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We 1nvestigate the deconfinement and the chiral phase transitions in QCD with 3 light
dynamical flavors, using the pseudo-fermion method Monte Carlo simulations have been performed
on a lattice of size 8* X4 with fermions of mass 0 1 and 0 075 respectively A rapid change from
the low-temperature region of hadrons to the high-temperature quark-gluon plasma 1s observed
in all the physical quantities studied Our detailed, high-statistics results, however, do not show
any signs of a strong first-order transition In the zero mass ltmit we find evidence for a chiral
phase transition at T_/A; =183+ 10

1. Introduction

During the past few years considerable effort and computer time has been devoted
to the study of the thermodynamics of quantum chromodynamics. The lattice
simulations of quenched QCD [1] have reached a stage where the qualitative features
like the thermodynamics in the low- and high-temperature phases and the order of
the chiral and deconfinement phase transitions are well understood and numerically
well under control. Quantitative results for the critical temperature, latent heat and
in part also critical exponents [2] are in a good shape and there relation to continuum
parameters using the non-perturbative features of the SU(N) B-function [3] lead
to results which are probably reliable on the 10% level.

In contrast to this the study of the influence of dynamical fermions on the
thermodynamics of QCD is still in an exploratory stage Although the results
obtained so far [4-8] look very promising, they differ even on the qualitative level
and are not able to predict continuum parameters with great confidence.

Probably one of the most interesting questions, which consequently has been
addressed first in the context of dynamical fermions, 1s their influence on the
deconfinement and chiral phase transitions. In the pure gauge sector these transitions
are known to be first order [9] for SU(3). Theoretical considerations based on
effective models in the strong coupling region suggest that dynamical fermions tend
to weaken these phase transitions. This 1s what one observed in a MC simulation
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with very heavy quarks, where standard MC techniques are still applicable [10] In
the light mass region, however, the results for these phase transitions were inconclus-
1ve, ranging from a rapid crossover behavior [4] or a second-order phase transition
[5, 6] to a strong first-order transition [7, 8] There has even been a claim of total
disappearance [11] of the phase transition, although a lack of spontaneous break-
down of the chiral symmetry at T =0 in the model of ref [11] makes 1t difficult to
compare with the above mentioned results. Recently most spectacular results have
been presented in this context in ref. [8] where a strong first-order chiral and
deconfinement transition has been reported to persist 1n the entire mass range down
to zero-mass fermions These results have been obtained by simulating the effect of
3 quark flavors using the pseudo-fermion algorithm. They appear to be in disagree-
ment with pseudo-fermion results on a smaller lattice [6], and also with results
obtained with Wilson fermions [S] Also microcanonical simulations gave no
evidence for a strong first-order transition [4]

In this paper we report the results of our detailed study of the thermodynamics
of QCD with 3 flavors of light fermions We use staggered fermions and employ
the pseudo-fermion algorithm to include the effect of light quarks of mass ma =0 075
and 01 on a 8° x4 lattice A detailed analysis of the dependence of the results on
the different parameters of the pseudo-fermion approximation scheme has been
performed 1n order to clarify the discrepancies between the results of different
groups We will present evidence which suggests that the first-order signal observed
in ref. [7] 1s most likely due to lack of convergence in the crossover region. We do
not obtain any evidence for a strong discontinuity

The paper 1s organmized as follows Insect. 2 we present the basic finite temperature
formalism and fix our notations. Sect. 3 reviews the pseudo-fermion algorithm and
discusses the various approximations introduced 1n order to make this method useful
i an actual MC simulation. Sect. 4 contains our results and a comparison with
earlier results of other groups and in sect 5 we present our conclusions

2. Lattice thermodynamics

The formalism of thermodynamics of euclidean lattices has been discussed exten-
sively in the literature [12]. We will review here the basic features related to the
mtroduction of staggered fermions in the formalism.

The finite temperature partition function can be regularized by itroducing a
lattice of size N2 X N, with lattice spacing a such that the volume and temperature
of the system are given by (N,a)’ and T~' = N.a respectively. For a SU(N) gauge
theory with staggered fermions the partition function then reads

Z(B, V)= f [T U, I dx dg. e 5%% (2.1)
X, x
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with the euclidean action S given by

S(U, X, x)=Sa(U) + Se(U, X, x) (22)
2N 1
SG=—2_ Z [1—_Re Tr(Ux,pUx+;L,vU;+V,p. U:,V)] E] (2'3)
g X <<V N
SF= m Z A-/xXX +% Z ann}l. (x)[ UX,MXX'F/J. - U:—p,p.xx-y.] 3 (2'4)
x X,

being the gluonic and fermionic contributions to the action The fermionic fields,
X, x are single component Grassmann fields defined on the sites of the lattice They
also carry a flavor index which has been suppressed 1n eq (2 4) The phase factors
7, (x) are defined as 7,(x)=(-~1)"" "™-1 The action depends on the bare quark
mass m and the gauge coupling 8 =2N/g> After integrating over the fermionic
fields one obtains a partition function in terms of the bosonic fields U,, alone
However, in addition one gets a highly non-local contribution from the fermion
determinant

Z= I [1 dU, . [det (m*>— D*)]" /% % (2.5)
X,k

where D=3}  D* and
D=2 () Usuyxrn = UsuByix-i] (26)
In eq. (2.5) we have introduced the positive definite operator QQ* where
Q=m+D, (27)

whose determinant 1s equal to the square of det (m+ D) n, denotes the number of
flavors and is required to be a multiple of 4 for staggered fermions. Following ref.
[13] we will use eq. (2.5) to simulate an arbitrary number of n, continuum flavors

The thermodynamics and phase structure of the quark-gluon system can now be
analyzed by either looking at thermodynamic observables, which are expected to
show singular behavior at the phase transition temperature, or by looking at order
parameter for various global symmetries of the system.

In the following we will concentrate on an analysis of the energy density

e=T*V'9InZ/8T
=eqt+eEg, (2.8)
where
g6 =3B(P,)—(P)) (29)

with P,,=1-(1/N)ReTr U,(,, denoting the space-space (space-time) like
plaquettes. The “fermionic part” of the energy density, g, 1s given by

er=4n{tr D*(D+ m)™") —{{gNn; — im{¥x) 1o} (2.10)
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The term 1n curly brackets in eq (2.10) comes from renormalizing the energy density
by subtracting the zero temperature contributions. In the definition of the “gluonic
part”, e, of the energy density we neglected contributions which result from the
derivatives of the coupling with respect to the temperature [12] These contributions
are 1n general expected to be small, of the order of a few percent
In the absence of fermions the gluonic part of the action, Sg(U), has in addition
to its local gauge symmetry a global Z( N) symmetry, due to the finiteness of the
euclidean lattice 1n time direction and the periodic boundary conditions imposed
in this direction An order parameter for the realization of this symmetry 1s the
Polyakov line
1 N,
L=~N—i§ReTr< H1 U(x,m,,). (211)

X4=

As the Polyakov line 1s related to the excess free energy, F, of a static color source
in the gluonic environment, (L) ~ exp {— F/ T}, a non-vanishing value would indicate
the appearance of a deconfined phase. In the presence of dynamical fermions the
Z(N) symmetry of the pure gauge action is explicitly broken and thus (L) # 0 for
all temperatures The Polyakov line 1s thus an order parameter for a deconfinement
transition only in the pure gauge sector (or equivalently for infinitely heavy fermions).
Nonetheless 1t 1s clearly of interest to study its behavior 1n the presence of dynamical
fermions also to contrast from the corresponding behavior in the pure gauge theory
In the zero mass limit the action, eq (2 2), has a flavor nonsinglet axial chiral
symmetry for all values of lattice spacing It can be shown to be U(n;) X U(n,)
The order parameter to check whether this symmetry 1s spontaneously broken 1s

given by
()= (x) =dmyltr (D+m) ™) (2.12)

3. Simulation of dynamical fermions

The Grassmann nature of the fermion fields reflects itself in a highly non-local
determinant once these fields have been integrated out In the past different approxi-
mation $chemes have been suggested in order to deal with this determinant Presently
the pseudo-fermion algorithm [13-15] and the microcanonical method [16] are
widely used and seem to be most promising In the following we will discuss 1n
some detail the pseudo-fermion algorithm and the approximations involved when
implementing 1t in a MC simulation in order to make this method useful.

After integrating over the fermion fields x, ¥ the partition function reads

V4 =J [1dU,, det Qe % (3.1)
xX,p

with
det Q= det (m+ D)= (det (m>*— D?))"?. (32)

The basic 1dea of the pseudo-fermion method 1s to think of this determinant not as



RV Gavai, F Karsch / SU(3) phase transitions 277

resulting from an integration over Grassmann fields but resulting from an integration
over scalar fields. Actually what is needed in a MC simulation, using the Metropolis
method, is not the whole determinant but its change under a change of one link
vanable, U, , » U,, +8U,, For small enough changes 8U we find

det(Q+6Q)_ -1
30 o =det(1+Q'8Q)

—1+Tr Q7'8Q+0(8U?). (3.3)

The matrix elements Q5 can then be obtamned from a MC simulation with scalar

fields ¢, Q5 =(Q* Q)5 QF,

(QQy = 21; J [1dé. dg. dyé. exp {—Iz $I(Q+Q)lm¢m} (3.4)
The task of evaluating the determinant of Q for every link change is thus reduced
to evaluating Q'. A further improvement 1n the time taken per link update can be
brought about by noting that all the relevant matrix elements of Q™' may be
calculated before a given sweep of all the link vanables and used for the entire
sweep. For the errors induced by this procedure can be shown to be O(8U?) and
thus neglgible in the approximation used 1n eq. (3.3) If N denotes the number
of Monte Carlo 1terations over ¢-fields to obtain (Q*Q),, using eq. (3 4) then it
1s obvious that the algorithm (and the procedure above) becomes exact in the limit
Ny> 0 and 8U ~0 One can thus easily recognize potential sources of statistical
and/or systematic errors in any practical application of this method. Choosing too
small N, may lead to intolerable statistical errors in Q' which will be carried
over 1n subsequent link updates whereas too large a change U may invalidate
either the expansion, Eq (3.3), or the procedure of calculating Q™' only once per
update of all links or even both. Computer time requirements clearly prevent one
from going to the other extremes where, 1n fact, the results will necessarily be more
reliable. Of course, with too small a §U one has to be cautious again The integration
in eq. (3.1) over link variables runs over the entire group space A reliable estimate
of averages for any observable may thus need increasingly large number of iterations
over the link vanables as 6U - 0.

In the following we will analyze 1n detail the dependence of the results obtained
for the thermodynamics of full QCD on these parameters entering in the pseudo-
fermton algorithm In particular we will show that they have to be handled especially
carefully in a region of large correlation length in order to get conclusive results
on the order of phase transitions in the presence of dynamical fermions.

4. Results

In the following we will present our results for a MC simulation of SU(3) gauge
theory with 3 flavors of staggered fermions of mass ma =0.1 and 0 075 on a lattice
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Fig 1 Energy density versus coupling 8 for SU(3) with 3 flavors of mass ma=01 on a 8> x4 lattice
Also shown are the lowest order (- - -) and O(g?) (— —) weak coupling perturbative results The

temperature scale has been obtained by assuming the validity of the asymptotic scaling relation eq (4 1)

of size 8° x4 The main results are based on a pseudo-fermion {pf) simulation with
Nye=150 1terations 1n the pf update, neglecting the first 25 for equilibration. We
used a heat-bath algorithm to update the pseudo-fermions and a Metropolis
algorithm with 8 hits per link for the gauge fields. The maximal change in the gauge
fields allowed 1n a update has been adjusted such that an overall acceptance rate
of ~63% has been achieved. We will come back later to the question of how optimal
these choices are and what effect they have on the final results.

In figs 1 and 2 we show our results for the energy density ¢ and the Polyakov
line (L) at mass ma = 0.1 1n the entire temperature range considered by us As can
be seen both quantities change rapidly but seemingly continuously over a small
coupling range A8 =0.1 (AT/A,=30). For larger couplings 8=6/g” the energy
density agrees well with weak couphng results [17] At all couplings ordered and
random start configurations have been analyzed to look for metastable states None
have been observed Fig 3 displays evolution of the real part of the Polyakov line
from a random (B =5 2 quenched, thermalized configuration) start and an ordered
start (U,, =1,Vx, u) at 8 =53 One sees that after =800 1terations the two starts
come together and thereafter yield the same value apart from statistical fluctuations.
At all the couplings we studied, we observed similar behavior, the only difference
being the number of iterations required to converge together, away from the critical
region they decreased*

* The slowest convergence we observed was at B = 5 25 where the ordered start required ~1500 iterations
to catch up with the random start which was equilibrated after ~700 1terations
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Fig 2 The Polyakov line expectation value (@) versus 8 for SU(3) with 3 flavors of mass ma=01 on
a 82 x4 lattice and the zero mass extrapolated chiral order parameter (M) (Y),,-, has been obtained
from a linear extrapolation of data at ma =0 075 and 0 1

In fig 2 we also show the chiral order parameter (gnp) extrapolated to zero mass
A linear extrapolation from our data for ma = 0.1 and 0 075 has been made to obtain
these results. Clearly (Jay) vamishes around 8 =525 Assuming the validity of the
asymptotic scaling relation

47’8 459-5Tn,  87°B }
A, = - 4.1
aAL=exp {33~2n, (33—2n,)° " 33-2n, (@.1)
we find for the chiral transition temperature
T../A,=183£10. (4.2)

As 1n the quenched approximation, all the physical quantities we considered,
namely &, (L) and (), exhibit a rapid change in behavior in a small interval of
AB This has been a feature of previous calculations [7] too. The difference which
we find 15 the apparent lack of discontinuity in all of them. In this respect our
findings are at least qualitatively in agreement with those of ref. [6] where 6> x2
lattice with n; =2 was used and ref. [5] where a hopping parameter expansion has
been used. Our results seem to indicate that the chiral phase transition is continuous
contrary to what one would have expected for ny =3 (and larger) by considering
effective chiral models [18]. It may be emphasized though that all methods to obtain
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Fig 3 The Polyakov line versus number of MC iterations Shown 1s the evolution of {L) from random
(- - -) and ordered (——) start configurations at 8 =5 3 The data have been averaged over 20 subsequent
iterations

() m—o from simulations on finite lattices necessarily involve extrapolations and
a weak first order chiral phase transition could easily be buried in the errors of
these extrapolations. Thus we certainly cannot rule out a weak fluctuation induced
first-order phase transition [18].

We now turn to the discussion of the discrepancies between our present work
and that of ref. [7]. Those authors also used 8’ x4 lattice, n,=3 and staggered
fermions but they chose to use N,=24, discarding 4 out of these to allow for
equilibration and they adjusted the acceptance to be ~80%. Since smaller the size
of 8U the greater its probability of being accepted, their acceptance rate translates
into a smaller size of 8U than what we used. They presented evidence for strong
first-order phase transitions: (Jay) and (L) at ma =0 1 showed discontinuities and
evolution of (L) at 8 =15.3 (same coupling as the one used 1n our fig. 3) showed a
two-state signal for 960 iterations Fucito et al., have recently extended this work
to higher values of ma and found that for all of them the first order character of
the transition persists [8].

As we noted 1n the previous section a smaller step length 8U 1s clearly better.
However, 1t may lead to problems with convergences, especially in the regions of
large correlation length as 1n the vicimity of B =5.3 1n our case; one may simply
need more iterations On the other hand, our choice may have been simply too large
to be acceptable for eq. (3.3) to be still vahid. In table 1 we show that the latter 1s
most likely not the case. We compare the average plaquette values (3 Re Tr U,) at
B =35.2, 53 and 5.4 with those obtained by Fucito, Rebb1 and Solomon with 80%
acceptance. They agree extremely well Even at 8 = 5.3 our results are in agreement
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TABLE 1

Companson of plaquette expectation values at different values of 8 and ma=01

3ReTr U,
B n,=3, acc =80% n,=3, acc =63% ne=0
52 04810002 04813 +0 0008 043173 £0 00040
53 05280001 0528340 0008
54 0 545+0002 0547500010 047163 £0 00087

The first column shows the results of ref [7] obtained with an acceptance rate of 80% The
second column gives our results obtained with 63% acceptance The last column shows pure
gauge theory results

with thetr ordered start. We take this reassuring agreement on the level of 0.001 to
mean that our choice of 63% acceptance rate is at least as good as theirs. Both the
works ndicate* that the inclusion of dynamical fermions changes the average
plaquette by approximately 0.05 compared to the pure gauge values.

In order to test whether our first hypothesis about the discrepancy is correct, we
made long runs at 8 =53, ma=0.1 starting from the same random configuration
but with acceptance maintained at ~53%, 63% and 79% N, was chosen to be 24
and 4 iterations were discarded so as to be able to compare with ref. [7]. Fig. 4
exhibits the results of this study. Also shown 1s the equilibrium value at 8=5.3
obtained from the run displayed in fig. 3. One sees a clear rising trend in all the
three curves. Though one needs more than 2000 iterations to be convinced that even
with 79% acceptance the final result will be the same This perhaps explains why
the authors of ref. [7] interpreted their results as signals for two state behavior after

Ly B=5.3
pr =24 (-4)
r 53%% =2 T
05
- 63% 79%
L i A L
1000 2000 # iter

Fig 4 The Polyakov line versus number of MC 1terations for vartous acceptance rates at 8 =53 The
dashed line indicates the equilibrium value obtained in the run shown 1n fig 3 The data have been
averaged over 50 subsequent iterations
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Fig 5 The Polyakov line versus number of MC iterations for different number of pseudo-fermion
iterations (N,,;) at B =5 3 and fixed acceptance rate of 63% The numbers 1n brackets denote the iterations
disgarded before taking averages The data have been averaged over 50 subsequent 1terations

1000 iterations. In fig 5 we display the dependence on N,.. We compare at 8 =35.3
and ma=0.1 the two choices of N, used by us and ref. [7]. One notices that
equilibration time depends on N too.

To summarize then we find that the pseudo-fermion method works rather well
with comparatively small acceptance rates also Average values of physical observ-
ables tend to be quite independent of the parameters N, and 8U, provided one
makes sure that equilibrium is reached. The convergence rate appears to depend
strongly on both these parameters and if one prefers to optimize for smaller U
then extra care needs to be taken to ensure that measurements are made in equili-
brium only

5. Conclusions

We have studied the thermodynamics of SU(3) with 3 light quark flavors. A rapid
change from the low-temperature phase to the high-temperature quark-gluon plasma
has been observed In the zero-mass limit we find evidence for a chiral phase
transition In view of the present data it 1s suggestive that the first-order phase
transition present in the pure gauge sector of the theory weakens and may disappear
at some critical mass value. MC simulations on a 6°x2 lattice [19] indicate that
this happens around m./ T.<2 4 This is considerably smaller than what has been
estimated earlier from a large mass approximation [10] However, 1n total we believe
a generic phase diagram like the one shown 1n fig 6 may be emerging out of these
MC simulations for SU(3) with 3 flavors To support this picture it certainly would
be interesting to find out whether the second-order endpoint (A) exists 1n this phase
diagram also on larger lattices, to determine m, at that point and confirm the
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Fig 6 Generic phase diagram for SU(3) with 3 flavors The circle on the m = o line indicates the first
order phase transition 1n the pure gauge sector from which a line of first order transitions emerges ending
1n a second order transition at the point A The point B indicates the second order chiral transition at m =0

universality of the ratio m./ T,. Whether the rapid crossover behavior seen for light
quark masses between m.a and the chiral transition at ma =0 is just a remnant of
these phase transitions or indicates a line of second-order transitions connecting
the points at A and B remains unclear on the basis of the present data Our
understanding of the QCD phase diagram 1n the presence of fermions 1s, however,
still incomplete. Surprises may also show up by analyzing in more detail the flavor
dependence of the phase diagram [20].

This work was supported tn part by a grant of the National Sctence Foundation
(NSF-PHY82-01948) and the US Department of Energy under contract DE-ACO02-
76CHO00016.
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