [6] fermions, the effects we expect to see and a general outline of 
what is actually seen in the computer simulations. In the second section we will 
explain, in terms of the eigenvalues of the lattice Dirac operator, how the lattice 
simulation produces the apparently unphysical effects. In the third section we 
present some of the data we have obtained and illustrate the different approaches 
we have taken to the problem. Finally in the last section we speculate on whether we 
are seeing lattice artifacts, a serious breakdown of our understanding of lattice QCD 
or, more interestingly, real physics. 

2. Finite chemical potentials 

The most convenient way to generate an ensemble of quarks or nuclei at high 
density is to add a chemical potential for the quarks. We can include a chemical 
potential in our simulations by a simple expedient [3,4] of providing an exp(#) 
factor for the links in the positive imaginary time direction and an e x p ( - # )  factor 
for those links going backwards. The lagrangian for staggered (Kogut-Susskind) 
fermions then reads: 

with 

Sf=mZ L x+ E-  ~D~v~pv, (2.1) 
X X , P  

D;y= x_,], (2.2) 

(2.3) 
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Here/~ is the chemical potential, m is the quark mass, the lattice spacing a has been 
set to unity, and the rest of the notation is standard. This procedure has a number 
of advantages over other possibilities [5,12] - in particular the derivative of the free 
energy with respect to/~ yields the correct conserved current for all values of t*. If 
we work on a lattice of infinite extent in the time direction - i.e. at zero temper- 
ature - the inclusion of bt should make no difference provided it is small enough; all 
the world lines of the particles will be finite loops and so the factors of exp(>) from 
one side of the loop will exactly cancel those on the other. In general we expect that, 
as long as the chemical potential is smaller than the mass of the lowest-lying 

baryonic state divided by the number of quarks in the baryon, all physical 
observables agree with their / ,  = 0 value. In particular the number density v, and 
energy density e 

O 
n = T - l n  Z,  (2.4) 

oF  

1/ 
(2.5) 

vanish for/~ </*0, with t~0 defining the threshold for baryon production. How this 
works on the lattice is illustrated for the free theory (U = 1) in fig. 1. We show the 
number density for various values of the bare mass. The number density vanishes up 
to a critical value of the chemical potential given by: 

/.t o -= ln(m + 1/1 + m2) .  (2.6) 

This is the mass of a free fermion on a lattice as determined by the location of the 
pole in the lattice propagator. A similar result holds for the energy density. Notice 
there appears a second "threshold" which corresponds to the filling of all states in 
the first Brillouin zone. In the free theory the critical value for this largest nontrivial 
chemical potential is given by: 

I*l=ln(1/rn 2 + d - 1  + d1 /~m 2) ,  (2.7) 

d denoting the space-time dimension. (A consistency check for the mass of the 
particle that has been created at #o and starts contributing to the thermodynamics 
can be obtained by calculating the ratio E/n.) Thus the finite density formulation 
on the lattice seems to work as expected for the free theory. 

Another case where these ideas can be tested explicitly is the simple U(1) gauge 
theory. The U(1) theory has no centre and hence has only meson states comprising 
correlated quark-antiquark world lines. Slicing the system across any t = constant 
hypersurface always reveals the same number of quarks and antiquarks (this 
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Fig. 1. N u m b e r  dens i ty  versus chemical  po ten t ia l  p for the free Fermi  gas at zero t empera ture  on an 

in f in i te  lattice. Shown are results  for different  bare  masses  as ind ica ted  in the figure. 

remains true even in the weak coupling, deconfined phase because gauge invariance 
requires electrical neutrality) so the theory should be/~ independent. This is one of 
the few cases where our theory agrees with the simulations: the U(1) output is 
indeed/~ independent - indeed it has to be in any of the U(N) groups because we 
can always absorb the exp(/~) factor into the radius of the group manifold without 
changing anything in the sums we are performing. 

The difficulties begin with the nonabelian groups whose nontrivial centres allow 
the existence of various gauge singlet "baryon" states in addition to the mesons. It 
is these that we expect to produce by the addition of the chemical potential. If we 
are in a confining phase the particles produced will be baryons consisting of three 
(N for SU(N)) quark world lines bound together with an effective chemical 
potential 3~. As ~t is increased there will be a value for/~ such that 3~t will equal the 
baryon mass. Any increase beyond this will lead to it being favourable for long 
loops to wind right around the lattice in the time direction so there is now a finite 
density of baryons in the system. (One might worry that there would immediately be 
an infinite density of such loops - indeed there would be if the particles were free 
b o s o n s -  but the Pauli principle is enforced by choosing antiperiodic boundary 
conditions and so the density remains finite; the Fermi sea just fills up to E = 3~t.) 
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This observation should give a simple way of determining the baryon mass 
without having to construct operators coupling to the baryons or obtain baryon 
propagators: just observe the value of/~ at which effects begin to be seen in any 
observable, multiply by three and we should have the mass of the lowest-lying state 
with baryon quantum numbers*. Unfortunately this simple scenario does not seem 
consistent with the results obtained from actual computer simulations. 

From the discussion in the previous paragraphs we would expect that physical 

observables are ~ independent up to some critical value of ~ which is related to the 
threshold for baryon production. When one looks at plots of ( ~ )  at fixed quark 
mass m and different values of ~ one sees, indeed, that ( ~ )  stays constant for a 
while and then goes to zero with increasing ~ as expected [3], but as m is decreased 
the value of /~ at which the baryon number density becomes nonzero and (~/~) 
begins to change also goes to zero. This would seem to imply zero baryon mass. This 
pattern of behaviour might be expected for the gauge group SU(2), where the 
baryon is a boson in the same multiplet as the pion and thus has a mass which tends 
to zero as the square root of the quark mass, but is hardly to be expected in SU(3) 
where we expect the baryon mass to tend to a fixed, nonzero, value as m ~ 0. In 
fact the data are relatively insensitive to the gauge group (we will discuss results for 
SU(2), SU(3) and SU(4) gauge groups) and all seem to coincide with the SU(2) 
picture in that we begin to see effects at a value of /~ which is one half of the 

Goldstone meson mass [7]; it is as if the meson were a two-quark state and not a 
quark-antiquark state. There are also un-nerving consequences for the chiral symme- 

try breaking in the theory. When/~ = 0 plots of (~/~) against mass show convincing 
discontinuities at m -- 0 (modulo finite size effects) indicating that chiral symmetry 
is broken. As soon as /~ is greater than zero, however, the plots of ( ~ )  seem to 
vary smoothly with m so that the chiral symmetry is restored for arbitrarily small ~. 
(It is possible to convince oneself otherwise, as some of us did in earlier work [3], 
but the arguments of the next section will make the existence of any discontinuities 
for/~ 4:0 very unlikely.) Again this is not what one expects on the basis of massive 
nuclei where a critical density must be exceeded before the symmetry is restored. 

Our first suspicions about these anomalies were that they were artifacts of the 
quenched approximation for the fermions. Without fermion loops the theory is not 
unitary and therefore it is possible that different ways of obtaining the baryon mass 
could be inconsistent; certainly only a subset of the particle world lines (those 
corresponding to cyclic permutations of initial and final particle locations [3]) are 
included in measurements of the baryon density and ( ~ ) .  Recently we have 
obtained data with dynamical fermions included using the complex Langevin 

* This is strictly only true if we ignore the nuclear binding energy and the Fermi motion of the nuclei. 
What we are actually making is a sample of nuclear matter at the lowest energy that can exist in 
equilibrium with the vacuum. For real nuclear matter the energy per baryon is only tens of MeV 

different from the baryon mass. 
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algorithm and they show exactly the same anomalies. Thus something is seriously 
wrong with the finite/~ calculations. 

3. Eigenvalue distributions 

A way of understanding the computer output, if not the physics behind it, is given 
by looking at the distribution of eigenvalues of the lattice Dirac operator in 
background gauge fields obtained either from just the pure gauge action ("quenched" 
case) or with the fermion determinant included ("dynamical fermions"). The usual 
massless Kogut-Susskind lattice Dirac operator is skew-hermitian and has purely 
imaginary eigenvalues iX n, in terms of which ( ~ )  is given by: 

1 
-- ~ . (3.1) 

ixo + m 

In the infinite volume limit the eigenvalues coalesce to form a cut which provides 
the discontinuity in (~qJ) at m = O: 

( q4m=0. -- = 2 " 0 ( 0 ) ,  (3 .2 )  

where O()t) is the eigenvalue density. If we include a nonzero value for /~ the 
skew-hermiticity is spoilt and the eigenvalues move off the imaginary axis. In fact 
the first-order change is the addition of a purely hermitian operator so that any 
eigenvalue that moves initially moves off perpendicularly to the imaginary axis: 

AX= A/~(J>, (3.3) 

where ( J ) ,  the lattice fermion-number operator evaluated for the eigenvector of 
interest, is a real number of/~ = 0. It is possible for an eigenvalue to not move if the 
eigenvector is localized, as the introduction of/~ can be gauged away in return for 
the introduction of discontinuity conditions at the imaginary time boundaries. 
Clearly a localized eigenvector will not extend across the boundaries at low 
temperature and is therefore insensitive to such boundary conditions. We hope that 
the eigenvectors are not localized, however, as such states do not satisfy the chiral 
Ward identities in a way that gives rise to the usual Goldstone theorem [13]. 

In practice evaluation of the eigenvalue distribution by use of the Lanczos 
algorithm [14] shows that, at all couplings, and even at very low temperature (i.e. 
long lattices in the time direction) all the eigenvalues move off axis to form a 
roughly uniform strip whose width increases monotonically with #. Eventually for 
larger/~ the eigenvalues form a band, leaving the region around X = 0 completely 
depleted of eigenvalues. This behavior is shown in fig. 2a-e. For the following 
discussion the structure of the eigenvalue distribution on the real axis is important. 
We see from fig. 2 that ~ k m a  x = maxlYt~x=0 > 0 for all positive # and that ~kmi n = 

minl?tl,3x= 0 > 0 provided that # > #1- From the eigenvalue distribution we deduce 
~1 = 0 . 5  "1- 0.05 at /3 = 0. The maximal and minimal eigenvalues on the real axis are 
directly related to the behaviour of the physical observables. For bare masses 
m > ~ m a x  all observables will agree with their/x = 0 values, while for m < )t rain all 
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Fig. 2. The distr ibution of eigenvalues )t of the Dirac matrix for staggered fermions at fl = 0. Shown are 
the eigenvalues obtained from 6 random gauge configurations (fl = 0 quenched) on  a 4 3 x g lattice for 

different values of the chemical potential, t* = 0.3 (a), 0,6 (b), 0.9 (c), and 1,2 (d). 
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allowed states in the first Brillouin zone are occupied and all observables have 

reached their limiting, high density, values. In particular (~/+) = 0 for all m < ~ min- 
Thus in order to be sensitive to the chiral limit we should discuss what happens for 

~t ~</~1, i.e. in the case where ~ m i n  = 0. For all ~ ~< ]l I there is a uniform band of 
eigenvalues. There is no sign of any residual singular distribution on the imaginary 

axis. This is the numerical source of the problems we saw in the previous section. If 
we use the quenched case to start with, a strip of eigenvalues with no delta function 
concentration on the imaginary axis cannot give rise to a discontinuity in ( ~ + ) .  

One can easily see this by considering an electrostatic analogy for the two-dimen- 
sional complex plane: a pole can be thought of as a charge, and the values of a 

function expressed as a sum of poles are the electric field produced by the 
two-dimensional charge distribution. A delta-function charge density produces an 
abrupt  change in the field as one passes through it while a smooth charge 
distribution can only cause a smooth variation in the field. Thus ( ~ )  goes 
continuously through zero as m changes sign, even in the infinite volume limit. 
Because of this we find chiral symmetry breaking disappears for arbitrarily small ~t. 

Similarly the fact that physical effects are observed for small/~ as m ~ 0 means that 
the lowest mass state containing a net number of fermions (i.e. a quark or baryon 
but not a meson which does not see ~t) is becoming massless as the quark mass is 

reduced to zero. This appears to happen for SU(N),  N = 2, 3,4. 
In fig. 3 we show eigenvalue distributions for a fixed value of/x = 0.1 and various 

values of /3.  We see that the general pattern discussed above for/3 = 0 persists at 
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finite/3. The eigenvalues start moving away from the real axis (this is partly a finite 
temperature effect [15]); however, they still occupy a strip in the complex plane. We 
thus conclude that the above observations are valid for a coupling range reaching up 
to/3 = 6.0. We will return to a discussion of the weak coupling regime in the next 
section. 

We may hope to be rescued from this dilemma by the introduction of dynamical 
fermions - but in fact they exacerbate the problem. The inclusion of the fermion 
determinant means that we no longer have a fixed eigenvalue distribution for all m. 
We must consider the distribution to depend on the current value of the mass - but 
for each fixed mass eq. (3.1) still gives ~ ) .  The fermion determinant is just: 

Det(~_,D~-m)= I-I(?~2,-m 2) (3.4) 
v t /  

so that as we vary the mass the eigenvalues are repelled from the location of m and 
there is even less chance of there being a discontinuity in { ~ ) .  The apparently 
vanishing baryon mass will also remain. This pattern of behaviour is insensitive to 
the gauge group and hence the expected pattern of chiral symmetry breaking*. 

4. The data 

Let us now discuss in some detail the results obtained in Monte Carlo simulations 
of the SU(3) gauge theory. We have studied the chemical potential dependence of 
the chiral order parameter, baryon number density and energy density in the 
quenched approximation. To evaluate all these quantities we require the inverse of 
the Dirac matrix. We have calculated this using different techniques: pseudofermion 
methods, the conjugate-gradient algorithm as well as exact inverses, obtained using 
LINPAC routines, on small lattices. All approaches give results consistent with one 
another. The problems we are worrying about in this paper can most convincingly 
be seen in the strong coupling limit. Of course we are aware that we should go to the 
weak coupling regime to make contact with continuum physics. However, the strong 
coupling limit has the advantage that we can compare results with analytic calcula- 
tions; meson and baryon masses are well known [17] and the effect of virtual quark 
loops is expected to be small. 

According to the discussion in the previous sections we would expect that 
physical observables agree with their # = 0 values until the chemical potential is 

* The fundamental representation of SU(2) is pseudoreal and, at /~ = 0, has U(2N) chiral symmetry 
which is expected [16] to break to Sp(N) with the baryons being bosons in the same multiplet as the 
Goldstone boson; SU(3) should have the familiar pattern of U(N)® U(N) breaking to diagonal 
U(N) with massive baryons. At strong coupling on the lattice the residual symmetries are different: 
N flavours of lattice Kogut-Susskind fermions correspond to 4N flavours in the continuum. Thus, 
for example, if the gauge group is SU(2) with the quarks in the fundamental (pseudoreal) representa- 
tion, the continuum symmetry is U(8N) which should break to Sp(4N). The lattice symmetry is 
U(2 N) and in strong coupling it breaks to 0(2 N ). There is probably no contradiction since Sp(4 N ) 
has a natural O(4N) subgroup which can contain the O(2N) and so the full Sp(4N) can be obtained 
in the continuum limit. 



308 I. Barbour et al. / Simulations of lattice QCD 

0 

L~  

0 

0 
~5 

(a) 

~ - - i  i --i J 

I l l a  

~ =  0 .2  / \ c~ = 0 .5  4 ~ 
A = 1.0 

I 

0.0 0.5 1.0 1.5 

l.m 

0 

(b) 
m a  

~.. o 0 .5  / 4 ~ 
1.0 

~q 

u2 
0 

0.0 0.5 1.O 1.5 

/ £ a  

Fig. 4. (a) The  chira l  order  parameter ,  { ~ )  of the SU(3) gauge theory wi th  s taggered fermions versus 

chemica l  po t en t i a l  t~ on a 4 4 lat t ice at B = 0 and var ious values of the bare  mass,  m = 0.2, 0.5 and  1.0. 
(b) Same as fig. 4a but  for the baryon  number  density.  (c) Same as fig. 4a bu t  for the energy densi ty.  
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Fig. 4. (continued) 

(c) 

1.5 

larger than the threshold for baryon production. In the strong coupling limit the 
baryon mass in the staggered fermion formulations is given by [17] 

I4 ) 
with 

c = ( m +  ~ m 2 ) .  (4.2) 

Thus the critical/~ should be larger than 
1 /.t o = ~mbaryon > 1.0 . . . .  (4.3) 

In fig. 4 we show results for (~f f ) ,  the baryon number density and the energy 
density obtained from 50 random configurations (/3 = 0) on a 4 4 lattice using the 
pseudofermion method [18] to invert the Dirac matrix. One clearly sees that for all 
three values of the bare quark mass ma = 0.2,0.5,1.0, the energy and number 
density become nonzero for values of the chemical potential well below the 
threshold for baryon creation. To rule out a failure of the pseudofermion method we 
repeated the calculation with an algorithm which inverts the matrix exactly. The 
results obtained from 50 configurations agree well with the pseudofermion results. 
In fig. 5 we show (~q~) obtained from the exact inverse. It shows similar behavior. 
(~kqJ} breaks away from its ~t = 0 value much earlier than expected. (Fig. 5 also 
shows a few data points from 63 × 12 and 124 lattices using the conjugate gradient 
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Fig. 5. Same as fig. 4a, however an exact inverse of the Dirac matrix 

1.5 

has been used to calculate (~ f f ) .  
Also shown are conjugate gradient results obtained on large lattices of size 6 3 × 12 and 12 4. 

algorithm to calculate ( ~ b ) .  These data show that finite size effects are small at 
strong coupling.) We found that the critical value of kt is in agreement with the 

lowest meson mass: 
' (4.4) ~ 0  = ~ m ~ ,  

with the pion mass given by [17]: 

m =ln[l + ~(c2-2d)+ ~((c2- 2d)+ ~(c2- 2d)2]. (4.5) 

This suggests that a baryonic excitation far below the baryon mass exists, having a 
mass 1.5 times the meson mass. When the quarks are massless we find thus a 
massless baryon at finite /~. In addition the data suggests that for m = 0, ~ )  

vanishes for all nonzero/~. 
In fig. 6 we show the phase diagram emerging from these simulations with 

staggered fermions as well as the eigenvalue distributions. Beside the baryon 
threshold and the anticipated phase boundary defined by eq. (4.5) we also show the 
result of a mean field calculation for the critical line. This calculation has been 
performed in analogy to the calculation presented in ref. [7] for the SU(2) case. 
(Some details of the specific SU(3) problems are discussed in the appendix.) It is 
interesting to see that also the mean field calculations seem to indicate that the 
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Fig. 6. Phase diagram in the mass-chemical potential plane of the SU(3) gauge theory with staggered 
fermions in the strong coupling (fl = 0) limit. The data points show the threshold value where physical 
observables start deviating from their/~ = 0 values. They have been obtained from the exact inversion 
results shown in fig. 5 (O) and from the Lanczos calculation shown in fig. 2 ( l) .  Also shown is the 
expected critical line corresponding to the baryon threshold (- -) and the pion threshold ( - - )  which seems 
to describe the Monte Carlo data. The dotted curve is the result of the mean field calculation discussed in 

the appendix. 

critical value of the threshold for baryon creation is determined by the pion mass, at 
least for intermediate masses, rather than the expected baryon mass. At small 
masses the mean field results give a finite critical value which seems to be consistent 
with the value/~1 found from the eigenvalue distribution as critical value for filling 
all states of the Brillouin zone. One other substantial difference between the mean 
field and the Monte Carlo data is in the order of the transition which is first order 
for the mean field but apparently second order for the Monte Carlo for any finite 
quark mass*. This is not unusual as mean field calculations often get the orders of 
transitions wrong, but it does lead to a difference in the interpretation of the physics 
as we will discuss in the last section. The degree of agreement between the two 
methods does suggest, however, that the inclusion of dynamical fermions would not 
alter the results of the quenched approximation. (In the SU(2) case the quenched 

* At  infinite mass  the system becomes essentially one-dimensional and we will find a first-order phase 
transition. This is consistent with the eigenvalue distribution which becomes a band of zero width on 
a unit circle. See also fig. 1 for the large mass limit in the free theory. 
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Fig. 7. The chiral order parameter  versus chemical potential ,u obtained from conjugate gradient 
calculations at fl = 6.0, m = 0.1 on a 124 lattice. 

and unquenched simulations gave results identical within error bars. For SU(3) we 
performed some unquenched calculations for a few values of/~ and m using the 

complex Langevin algorithm [10,19] on a 44 lattice and they also agreed with the 

quenched data.) 

Finally to check that we did not just see an artifact of the strong coupling limit 
we also did a simulation on a 124 lattice at fl = 6.0. At this coupling the baryon and 

meson masses have been determined for staggered fermions of bare mass m a  = 

0.1, 0.2, 0.3 [20]. We can use these data to check whether the critical/~ is related to 
the pion mass or the baryon threshold. From ref. [20] we find ~m~ = 0.395(5) and 

~mb~yo, = 0.50(3) for a quark mass of 0.1. Notice that in contrast to the strong 
coupling regime these two possible critical values are now quite similar. This makes 
it difficult to ultimately rule out that the baryon mass triggers the onset of 

thermodynamics  in the continuum regime of the lattice theory. Much smaller quark 
mass values would be necessary to get firm results. This, however, would also 

require better values of the hadron masses on larger lattices. Our results, obtained 
with the conjugate gradient algorithm, for this bare mass value are shown in fig. 7. 
They seem to support that also at fl = 6.0 the threshold is driven by the pion. 

We also verified that this behavior does not seem to be due to the fermionic 
nature of the massive baryon in SU(3): a simulation for quenched SU(4) showed a 
behavior analogous to the ones discussed here for SU(3). 
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5. Speculations 

There are various possible explanations for the peculiar behavior we see in these 
simulations. An error in our codes is unlikely since we have evaluated the quantities 
concerned in a number of different ways and with programs written independently 
by several people. We could be seeing artifacts due to the method of introducing the 
chemical potential, but this is unlikely since the exp(/~) procedure can be thought of 
in various ways and in all of them the connection with the baryon mass seems 
inevitable. Other procedures for the introduction of the chemical potential [1,12] 

will suffer from the same problems since they are essentially the same except for a 
redefinition of ~ and they all coincide for small #. 

We could be seeing other lattice artifacts coupled with finite size effects. We have 
run on fairly large lattices and this does not seem to change the resu l t s -  but 
consider the following scenario: The chemical potential method finds the energy of 
the lowest state with net quark quantum numbers. When the baryon mass is 

measured by other methods one usually sets out to measure the energy of the zero 
momentum state on the plausible grounds that it is the one of lowest energy and 
thus it is this energy that is equal to the mass. It may be that lattice systems contain 
states with nonzero momentum, baryon quantum numbers and energy smaller than 
the k = 0 states, so it would be these unexpected states that we are producing. This 
does not happen in the simple large d or large N expansions for the baryons 
(although it does happen for all the mesons except the ~r) but it does not seem easy 
to eliminate this possibility for finite d and N. Such lattice artifacts should be 
absent at weak coupling in the continuum. At weak coupling, however, it is difficult 
to be at low temperatures and so the real states may be thermally excited. This 
would mean that our observations may be due to a mixture of unphysical states at 

strong coupling and finite size effects at weak coupling - and would therefore be 
absent if we could work on really large lattices at weak coupling. While this is a 
plausible explanation, in the absence of a better understanding of the underlying 
dynamics observed in the strong coupling regime, we are, at present, unable to find 
further support for such a scenario. 

One possibility that occurred to us was that we were seeing the effect of many 
light flavours on the stability of nuclear matter. There has, for some time, been 
speculation that nuclear matter rich in strange quarks would be more stable than a 
system of hadrons with the same quantum numbers and density [21] -  simply 
because the more flavours of quarks the less effective is the exclusion principle in 
pushing up the Fermi energy; the other flavours can occupy the lower energy states. 
Thus our observations might be real physics. In the strong coupling mean field 
calculations this is exactly what happens: the system jumps directly from the 
vacuum to a state at sufficiently high density to have restored the chiral symmetry. 
The quarks in the plasma have bare or "current masses" instead of the usual 
"consti tuent masses", which come from the chiral symmetry breaking. Because of 
this the resulting "quark nuggets" [21] have an energy per baryon which is much less 
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Fig. 8. Phase diagram in the hopping parameter ~-chemical potential plane of the SU(3) gauge theory 
with Wilson fermions in the strong coupling (13 = 0.0) limit. The data points have been obtained by using 
the conjugate gradient method on a 4'* lattice. Also shown are the critical lines corresponding to the 

baryon and pion thresholds (notation is the same as fig. 6). 

than the usual baryon mass and the vacuum can coexist with these nuggets instead 
of with ordinary nuclear matter made up of intact baryons. This seems like an 
intriguing prospect but the Monte Carlo data with staggered fermions do not see the 
same jump in density that the mean field produces (corresponding to the possibility 
of a mixed phase of vacuum and nuggets). Also we should be able to remove the 
effect by running simulations with the physical number of flavours. We have tested 
this by performing computations with Wilson fermions where, at the expense of 
explicit chiral symmetry, we can perform simulations with one or two light flavours 
instead of the multiples of four that we get with Kogut-Susskind fermions. Fig. 8 
shows the phase diagram resulting from the runs on small lattices at strong 
coupling, compared with strong coupling calculations of the baryon and meson 
masses [22]. Once again we see that we are seeing effects as soon as the chemical 
potential exceeds half the pion mass so this explanation is probably not viable. 

6. Conclusion 

The basic conclusion of this paper is that there appears to be a problem with the 
conventional interpretation of simulations of QCD at finite chemical potential. The 
chiral symmetry is apparently restored at arbitrarily small/t  - long before we would 
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expect there to be any effects at all if the baryon has a nonzero mass. The data seem 
to suggest that either there exist baryonic states which become massless in the zero 

3 quark mass limit and have an energy equal to ~m, or stable quark matter with low 
mass per baryon. Although the results presented here are based on a study of the 
strong coupling regime using "quenched" Monte Carlo techniques, we think that we 
have given enough evidence that these results will hold over a wide range of 
couplings. It may be that deep in the continuum regime ( f l>  6.0) the lattice 
formulation will reproduce the expected continuum, zero temperature, finite density 
scenario. However, to verify this will require fairly large lattices (>/124) and small 
quark masses (m < 0.1) (in order to create a light pion which really is much lighter 
than the baryon). It seem to us more promising to try to get a better understanding 
of the effects observed in the strong and intermediate coupling regime at finite 
density. In particular it will be crucial for further studies of the finite density theory 
to understand the significance of the light baryonic states of matter generated at 
strong coupling. 
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A p p e n d i x  

In this appendix we briefly describe the calculations leading to the mean field 
results presented in sect. 4. 

Working in the strong coupling limit (1/g 2= 0) the integration over the gauge 
fields can be done exactly for the groups SU(2) and SU(3). For the latter the only 
integral which had to be evaluated in addition to those given in the literature was 
one with six matrix elements (fdU[UUUU*U*Ut]). Using these the partition 
function can be rewritten exactly as 

( J t I  1 Z =  I-I d ~ : d ~ :  exp ~MxMx+,-~[fx,,BxBx+,-f~,,Bx+,B~] 
x , a = l , 2 , 3  x ,v  x , v  

+ ~ E M2M2+~ s~6 E BxBxB~,+~B~+,, (A.1) 
X , l ~  X , V  

where 
f~,, = ~ , (x) ,  u= 1,2,3 

= e 3~, v = 0 ( A . 2 )  
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and we have defined the composite operators 

3 

My =  E ~"~k~ (meson), (A.3a) 
a = l  

B x = tk!~tkz~b 3 , (baryon).  (A.3b) 

In a first approximation to eq (A.1) we drop the M2M 2 and BBBB terms. It has 
been proved that this is consistent with a large d (dimension) approach. The MM 
interaction can be decoupled using the identity, 

exp(~2M~M~+~) = - - j j + ~ d [ ~ o ]  
d [ ~ o ]  

2~" 
e x p ( -  ½5o + C[oM,~ + 6M~+~]), 

(A.4) 

where o is a complex field attached to the link (xu). In ref. [7] we also used a similar 
trick for the BB interaction because the SU(2) baryon is a boson. However, here the 
baryon is a fermion and we need Grassmann fields to decouple the interaction. For 
example we use the identity: 

exp[BxA~] = fdOdOexp[-O0 + OAx + BxO], (A.5) 

where Bx is an antibaryon at site x and A x, 0, 0 are also Grassmann variables. Now 
we can easily integrate over the tp, g, fields. An important difference between SU(2) 
and SU(3) is that the latter resulting effective action is quadratic in the fermionic 
field 0 so we can also integrate it. At the end we arrive at a complicated action for 
the bosonic field o which is dealt with by the mean field approximation at lowest 
order. Basically we freeze o to a mean value 6 (proportional to (Uktk)) which is 
determined self-consistently. In other words we must minimize the free energy: 

where 

F :  1 2 o 2 - 3 1 n ( ~ o d )  

f 1 1 ] 
2"o ( 2 - ~ l n 1 1 +  1-~q6 j=lY" s in2k/+ l~gq  6s in2(k°-3i /~)  , (A.6) 

1ui - _ q = m -  V'g od.  (A.7) 

The integral in momentum space comes from the nonlocal gaussian integration 
over the 0, 0 fields. Minimizing eq. (A.6) with respect to ~ we get a result showing a 
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phase  where 6 is independent  of/~ and another phase where 6 is very small for any 

fermionic  bare mass, separated by a line of  first-order transitions. The ~ -- 0 phase 

cor responds  to a set of decoupled one-dimensional models as expected in the # = 

limit. The transit ion line is shown in fig. 6. 
Eq. (A.6) seems rather complicated but in the zero mass limit we can prove that 

the posi t ion of  the critical /~ can be obtained easily as follows: Compare  the free 

energies of  the one-dimensional model (where only the BxBx+0 term survives) with 

the cor responding  energy at/~ --- 0 (which is well approximated by keeping just  the 

M M  interact ion in eq. (A.1)). The result for any dimension is: 

~ Y F ( m  = 0) = ½1n(2d) - ½; (A.8) 

where d---, oe the critical chemical potential tends to one third of the baryon  mass, 

while for d =  4, #c- -0 .54 ,  in excellent agreement with the complete mean field 

solut ion shown in fig. 6. 
We can also repeat the calculation keeping all the terms present in eq. (A.1) by 

in t roducing  addit ional decoupling fields. (For  example the M 2 M  2 term can be 

decoupled  by  introducing another bosonic field which we again freeze to a mean-field 

value etc.) We have explicitly checked that the influence of such additional compli-  

cat ions  is small. 
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