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We investigate the realization on the lattice of the relation between the chiral properties of the 
fermions and the topological properties of the gauge field. A lattice definition of the topological 
charge density via the U(1) Adler-Bardeen anomaly is analysed with the help of given configura- 
tions of nontrivial topology and for 2-dimensional quenched QED. 

1. I n t r o d u c t i o n  

The Atiyah-Singer index theorem [1] and its generalization [2] express a deep 
connection between topological properties of the gauge field and the chiral proper- 
ties of fermionic matter in Yang-Mills theories. In particular the topological charge 
density is equal to the U(1) Adler-Bardeen anomaly and this relation is in some 

sense equivalent to the index theorem [3]. 
The theorem, however, does not easily open itself to intuition. Also, in quantum 

field theory its meaning becomes somewhat obscure; in the continuum the gauge 
fields become too rough and in the infinite volume they fluctuate too much to 

ascribe topological quantum numbers to them in an easy way. On the other hand 
Witten and Veneziano [4] have made the idea of 't Hooft  [5], that topology should 
solve the U(1) problem, more quantitative by expressing the mass of the ~/' in terms 
of the topological susceptibility which is a quantity characterizing the local fluctua- 
tions of the charge. 
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For these reasons it might be of interest to investigate the relation between 
anomalies and topology in a well-defined model. In perturbation theory the anomaly 
arises from the triangle graph only [6]. As the name "anomaly" indicates, it does not 
come out of the lagrangian in a straightforward way; it is produced by the fact that 
the functional integral has to be regularized and thereby loses some of its original 
naive symmetries. It can appear in different guises: either in the form of an effect of 
the jacobian under chiral transformations [7, 8] or in the form of an explicit chiral 
symmetry breaking term in the lagrangian of Wilson's lattice fermions [9]. As the 
cutoff is removed these two rather different looking things produce the same 
anomaly that is equal to the second Chern class in QCD. 

In the following we will consider the lattice regularization and investigate more 
closely the definition of topological charge inherent in [10,11] that keeps the relation 
to fermion properties intact (this connection seems to be lost with other definitions 
of the topological charge on the lattice [12]). 

2. The lattice ehiral Ward identity for Wilson fermions 

The models we study are described by the following functional integral: 

z= f[dU..lexp(-SvM(tU .}))zv(tu..}), (2.1) 

(2.2) 

with SVM, e.g., the usual plaquette action 

SVM = - ~ EReTr(Uap)  
P 

(2.3) 

and S v of the form 

n p, 

d 

E v..,=+. + r._ w= -.,  . < _ . ) .  (2.4) 
n , p , = l  

Here [dU] is the Harr measure, dq~, d~/ denotes the Berezin integration [13] and we 
work on a euclidean lattice. Quite generally 

C"+ = r e  i °~  + ~,", (2.5) 
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where r = 0 corresponds to the so-called naive action. Notice that r ~ 0 only adds 
"irrelevant" terms to the naive action. 

On the finite lattice a -  (cutoff)-1 > 0 (a is the lattice spacing) the chiral Ward 
identity is "normal".  For the naive action ( r - -0 )  which is chirally symmetric the 
axial current is conserved up to mass terms. This does not, however, express a 
conflict with perturbation theory because the naive action produces a proliferation 
of fermionic modes whose contributions to the anomaly agree with perturbation 
theory but cancel in the sum [14]. 

There are various possibilities of getting rid of this proliferation, some of them 
departing from the form given in (2.4) [15]. We consider the method expressed in 
eqs. (2.4), (2.5) with r > 0 (so-called Wilson fermions) as the most transparent one 
and from now on we shall restrict our discussion to it. 

In this case all Dirac components are still available at each lattice point and we 
can define local chiral transformations unambiguously; the fermionic determinant 
Zv (eq. (2.2)) is invariant under them because they correspond to a linear transfor- 
mation with determinant 1 of the variables in the Berezin integral. Therefore, as for 
the naive action, we obtain a "normal" chiral Ward identity which contains, 
however, an extra term coming from the term proportional to r in eq. (2.4), which 
breaks chiral symmetry explicitly: 

( O.J.s(n))- 2M(Js(n))+(X(n))  = O, (2.6) 

where 

J ,5(n)  = 2: ~,i757~U,~b,+~: + ½"~,+~i757~U~,: , (2.7) 

Js (n)  = :~/,ivsq~,:, (2.8) 

x ( . )  - • = ½rE: q~.e'°",vsU..q~.+.. + ½r E • ~. +.e'O~,ivsu.*.,k.: 
kt /~ 

+½rE'- qJ,_,e'°~'lvsU,_~,. 

+ ½r E "~,eiOv, iysUff_~,~b,_~: - 2 dr:  ~,ei°Vsiys~b, • (2.9) 
,u 

( ) stands for the fermionic expectation value and the Wick dots mean subtraction 
of the free field (Un. } = (1 } contribution. Then it can be shown that in the lowest 
order of perturbation theory [14] or quite generally for configurations where 

1 
A , , -  ia  ( U , , -  1) (2.10) 
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decreases fast enough at infinity [10,16]: 

- i  . 

lim ( X ( n ) ) =  1 -~2FF(n )  
a--*O 

(2.11) 

independently of r > 0, 0 (please note that in [10] a convention for 0 is used that is 
shifted by ~r compared to the standard one or, equivalently, M is replaced by - M ) .  

So the extra term X leads to the usual anomaly in the continuum. There is a 
peculiar aspect to this result: the marginal quantity X comes from the irrelevant 
supplementary term proportional to r in the action. The explicit breaking of the 
chiral flavor symmetry also introduced by such a term in lattice QCD is expected to 
go away in the continuum limit (leaving behind a spontaneous breaking), whereas 
the chiral U(1) symmetry remains broken by the anomaly. 

The limit in eq. (2.11) is understood for finite physical mass, i.e. 

M = ma ~ O, m fixed (2.12) 

and is not quite trivial. We can see that by looking at the normalization factor which 
is 1 in eq. (2.11). 

For small but finite a we have: 

i 
( X ( n ) )  = 16~rz ld (m,a , r )FF(n)  (2.13) 

(here d = 2, 4) where 

da d ( l-l~cos ap, ) r ( ~ ( a - cos ap~))(ma + r~ , (1  - 1 /  cos ap~, ) ) 
[ Jo 2~/~ddp 2 2 \ l  + d / 2  I d - 2 ~ d / 2  

( ( m a + r ~ . ( 1  ap~,)) + - cos Y.~sin ap~) 

(2.14) 

([10,14,16]; Yoshida, private communication). As a function of r, a, I d (d = 2,4) 
behaves rather irregularly (G. Morchio, private communication; also [10,14,16]): 

whereas 

lira Ia(m,  a, r)  = 1, (2.15) 
a---, 0, m fixed 
r--* O, r> a 1-~ 

Id(m,  a,O) = O. 

For fixed a, r I d decreases fast with increasing M. In fig. 1 we show the behaviour of 
I a as a function of M, r, L for lattices of various sizes L. We use L also to fix the 
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lattice spacing 

and thus 
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a - 1 / L  (2.16) 

I a ( M .  L ,  r )  
d2 a- 1,i r d / 2  

L a 

× y~ (l-l~cos q~)r ( ]E . (1 -  cos q . ) ) ( M  + r E . ( 1 -  1 /cos  q . ) )  

{q~,=(~'/L)(2n~+l)} ( ( M  + rgs(1  - cos q,))2 + Z ,  sin2q~)Xl +a/2 
(2.17) 

In fig. l a  we show 12 as a function of M for various L. We see that for fixed lattice 
parameter M, 12 does not depend on L for L >/10, i.e. the thermodynamic limit is 
reached quite early. Fig. lb  shows 12 as function of M L  = M / a  = m for various L, 
fig. l c  shows 12 as function of L for various m. One observes that for m = M / a  
fixed, a ~ 0 (i.e. L ~ ~ ) ,  12 ~ 1 as expected. But this happens rather slowly, and 
we need a very small mass M to obtain a sensible normalization factor I d for small 
lattices. Fig. l d  is the correspondent of fig. l b  for d = 4 showing that the qualitative 
picture is preserved. Fig. le  describes the r dependence of 12, for various (fixed) m, 

L showing the "plateau" beginning at rather small r values, - 1 / L .  In the 
following we shall put r = 1. These results were obtained for a given {Un,} 
configuration, i.e. an external Yang-Mills field. Results for the fully quantized 
theory have been obtained in low-order weak coupling perturbation theory and 
strong coupling expansion [14, 17, 18]. 

3. Lattice topological charge defined by way of the chiral Ward identity 

For the generalized Wilson action (2.4), (2.5) the term X, which is a candidate for 
the lattice topological charge density, depends on M, r and 0. Only in the 
continuum limit (2.11) this dependence goes away. In general we have [10] 

with 

f H [dU..] = f H [du. l e- S~Me-'aY~'a), 
r t ,~  t t , ~  

fo°dO'X(O'), 

(3.1) 

(3.2) 

1 0 
} iX (O)  = 7 ~ l n  ZF(O ) = ½i~_, ( X . ( O ) ) .  (3.3) 

tl 
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Since ZF(O) is periodic in 0 (see (2.4)) we can expand it in a Fourier series [10, 19] 

Z F (0) = E c, e'"°. (3.4) 
n 

Then liX(O) appears as some kind of average topological charge: 

1 O ZF(O) 0=0 Ec, n ½iX(O) = - ~-~ln = . 
l ~ C  n 

(3.5) 

In the continuum limit we have 

~iX 'Qs. (3.6) 
a---~ 0 

m fixed 

From now on let us take r = 1, 0 = 0. It is useful to parameterize the theory by the 
hopping parameter k = ( 2 M +  2d)  -1. X, has then a well-defined meaning on the 
finite lattice and converges to the topological charge density in the continuum limit. 
It can thus be considered as a candidate for the lattice topological charge density 
[10, 11]. Recently it has been claimed that this definition does have no "perturbative 
tail" [20] which would make it really sensible and useful. In the following we look for 
the behavior of X with k to see if we can extract the information contained in (3.6) 
or (2.11) already at finite a. This would allow to observe the relation between chiral 
properties and topology directly in a well-defined model. 

4. Analytic properties of X 

4.1. E X P E C T E D  BEHAVIOR 

According to eqs. (2.9), (3.3) the quantity X(k) is given by 

X(k)- ~_.(X.(k))=TrEi~,5(ULG(n,n+~)+G(n+t~,n)U.~,-2G(n,n)) 
t! n , ~  

(4.1) 

for 0 = 0, r = 1, where G is the fermion propagator or, if we use the chiral Ward 
identity (2.6), by 

X(k)  = E 2 M ( J s , ( k ) ) ,  (Js) = Tr(iTsG), (4.2) 
n 

which can safely be used as long as M > 0. Notice that ysG is hermitic. 
The hopping parameter expansion for X = EX. can be easily obtained and the 

coefficients of the Wilson loops can be calculated in the same way as for Z v itself 
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% // ¢ 
\ 

\ \ 

- - - 1  

Fig. 2. Loops of order 8 contributing to ~iX(k). Each of the 4 topologically inequivalent classes contains 
4!2 4 loops (up to translations), with the coefficients 

16 E~,t,2... ~s ' 

where gi = +-g, g = 1, 2, 3, 4 and e is the totally antisymmetric tensor 

E 1 2 3 4 - - 1  2 - 3 - 4  ~ i . 

Allowed permutations are constrained by (/~ ~ _+ u) ~ (-t~ ~ :t: u ). 

[21]: The  result  is (for d =  2,4): 

k -  k o 
X ( k )  ~ (2dk)2"  ~ C~2 Tr.~a2n , (4.3) 

k0 . = d  -~2. 

where  ~02, are Wilson loops of length 2n. 
Al ready  in lowest  order  there are m a n y  loops that  occur  in (4.3). For  d = 4 there 

are 4 types  of  loops of  per imeter  8 which contr ibute  each one together  with all its 
p e r m u t a t i o n s  and rotat ions (see fig. 2). Clearly already at this order  X is much  more  

c omplex  than  e.g. the definit ions of topological charge given by  Peskin [22] or 

Di  Vecchia  [23] (fig. 2d or 2a, respectively). 
The  hopp ing  pa ramete r  expansion converges in a disc Ikl ~< Ik~l. For  k = k~ the 

fe rmion  de te rminan t  vanishes, p resumably  signalling the existence of a massless 

part icle.  
Fo r  free fermions  the mass  in units of  a - 1  is 

and  thus 

1 
M = - -  - d (4.4) 

2k  

1 

k c = k 0 = . (4.5) 
2d  

( In  a finite vo lume  with ant iperiodic bounda ry  condit ions this value is shifted by  an 
a m o u n t  O ( L - 1 )  and actually moves  off  the real axis.) 

In  general  k c depends  on the configurat ion (Un. } and satisfies [kc] > /k  0 (cf. [17]. 
This  fact  can  easily be  proven by  using the fact that  bo th  mult ipl icat ion by  U n and 
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shift by a lattice unit correspond to unitary operators and hence have norm 1). Since 

a zero of the determinant implies a pole in {Js) also X will have a pole at k = k c. 
As an illustration consider a single plaquette, i.e. a 2 × 2 lattice with free 

boundary  conditions. Let q~ be the phase of the plaquette variable for gauge group 
U(1). Then the hopping parameter  expansion can be summed to give 

32 k 4 sin 

( J s ( k ) )  = 1 + 16k s + 8kncos ~ 
(4.6) 

This result has also been obtained by direct calculation using REDUCE.  (4.6) has 

poles at 

kc = + f~-~ ei~ _+ ~+~)/2. (4.7) 

For  ~ = +~r we have poles on the real axis (note that here Ikc(q0l = kc(0 ), unlike 
what  is expected in general for more realistic lattices). 

Now consider lattice configurations approaching continuum gauge fields with 

fixed nonzero topological charge. 
According to the derivation in ref. [10] - see also sect. 2 - the limit is taken with 

m = M a  -1 fixed, a ~ 0, i.e. with k - k 0 ~ 0 - .  At k = k 0, however, for finite 

a X ( k )  as given by eqs. (4.1), (4.2) has a kinematical zero (note that k = k 0 means 
M = 0). What  we expect to happen is indicated in fig. 3a: Only for a = 0 does X ( k )  

go to a finite value at k = k 0, giving the topological charge of the configuration. 

Such behavior  could be produced by a pole in k at a value k c slightly above k 0 
(possibly also a pair of poles with small imaginary parts) that approaches k 0 as 
a ~ 0; this is expected anyhow because of the necessary zeroes of the determinant. 
Indeed, the smoother the configuration looks, considered on the unit lattice,' i.e. the 

closer we are to the continuum, the more will k c approach k 0 

kc( a ) - - ~ o k  o . (4.8) 

(4.8) follows also from the index theorem if we have a gauge field configuration of 

non-zero topological charge: The continuum Dirac operator for m = 0 has at least 
one zero mode  on the torus with antiperiodic boundary conditions, forcing the 

determinant  to vanish at k = k 0 corresponding to M =  0. (For zero topological 
charge (4.8) will not hold in general because the zeroes will be slightly off the real 

axis; the vanishing of X at k = k o gives just the right a n s w e r  Qtop = 0.) 

On the basis of this discussion and of the formulae (4.1) to (4.3) we expect the 
following behavior  of X(k) :  

k 2d 

X ( k )  = 4 i d ( k  - ko)  k2 _ k ~ ( a ) f ( k 2 ) '  (4.9) 
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J~X/Q~ 

° 

al 

a ' <  a 

L 

k 

½X/Q~ c2 ~ 
k 2d x ( k - k o ) / ( k & k  

,, kc . 
k 

b) 

Fig. 3. Expected behavior of ~iX(k). (a) The step-function-type of behaviour of ~iX(k) near k 0 for 
a ~ 0. (b) Analytic structure implied by the ansatz eq. (4.9). 

function f ( k  2) analytic in a domain containing both k o and k c and with a 
depending only weakly on a: 

f ( k  2) = Co+ clk 2 + O(k 4) (4.10) 

(note that X ( k  - k0) -1 has to be even in k). This is illustrated in fig. 3b. 
For  a ~ 0 we would then have (using (4.8)): 

lim lim ½iX= - d k Z d - l f ( k ~ )  - Qx  (4.11) 
k--,ko-O kc--*k o 

if we suppress the a dependence of f and regard k c and k as independent variables 
in (4.9). 



F. Karsch et al. / Wilson fermions 359 

Qx should give the topological charge Q5 of the configuration. In other words, the 
information about the topological charge is contained in the residue of the pole at 
k = k  c o f  X(k). 

Remark. In trying to implement this program one is sometimes faced with the 
following complication: There are additional pairs of zeroes and poles at or close to 
real values k > kc; this phenomenon is seen at higher topological charge. These 
additional structures do not affect in principle the preceding discussion; they stay 
separated from k~ as we approach the continuum and k c approaches k 0. But they 
affect the speed of the approach to the continuum limit and sometimes reduce the 
effectiveness of the extrapolation formula (4.11). 

4.2. RESULTS FOR SIMPLE CONFIGURATIONS 

Periodic smooth Yang-Mills configurations with nontrivial topology can easily be 
constructed by taking, for instance, for SU(2) in 4 dimensions: 

Un,i = e x p ( -  2qri%n 2/L2), 

U.,~ = e x p ( -  2~rio3n 4/L4), (4.12) 

where (n .} ,  (L~} (it = 1,2,3,4) are the position vectors and the sides of the lattice 
respectively, and all other U's are 1. Then 

1 2 
q5 = 3-~zeu~poTrF~Fpo = LzL , '  

Q5 = 2LIL3. (4.13) 

We should find this number using our lattice definition for large L~ (small a). 
Similarly for U(1) in d = 2 we take 

Un.i = exp(2 Irin 2/L2), 

UnA = 1. (4.14) 

This leads to 

1 
q5 = ~-~F12 = 1/L2, 

Q5 = L , .  (4.15) 

Because in d = 2 there is no Bianchi identity the plaquettes in pure QED 2 can be 
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chosen independently and we can take an apparently less smooth configuration like 

U~,, = 1, ,2), i = exp(2 ~r in 2/L2 ), (4.16) 

with all other U ' s  equal to 1, leading to a smaller topological charge 

Q5 = 1 (4.17) 

(coming only from 1 column). 

Intermediate values for Q5 between 1 and L 1 can be obtained by considering 
configurations with a corresponding number of columns of links of the form eq. 

(4.16), for n 1 = 1 . . . .  , Qs. 
Then for L 1 = L z = L not too large we can calculate J5 and X explicitly as 

functions of k. Typical results are given in fig. 4a, b showing complete agreement 
with the discussion in subsect. 4.1. To fit with the formulae (4.9)-(4.11) we take 

k 4 

½iX(k) = 2 ( k -  ko) ~303 ( k 2 -  k2)-2Qx, (4.18) 

with only two parameters k c and Qx (remember k 0 = 1/2d = 0.25). The fit parame- 
ters are given in fig. 4c and table 1 and they obey roughly the relations 

kc = k o + ax/L, 

Q x = _ Qs(1 - a2/L ), (4.19) 

with a~, 2 smaller for configurations with smaller Qs. Conversely we can look at the 

quanti ty 

i k - k  c 
O x ( k ) = 2 k S - ~ o X ( k ) ,  O,=-Ox(k=½(ko+k¢)) .  (4.20) 

It is seen in fig. 4a, b that Qx(k) is quite flat in the region k 0 _.< k < k c and stays 
near Qs- No pole or other structure is seen for Q5 = 0 (e.g., 2 opposite columns). 

Thus the information about the continuum limit is indeed contained in the residue 
of X(k) as conjectured in subsect. 4.1. 

One might ask how this behavior relates to the derivation in ref. [10] and sect. 2. 
In fig. 4d we show ½iX(k) just below k0: we see the behavior expected from fig. 3a, 
but  the maximum stays well below Q5 and even below Q5 × Ia(kmax), indicating 
that the correction contained in I a is not sufficient and much larger lattices are 
needed for good agreement. Indeed, using the fit (4.19) in (4.18) we get for 
k = k o - e: 

( a 1 + 8 a 2 3 ~ _  a ' )  
½iX(k o -  e) --- Q 5 1  8L ~ e  ' (4.21) 

indicating that one has to take L-1  << e << 1. 
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TABLE 1 
Fit parameters (according to eq. (4.9)) and other quantities 

of interest for various smooth, 2-dimensional, 

abelian configurations 

361 

Configurat ion Ox/Q5 (+ 1%) 

Lattice BC Q5 kc at k 0 at k c at -~(k o + kc) 

5 X 5 ap 1 0.309214 

r = 1 2* 0.33205 

3* 0.33467 
5 0.366517 

p 1 0.274546 

2 0.283752 
5 0.33793 

5 x 5 ap 1 0.347463 
r = 0.9i t  2* 0.372191 

6 X 6 ap 1 0.288816 

r = 1 2 0.308 

6 0.334671 

7 x 7 ap 1 0.277585 
r = 1 2 0.293882 

7 0.317475 
8 × 8 ap 1 0.2707 

r = 1 2 0.2848 

8 0.3066 
9 × 9 ap 1 0.2661 
r = 1 2 0.2785 

9 0.2991 
10 × 10 ap 1 0.263 

r = 1 - 2 0.2738 
3 t 0.2755 

- 1 0  0.2934 
11 x 11 ap 1 0.2606 

r = 1 2 0.2703 

11 0.289 
12 × 12 ap 1 0.2591 

r = 1 2 0.2675 

12 0.2854 
13 × 13 ap 1 0.2575 

r = 1 2 0.2653 

14 x 14 ap 1 0.2566 

r = 1 2 0.2635 

0.7 1.52 1.09 

0.63 0.71 1.08 

0.56 0.53 0.91 

0.55 1.64 1.05 
0.71 1.25 0.96 
0.44 0.67 0.57 

0.5 1.35 0.87 

0.74 1.55 1.13 
0.67 0.71 1.11 

0.75 1.33 1.02 

0.7 1.4 1.0 

0.59 1.4 0.97 

0.79 1.23 1.0 

0.73 1.33 1.01 

0.62 1.31 0.94 

0.82 1.18 1.0 

0.76 1.27 1.0 

0.65 1.26 0.93 

0.85 1.16 1.0 
0.79 1.24 1.0 

0.67 1.21 0.93 

0.86 1.11 0.98 
0.81 1.17 1.0 

0.69 0.82 0.82 
0.69 1.15 0.93 

0.88 1.1 0.98 

0.83 1.16 1.0 

0.71 1.15 0.95 

0.9 1.07 0.99 
0.84 1.11 1.0 

0.73 1.13 0.93 
0.9 1.1 0.99 
0.86 1.17 1.0 

0.93 1.07 1.0 

0.87 1.14 1.0 

*Second pair  of zero - pole present. 
t t  Notice that  here k 0 = 0.27778. 
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Fig. 4. 12iX (k)  measured on 2-dimensional, abelian configurations with nontrivial topology. Here Qs = 
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(d) Indication of step-function-type of behaviour at k 0 - 0. 
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5. Topological susceptibility in two-dimensional QED 

In a quantum field theory the quantity of interest it not the topological charge but 
rather the topological susceptibility. This is so because the total topological charge is 
something that can be prescribed by imposing boundary conditions and physics 
should not depend on such an arbitrary prescription. In fact we have to take the 
thermodynamic limit (infinite volume limit) and since the topological charge density 
shows local fluctuations with probably exponentially decreasing correlation it does 
not make sense to talk about the total topological charge in the infinite volume. 

On the other hand the topological susceptibility is a quantity related to the decay 
of correlations between local topological fluctuations and it should be possible to 
approximate its infinite volume value by a finite volume expression irrespective of 
boundary conditions. 

The topological susceptibility is defined as 

X = f d a x ( ( q ( x ) q ( O ) ) o o  - lim ( q ( y ) q ( O ) ) ~ ) ,  (5.1) 
y ~ o o  

where ( )oo is the expectation value in the thermodynamic limit. It is important to 
take this limit before integrating because otherwise one obtains unwanted boundary 
dependence as will be shown in some examples below. The second term will not 
contribute unless there is long range order in the theory. 

For numerical studies one has to work with a finite volume, however, and the 
question is how to approximate (5.1) in a way that is as insensitive as possible to 
boundary conditions. Boundary conditions in many cases only affect the zero 
momentum part of the two-point function, i.e. different boundary conditions will 
manifest themselves mostly by shifting G(x, y) =- ~q(x)q(y ) )  by a constant. 

It is natural to take as a finite volume approximation of (5.1) not 

fvddX ( q( x )q(O) ) = (Q2) / V  (5.2) 

as it is usually done [23] but rather 

fgdaX ( ( q( x )q(O) ) - Cv ) , (5.3) 

where c v is the "tail value" of G(x, y) = ( q ( x ) q ( y ) )  for maximal separation. By 
this one can hope to eliminate most of the unwanted dependence on boundary 
conditions. 

To see that this is not just idle talk let us look at the simplest of all examples, 
noncompact QED 2 without matter. There we have 

q(x )  = F ( x )  - F12(x ) (5.4) 
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and on a L × L lattice 

1 
(q.qo) = - -  

ZL,  N 
dF,×FnF oexp - 2g 2 F~ 2 3 F , - N  , 

- i 

(5.5) 

which gives 

g2 N 2 
(qNqo)L,N = q23.0-- --~ + L--- Z . (5.6) 

The topological charge N is fixed by the boundary conditions. Taking L ~ oo first 
in (5.6) and then summing over n gives the correct result 

x = g  2 , (5.7) 

while the formula (5.2) gives, if we first sum over N 

XN = N 2 / L 2  , (5.8) 

which is not sensible and does not improve much if we take L ~ ~ (at least it 
becomes independent of N). 

Of course one can improve this situation by averaging over the boundary 
condition N with a suitably probability measure. Free boundary conditions corre- 
spond to the probability 

exp( - N 2 /2  g 2L2 ) 

PN = ENexp (_NZ/2g2L  2) 
(5.9) 

and therefore free boundary conditions give 

EN2Pu ( g2 for gL large 

Xf L2 --- t 1 (5.10) 
L-- 2 for gL small. 

So this prescription gives at least the right answer in the thermodynamic limit and a 
reasonable approximation for large volumes. 

But it should be stressed again that it does not work at all for some other 
boundary conditions. Periodic boundary conditions, for instance, correspond to 
N = 0 and give 

x.=0.  (5.11) 

Our proposal (5.3), on the other hand, works perfectly for all these boundary 



366 F. Karsch et a L /  Wilson fermions 

ii ' I I N 

-10 . 2 5 ~ 3 0  

13=2 
kc- .32 
~--- 5+2 

J , 

.~,5 ? 

kc'- .28 
0---1 

a) 

.25 / . 3 0  

6-3 
kc=.275 
0=-1 

3t{ { c, 
i .25 ' ' ~ ' 

2 3 4 5 13 

~y/Q E D 2 compact 

~i~I b) 

! D ~ . ~  
noncompact ~ 

i I i I , I D 

2 4 6 ['3 

Fig. 5. Topological properties of pure, compact QED 2. (a) Fits to Js(k)  typical for configurations with 
nontrivial topology (the value of Q5 obtained is given on the figure). (b) Topological susceptibility versus 

fl = 1 /g  2. (c) k c as obtained from the fits, averaged at each ft. 

conditions. It gives 

X = g2 (5.12) 

already in a finite volume. 
Compact  QED 2 without matter is already a little less trivial. We did a numerical 

computat ion of the topological susceptibility X using (5.2) and the recipe for 
extracting Q5 described in the previous section. We also measured it by the 
prescription corresponding to (5.3), i.e. 

x =  f d2x(<X(x)x(o)>-"tail"). (5.13) 

In this case the tail value turned out to be small compared with the errors introduced 
by our extrapolation procedures and the results based on the prescriptions (5.2) and 
(5.3) agree within errors. 

In fig. 5b we show our results for the susceptibility of compact QED 2 without 
matter. 

The procedure based on (5.2) required first measuring X on each configuration as 
a function of k and fitting it with the formula (4.9), thereby extracting (~5- Typical 
fits are shown in fig. 5a. In fig. 5c we show the fit parameters averaged over 



F. Karsch et al. / Wilson fermions 367 

configurations at given g2. The lattice we used was 7 × 7. We also measured, as 

remarked, X directly using (5.13) and found agreement within errors. The errors are 
small for small g2 where the most probable configurations are quite smooth and 
have small Qs- We used antiperiodic boundary conditions. Because the scaling law 
here is trivial (g  = ea, e fixed) these results are, however, only of illustrative interest. 

6. Discussion 

Our definition of the lattice topological charge and susceptibility certainly poses 
very subtle problems, due to the fact that a finite value has to be extracted by letting 
a pole merge with a zero in k. Nevertheless it is possible to extract some sensible 
numbers. 

The subtleties are, however, to a large extent contained in the normalization factor 
I ( d )  which has indeed a tricky behavior that can lead easily to confusion (see for 
instance [24]). 

We have shown that the assumed analyticity structure of X(k)  seems to be correct 
and that the ansatz based on it allows to extract the topological charge of fixed 
gauge configurations in a reliable way, thereby giving some a posteriori justification 
to this ansatz. 

In general it is difficult to extract the topological susceptibility, which is the 
quanti ty of interest, from our definition. But we managed to do so for QED 2. 

Our method of defining and measuring topological charge and topological sus- 
ceptibility is certainly rather complicated compared to the "interpolation method" 
proposed by Liischer [25] and related definitions [26]. But it has one property not 
shared by other definitions [12]: it preserves the important link between topological 
properties of the gauge field and chiral properties of the fermions that is expressed in 
the continuum by the index theorem. Therefore it would be quite worthwhile to try 
to extract a "physical value" of the topological susceptibility from a realistic 
simulation of QCD 4 using our method. 
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the Princeton Physics Department. I.O.S. would like to thank H. Meyer-Ortmanns, 
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