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We mvesUgate the deconfinement and the chlral phase transitions m QCD with 3 hght 
dynamical  flavors, using the pseudo-fermlon method Monte Carlo slmulaUons have been performed 
on a lattice o f  size 83 x 4  with fermlons of mass  0 1 and 0 075 respectwely A rapid change from 
the low-temperature region of  hadrons to the hlgh-temperature quark-g luon plasma is observed 
m all the physical quantlUes studied Our detailed, high-statistics results, however, do not  show 
any signs o f  a strong first-order transition In the zero mass hmlt  we find evidence for a chlral 
phase transition at Tc/A L ~- 183 + 10 

1. Introduction 

During the past few years considerable effort and computer time has been devoted 
to the study of  the thermodynamics of  quantum chromodynamics. The lattice 
simulations of  quenched QCD [ 1 ] have reached a stage where the qualitative features 
like the thermodynamics in the low- and high-temperature phases and the order of 
the chtral and deconfinement phase transittons are well understood and numerically 
well under control. Quantitative results for the crlttcal temperature, latent heat and 
in part also critical exponents [2] are in a good shape and there relation to continuum 
parameters using the non-perturbattve features of  the SU(N)  B-function [3] lead 
to results whtch are probably reliable on the 10% level. 

In contrast to this the study of the influence of dynamical fermtons on the 
thermodynamics of  QCD is still in an exploratory stage Although the results 
obtained so far [4-8] look very promising, they differ even on the quahtative level 
and are not able to predict continuum parameters with great confidence. 

Probably one of  the most mterestmg questions, which consequently has been 
addressed first in the context of dynamtcal fermions, ts their influence on the 
deconfinement and chlral phase transttions. In the pure gauge sector these transitions 
are known to be first order [9] for SU(3). Theoretical considerations based on 
effecttve models in the strong coupling region suggest that dynamical fermions tend 
to weaken these phase transitions. This is what one observed m a MC simulatmn 
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with very heavy quarks, where standard MC techniques are still apphcable [10] In 
the light mass region, however, the results for these phase transitions were mconclus- 
we, ranging from a rapid crossover behavior [4] or a second-order phase t ransmon 
[5, 6] to a strong first-order transition [7, 8] There has even been a claim of total 

disappearance [11] of  the phase transition, although a lack of spontaneous break- 
down of the chlral symmetry at T = 0 in the model of ref [11] makes it difficult to 
compare w~th the above mentioned results. Recently most spectacular results have 
been presented in this context in ref. [8] where a strong first-order chiral and 
deconfinement transition has been reported to persist m the enUre mass range down 
to zero-mass fermions These results have been obtained by simulating the effect of  
3 quark flavors using the pseudo-fermlon algorithm. They appear  to be in disagree- 

ment with pseudo-fermlon results on a smaller lattice [6], and also w~th results 
obtained with Wilson fermions [5] Also mlcrocanomcal simulations gave no 
evidence for a strong first-order transltmn [4] 

In this paper  we report the results of  our detailed study of the thermodynamics 
of  QCD with 3 flavors of  hght fermlons We use staggered fermions and employ 
the pseudo-fermlon algorithm to include the effect of  hght quarks of  mass ma = 0 075 
and 0 1 on a 83 ×4 lattice A detailed analysis of the dependence of the results on 

the different parameters of  the pseudo-fermlon approxlmaUon scheme has been 
performed in order to clarify the discrepancies between the results of  different 
groups We will present evidence which suggests that the first-order signal observed 
m ref. [7] is most hkely due to lack of  convergence in the crossover region. We do 
not obtain any evidence for a strong dlscontmmty 

The paper  is orgamzed as follows In sect. 2 we present the basic finite temperature 
formahsm and fix our notations. Sect. 3 reviews the pseudo-fermlon algorithm and 
discusses the various approximations introduced in order to make th~s method useful 
m an actual MC simulation. Sect. 4 contains our results and a comparison with 
earlier results of  other groups and in sect 5 we present our conclusions 

2. Lattice thermodynamics 

The formalism of thermodynamxcs of euchdean lattices has been discussed exten- 
swely m the literature [12]. We will review here the basic features related to the 
introduction of  staggered fermlons m the formahsm. 

The finite temperature partiUon function can be regularized by introducing a 
lattice of size N 3 x N,  with lattice spacing a such that the volume and temperature 
of the system are given by (N~a) 3 and T -1=- N~a respectively. For a SU(N)  gauge 
theory with staggered fermlons the par tmon function then reads 

Z(/3, V) = f H d U~.~, H dxx d)~ e -s(u'~'x) (2.1) 
J x,~ x 
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with the euclidean action S given by 

S( U, ,f, X) = So(U)  + SF( U, )?, X),  (2 2) 

SG ='-~T ,~< ~ 1 -  ReTr(Ux,  uUx+~.~U;+~,~,U+~), (2.3) 

S v = m Z 2 x X x + ½  Z gxrl,(x)[U,~#,Xx+, + - Uo,-,,~,Xx-~,], (2.4) 
x x,/~ 

being the gluonlc and fermlonic contributions to the action The fermiomc fields, 
)?, X are single component Grassmann fields defined on the sites of the lattice They 
also carry a flavor index whmh has been suppressed m eq (2 4) The phase factors 
*l~(x) are defined as rh , (x)=  ( -1 )  x'+ +x , The action depends on the bare quark 
mass rn and the gauge coupling / 3 - - 2 N / g  2. After integrating over the fermionlc 

fields one obtains a partition function in terms of  the bosomc fields Ux,,, alone 
However, m addmon one gets a highly non-local contribution from the fermmn 

determinant 

Z = f [I dUx#,[det (m2-D2)]~j/Se -sG , (2.5) 
d x,/z 

where D --- ~ ,  D"  and 

D~xy = l'ot, ( x ) [  Ux, j.d~y,x+~ - Uy+,la. ~y,x-la. ] (26) 

In eq. (2.5) we have introduced the posmve defimte operator QQ+ where 

Q = - m + D ,  (27) 

whose determinant is equal to the square of  det (m + D) n s denotes the number of  
flavors and is reqmred to be a multiple of  4 for staggered fermlons. Following ref. 
[13] we will use eq. (2.5) to simulate an arbitrary number of nf continuum flavors 

The thermodynamics and phase structure of the quark-gluon system can now be 
analyzed by either looking at thermodynamic observables, which are expected to 
show singular behavior at the phase transmon temperature, or by looking at order 
parameter for various global symmetries of  the system. 

In the following we will concentrate on an analysis of the energy density 

e = TZv-Io  In Z / O T  

where 

---- ec  + eF, (2.8) 

eG = 3/3 ((P,,) - (P,)) 

with P,.(.) = 1 - ( l / N )  Re Tr U~(.) denoting the space-space 
plaquettes. The "fermionic part" of  the energy density, eF, IS given by 

e F = ]nf(tr D4(D + m) -1) -- { l N n f  -~m(~x)r=o} 

(2 9) 

(space-time) like 

(2.10) 
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The term m curly brackets in eq (2.10) comes from renormalizing the energy density 
by subtracting the zero temperature contributions. In the defimtion of the "gluonic 
part" ,  eG, of  the energy density we neglected contributions which result from the 

derivatives of  the coupling with respect to the temperature [12] These contributions 
are m general expected to be small, of  the order of a few percent 

In the absence of  fermlons the gluonic part of  the action, SG(U), has in addition 
to its local gauge symmetry a global Z ( N )  symmetry, due to the finiteness of  the 
euclidean lattice m time direction and the periodic boundary conditions imposed 
in this direction An order parameter  for the reahzation of this symmetry is the 

Polyakov line 

L=-~-75-3 ~ R e T r  U(x, x4L4 • (2 11) 
N o -  x 1 

As the Polyakov hne is related to the excess free energy, F, of a static color source 
m the gluonic environment, (L) - exp { - F ~  T}, a non-vanishing value would indicate 
the appearance of a deconfined phase. In the presence of dynamical fermions the 
Z ( N )  symmetry of the pure gauge action is exphcltly broken and thus ( L ) ~  0 for 
all temperatures The Polyakov line is thus an order parameter  for a deconfinement 
transitmn only in the pure gauge sector (or equwalently for infinitely heavy fermlons). 
Nonetheless it is clearly of  interest to study its behawor  m the presence of dynamical 
ferm~ons also to contrast from the corresponding behavior in the pure gauge theory 

In the zero mass limit the action, eq (2 2), has a flavor nonsmglet axial chlral 
symmetry for all values of  lattice spacing It can be shown to be U(n  s) x U(ny) 
The order parameter  to check whether this symmetry is spontaneously broken is 

given by 
( ~ )  =- ()(X) = -~ny(tr (D  + m) -~) (2.12) 

3. Simulation of dynamical fermions 

The Grassmann nature of  the fermlon fields reflects Itself in a highly non-local 
determinant once these fields have been integrated out In the past different approxl- 

• I matlon schemes have been suggested in order to deal w~th this determinant Presently 
the pseudo-fermlon algorithm [13-15] and the mlcrocanomcal method [16] are 
widely used and seem to be most promising In the following we wdl discuss m 
some detail the pseudo-fermion algorithm and the approxtmations revolved when 
implementing it in a MC simulation in order to make this method useful• 

After integrating over the fermlon fields X, )? the partition function reads 

Z --- [ H d Ux,~, det Q e - S G  (3.1) 
d x,/~ 

with 
det Q -= det (m + D) = (det (m 2 -  D2)) 1/2 . (3 2) 

The basic idea of the pseudo-fermlon method is to think of this determinant not as 
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resulting from an integration over Grassmann fields but resulting from an integration 

over scalar fields. Actually what is needed in a MC simulation, using the Metropolis 
method, is not the whole determinant but its change under a change of  one link 
variable, Ux,~ --> Ux,~ + 6Ux,~ For small enough changes 8U we find 

det ( Q + 6Q ) 
= det (1 + Q-16Q) 

det Q 

= 1 + T r  Q-13Q+O(~U2) • (3.3) 

The matrix elements Qxy ~ can then be obtained from a MC simulation with scalar 
fields ~b, -1 + Q~y = ( Q+ Q);) Q=y 

l 
( Q ÷ Q ) = ~ : z f H d ~ x d d ~ x ~ y ~ x e x p { - ~ @ ( Q + Q ) t m ~ b m }  (3.4) 

The task of evaluating the determinant of  Q for every hnk change is thus reduced 
to evaluating Q-1. A further improvement  in the time taken per hnk update can be 
brought about  by noting that all the relevant matrix elements of  Q-~ may be 
calculated before a given sweep of  all the link variables and used for the entire 
sweep. For the errors induced by this procedure can be shown to be O(6U 2) and 
thus negligible m the approximation used m eq. (3.3) I f  Npf denotes the number  
of  Monte Carlo iterattons over &-fields to obtain (Q+Q)~ty using eq. (3 4) then it 
is obvlous that the algorithm (and the procedure above) becomes exact in the hmlt 
N p f - ~  and 6U~O One can thus easily recognize potential sources of  statlstmal 
and /o r  systematic errors in any practical application of this method. Choosing too 
small Nor may lead to intolerable statistical errors in Q-1 which will be earned 

over m subsequent link updates whereas too large a change 6U may invalidate 
either the expansmn, Eq (3.3), or the procedure of  calculating Q-1 only once per 
update of  all links or even both. Computer  time requirements clearly prevent one 
from going to the other extremes where, in fact, the results will necessarily be more 
reliable. Of  course, w~th too small a 6U one has to be cautious again The integration 
in eq. (3.1) over link variables runs over the entire group space A reliable estimate 
of  averages for any observable may thus need increasingly large number  of  iterations 

over the link variables as 6U~O. 
In the following we will analyze in detail the dependence of the results obtained 

for the thermodynamics  of  full QCD on these parameters entering in the pseudo- 
fermion algorithm In particular we will show that they have to be handled especially 
carefully in a regmn of large correlatmn length in order to get conclusive results 
on the order of  phase transitions m the presence of dynamical fermmns. 

4. Results 

In the following we will present our results for a MC simulation of  SU(3) gauge 
theory with 3 flavors of  staggered fermlons of mass ma = 0.1 and 0 075 on a lattice 
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Fig 1 Energy density versus couphng /3 for SU(3) with 3 flavors of mass rna =0 1 on a 83 x4 latttce 
Also shown are the lowest order ( - - - )  and O(g 2) (--  - - )  weak coupling perturbatlve results The 
temperature scale has been obtained by assuming the vahdlty of the asymptotic scahng relatmn eq (4 1) 

o f  s i z e  8 3 ×4 The main  results  are based  on a p s e u d o - f e r m i o n  (pf)  s lmulataon with 

Npf=  50 i te ra t ions  m the p f  upda te ,  neglec t ing  the first 25 for  equi l ib ra t ion .  We 

used  a hea t -ba th  a lgor i thm to upda t e  the  p se udo - f e rmlons  and  a Met ropo l i s  

a lgor i thm with  8 hits pe r  hnk  for  the  gauge  fields. The  ma x ima l  change  in the  gauge  

fields a l l owed  in a u p d a t e  has been  ad}usted such tha t  an  overal l  accep tance  rate 

of  - 6 3 %  has  been  achieved.  We will  come back  la ter  to the  ques t ion  o f  how op t ima l  

these choices  are and  wha t  effect they have on the final results.  
In  figs 1 and  2 we show our  results for  the  energy dens i ty  e and  the Polyakov  

hne  <L) at  mass  ma = 0,1 m the entire t empe ra tu r e  range cons ide red  by  us As can 

be seen bo th  quant i t ies  change  rap id ly  but  seemingly  con t inuous ly  over  a small  

c ouphng  range Al3 ~0 .1  ( A T / A L = 3 0 ) ,  For  larger  coupl ings  /3 - - -6 /g  2 the energy 

densi ty  agrees well  wtth weak  couphng  results  [17] At  all couphngs  o rde red  and  

r a n d o m  start  conf igura tmns  have been  ana lyzed  to look  for  me tas tab le  states None  

have been  observed  Fig 3 d i sp lays  evo lu tmn  o f  the real  par t  o f  the  Po lyakov  l ine 

from a r a n d o m  (/3 = 5 2 quenched ,  the rmal i zed  conf igura t ion)  start  and  an o rde red  

start  (Ux,~, = 1, Vx, ~ )  a t /3  = 5 3 One sees that  af ter  =800  i te ra t ions  the two starts 

come toge ther  and  thereaf te r  y ie ld  the same value  apa r t  f rom stat ts t lcal  f luctuat ions.  

At all the  coupl ings  we s tudied ,  we obse rved  s imi lar  behavior ,  the only  difference 

being the n u m b e r  o f  l tera t tons  r eqmred  to converge  together ,  away  from the cri t ical  

region they decreased*  

* The slowest convergence we observed was at/3 = 5 25 where the ordered start required -- 1500 iterations 
to catch up with the random start which was eqmhbrated after ~700 lteratmns 
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Fig 2 The Polyakov hne expectation value (0) versus/~ for SU(3) with 3 flavors of mass ma = 0 1 on 
a 83 ×4 lattice and the zero mass extrapolated chlral order parameter ( I )  (~O)m=o has been obtained 

from a linear extrapolation of data at ma = 0 075 and 0 1 

In fig 2 we also show the chiral order  parameter  (~¢)  extrapolated to zero mass 

A linear extrapolat ion f rom our  data for ma = 0.1 and 0 075 has been made  to obtain 
these results. Clearly (~0)  vanishes a r o u n d / 3  = 5 25 Assuming the validity o f  the 

asymptot ic  scahng relation 

f 4zr2/3 4 5 9 - 5 7 n y  87r2/3 ~ (4.1) 
aAL = exp [33  - 2 n y  (33 - 2 n y )  ~ In 33 - 2 n y J  

we find for  the chiral transit ion temperature  

T ~ , / A L  = 183+ 10. (4.2) 

As m the quenched  approximat ion ,  all the physical  quantities we considered,  
namely e, (L) and (q~q,), exhibit a rapid change in behavior  m a small interval o f  

A/3 This has been a feature o f  previous calculations [7] too. The difference which 
we find is the apparen t  lack o f  discontinuity m all o f  them. In  this respect our  
findings are at least qualitatively m agreement  with those o f  ref. [6] where 63 ×2 

lattice with ny = 2 was used and ref. [5] where a hopp ing  parameter  expansion has 
been used. Our  results seem to indicate that the chiral phase transit ion is cont inuous  
contrary to what  one would  have expected for  n s = 3 (and larger) by considering 
effective chiral models  [18]. It may  be emphas ized  though  that  all methods  to obtain 



280 R V Gavin, F Karsch / SU(3) phase transmons 

<L) 

A _ 

- k /  v , , y  

/1 Npf = 50 (-25) 
/ 

^ f~ o r d e r e d  s t a r t  

/ v ---- random start 

I 

p.~. jhv",, v _ I 
O I " " t l  

r - • .  / 
/ 

i L i i I i i i i i , , -  
5 0 0  I 0 0 0  # , ter -  

Fig 3 The Polyakov line versus number o f  M C  iteratlons Shown is the evo|utmn o f  (L)  f rom random 
(- - -) and ordered ( ) start configurations at/3 = 5 3 The data have been averaged over 20 subsequent  

iterations 

(~70),,=o from simulations on finite lattices necessarily involve extrapolations and 
a weak first order chiral phase transition could easily be buried in the errors of  
these extrapolations. Thus we certainly cannot rule out a weak fluctuation induced 
first-order phase t ransmon [18]. 

We now turn to the discussion of the discrepanctes between our present work 
and that of  ref. [7]. Those authors also used 83 x4  lattice, n s=3  and staggered 
fermlons but they chose to use Npr= 24, discarding 4 out of  these to allow for 
equilibration and they adjusted the acceptance to be - 8 0 % .  Since smaller the size 
of 8U the greater its probability of  being accepted, their acceptance rate translates 
rata a smaller s~ze of ~U than what we used. They presented evidence for strong 
first-order phase transmons:  (0~) and (L) at m a  = 0 1 showed dlscontmumes and 
evolution of  (L) at fl = 5.3 (same couphng as the one used in our fig, 3) showed a 
two-state signal for 960 iterations Fucito et al., have recently extended th~s work 
to higher values of  m a  and found that for all of  them the first order character of  
the transition persists [8]. 

As we noted m the previous secuon a smaller step length 8U is clearly better. 
However, It may lead to problems with convergences, especially m the regions of  
large correlation length as m the wctmty of /3  = 5.3 in our case; one may simply 
need more iterations On the other hand, our choice may have been simply too large 
to be acceptable for eq. (3.3) to be still vahd. In table 1 we show that the latter is 
most likely not the case. We compare the average plaquette values (] Re Tr Up) at 
/3 = 5.2, 5.3 and 5.4 with those obtained by Fuclto, Rabbi and Solomon with 80% 
acceptance. They agree extremely well Even at/3 = 5.3 our results are in agreement 
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TABLE 1 

Comparison of plaquette expectation values at different values of fl and ma = 0 1 

281 

~ReTr Up 

f l  nf  = 3, acc= 80% n: = 3, acc = 63% nf = 0 

5 2 0 48 l ± 0 002 0 4813 ± 0 0008 0 43173 ± 0 00040 
5 3 0 528±0 001 0 5283±0 0008 
5 4 0 545 ± 0 002 0 5475 ± 0 0010 0 47163 ± 0 00087 

The first column shows the results of ref [7] obtained with an acceptance rate of 80% The 
second column g~ves our results obtained with 63% acceptance The last column shows pure 
gauge theory results 

with thetr ordered start. We take this reassur ing agreement  on  the level of 0.001 to 

mean  that our  choice of  63% acceptance rate is at least as good as theirs. Both the 

works mdicate" that the inc lus ion  of  dynamica l  fermlons changes the average 

plaquet te  by approx imate ly  0.05 compared  to the pure  gauge values. 

In  order  to test whether  our  first hypothesis  about  the discrepancy is correct, we 

made  long runs  a t /3  = 5 3, r n a  = 0.1 start ing from the same r a n d o m  configurat ion 

but  with acceptance  ma in t a ined  at - 5 3 % ,  63% and  79% Npr was chosen to be 24 

and  4 i terat ions were discarded so as to be able to compare  with ref. [7], Fig. 4 

exhibits the results of  this study, Also shown ~s the equi l ib r ium value at /3 = 5.3 

ob ta ined  f rom the run  displayed in fig. 3. One  sees a clear rising t rend in all the 

three curves. Though  one needs more than  2000 i terations to be convinced  that even 

with 79% acceptance the final result will be the same This perhaps  explains  why 

the authors  of  ref. [7] mterpre ted  their  results as signals for two state behavior  after 

( L )  /~ =5.5 
Npf = 24 ( -4 )  

0 5  ~ / ' ~ 5 5 %  

_ / 6 3 %  o / - / 79'/o 

I 0 0 0  2000  # )ter 

Fig 4 The Polyakov hne versus number of MC iterations for various acceptance rates at fl = 53 The 
dashed hne indicates the eqmhbnum value obtained in the run shown m fig 3 The data have been 

averaged over 50 subsequent lteraUons 
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Fig 5 The Polyakov hne versus number of MC iterations for different number of pseudo-fermlon 
Iterations (Npr) at/3 = 5 3 and fixed acceptance rate of  63% The numbers m brackets denote the lteratmns 

dlsgarded before taking averages The data have been averaged over 50 subsequent iterations 

I000 iterations. In fig 5 we display the dependence on Npf. We compare at/3 = 5.3 
and ma = 0.1 the two chmces of Nrr used by us and ref. [7]. One notices that 
equihbraUon time depends on Npr too. 

To summarize then we find that the pseudo-fermlon method works rather well 
with comparatively small acceptance rates also Average values of  physical observ- 

ables tend to be quite mdependent  of the parameters Npf and 8U, provided one 
makes sure that equdlbnum is reached. The convergence rate appears  to depend 
strongly on both these parameters and if one prefers to optimize for smaller 8U 
then extra care needs to be taken to ensure that measurements are made m equili- 
brium only 

5 .  C o n c l u s i o n s  

We have studied the thermodynamics of  SU(3) with 3 hght quark flavors. A rapid 
change from the low-temperature phase to the high-temperature quark-gluon plasma 
has been observed In the zero-mass hmlt we find evidence for a chlral phase 
trans~tton In wew of the present data st ~s suggestwe that the first-order phase 
transition present m the pure gauge sector of the theory weakens and may disappear 
at some critical mass value. MC simulations on a 63 ×2 lattice [19] indicate that 
this happens around rnc/Tc<~ 2 4 This is considerably smaller than what has been 
estimated earher from a large mass approximation [10] However, m total we beheve 
a generic phase diagram hke the one shown in fig 6 may be emerging out of these 
MC simulations for SU(3) with 3 flavors To support  this picture it certainly would 
be interesting to find out whether the second-order endpomt (A) exists m this phase 
diagram also on larger latttces, to determine mc at that point and confirm the 
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Fig 6 Generic phase diagram for SU(3) with 3 flavors The circle on the m = ~ hne m&cates the first 
order phase transmon m the pure gauge sector from which a hne of first order transmons emerges ending 
in a second order transmon at the point A The point B indicates the second order choral transition at m = 0 

u n i v e r s a l i t y  o f  the  ra t io  me~ To. W h e t h e r  t he  r a p i d  c r o s s o v e r  b e h a v i o r  s een  fo r  h g h t  

q u a r k  m a s s e s  b e t w e e n  mca a n d  the  ch i ra l  t r an s t t i on  at ma = 0 is j u s t  a r e m n a n t  o f  

t he se  p h a s e  t r ans i t i ons  o r  lnd~cates  a h n e  o f  s e c o n d - o r d e r  t r ans i t ions  c o n n e c t i n g  

the  p o i n t s  at  A a n d  B r e m a i n s  u n c l e a r  on  the  bas is  o f  t he  p r e s e n t  d a t a  O u r  

u n d e r s t a n d i n g  o f  t he  Q C D  p h a s e  d i a g r a m  m the  p r e s e n c e  o f  f e r m l o n s  is, h o w e v e r ,  

still  i n c o m p l e t e .  Su rp r i s e s  m a y  also s h o w  u p  by  a n a l y z i n g  in m o r e  de ta i l  t he  f l avor  

d e p e n d e n c e  o f  t he  p h a s e  d i a g r a m  [20]. 

Th is  w o r k  was  s u p p o r t e d  tn pa r t  by  a g r an t  o f  t he  N a t i o n a l  Sc t ence  F o u n d a t i o n  

( N S F - P H Y 8 2 - 0 1 9 4 8 )  a n d  the  U S  D e p a r t m e n t  o f  E n e r g y  u n d e r  c o n t r a c t  D E - A C 0 2 -  

7 6 C H 0 0 0 1 6 .  
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