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Results are reported of Monte Carlo renormalisation group studies of the approach to 
asymptotic scaling in SU(3) lattice gauge theory. By comparing measurements on 84 and 16 4 lattices, 
estimates are obtained for the shift, Aft, in the fundamental plaquette coupling,/3, corresponding 
to a change of length scale by a factor of 2. The definitions of block link variables contain a free 
parameter whose value can be optimised to minimise the transient flow to a renormalised trajectory. 
Our results, at/3 = 6.0, 6.3 and 6.6, are consistent with those obtained previously with the improved 
ratio method, which is also briefly discussed. In both methods simulation is performed only with 
the standard Wilson action. An important feature of the results is the appearance of a pronounced 
dip in A/3 which implies that in the presently accessible range of /3 the asymptotic value is 
approached from below, and its onset is delayed. 

1. Introduction 

I n  t h e  l a r g e  cu t -o f f  l i m i t  o f  r e n o r m a l i s a b l e  t h e o r i e s  i t  is p o s s i b l e  to  t u n e  t h e  cu t -o f f  

a n d  t h e  c o u p l i n g ( s )  t o g e t h e r  in  s u c h  a w a y  t h a t  t h e  p h y s i c a l  c o n t e n t  o f  t h e  t h e o r y  

r e m a i n s  u n c h a n g e d .  T h e  f u n c t i o n a l  r e l a t i o n  b e t w e e n  t h e  c o u p l i n g ( s )  a n d  t h e  cu t -o f f  

is g i v e n  b y  t h e / 3 - f u n c t i o n ( s )  o f  t h e  t h e o r y .  P e r t u r b a t i o n  t h e o r y  s u g g e s t s  t h a t  in  a n  

S U ( N )  g a u g e  t h e o r y  t h e  l e a d i n g  cu t -o f f  d e p e n d e n t  c o r r e c t i o n s  a r e  e x p o n e n t i a l l y  

s m a l l  in  t h e  i n v e r s e  o f  t h e  b a r e  c o u p l i n g  c o n s t a n t  g2. O n l y  t h e  t w o  l e a d i n g  t e r m s  

o f  t h e / 3 - f u n c t i o n  

f l ( g )  = - b o g  3 - big  5 + .  • • (1) 
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are universal: the higher-order corrections are power-like and not necessarily small 
in the region where the cut-off-dependent corrections are already negligible. There 
might also be sizeable contributions to the /3-function from non-perturbative 
phenomena. 

In the lattice formulation of Yang-Mills theories, where numerical studies are 
performed at moderate correlation lengths (i.e. at intermediate coupling constant 
values), the quantitative knowledge of the/3-function is of fundamental importance 
for the correct interpretation of the results. One should confirm also that the 
/3-function approaches the asymptotic form of eq. (1) without passing through a 
phase transition, assuring a continuum limit with the expected properties of 
asymptotic freedom and confinement. 

In this paper first results obtained by an extended collaboration for a Monte 
Carlo renormalisation group (MCRG) study of SU(3) lattice gauge theory are 
reported. In this study block loop expectation values o n  164 and 8 4 lattices are 
matched in order to determine the shift A/3 = A/3(/3) in the fundamental plaquette 
coupling /3 ( =  6 /g  2) of the standard Wilson action, corresponding to a change of 
scale by a factor of 2. The function zafl(fl) is directly related to the integral of  the 
inverse of the /3-function and contains the same information: 

~ dx - -',/~2 In 2. (2) 

The anticipated renormalisation group (RG) flow [1] in a reduced (3-dimensional) 
coupling constant space is indicated schematically in fig. 1. The axes refer to a 
parametrisation of the action in terms of a bare coupling, g2, and dimensionless 
couplings, ci, characterising the relative strengths of  fundamental, adjoint, 6-1ink 

etc. couplings. The continuum fixed point (FP) lies in the g2= 0 hyperplane and is 
stable to all perturbations in this hyperplane. The renormalised trajectory (RT) is 
the one-dimensional unstable manifold emerging from the fixed point. The transient 

C 3 

Fp  RT 

_ C 2  

gl g2 
Fig. 1. Schematic diagram of the anticipated RG flow in a three-dimensional coupling constant space. 
FP denotes the fixed point in the critical hypersurface, whilst RT denotes the one-dimensional  unstable 

manifold. 
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flOW from two points on the g2 axis (which we convent ional ly  choose to correspond 

to the s tandard  Wilson action for the pure gauge theory) into the renormalised 

trajectory is indicated. The positions o f  the fixed point  and renormalised trajectory 
are not universal - they depend on the choice o f  RG t ransformat ion - but flow 

transverse to the RT is contractive so that all lattice actions describe the same 

long-distance physics. 
For  fixed g~, provided that there exists a universal f l -funct ion so that all physical 

quantities scale in the same way, we are guaranteed to be able to find a value o f  g~ 

such that matching is achieved after a suitably large number  o f  blockings, due to 
the contractive nature o f  the RG flow. The resulting Aft  is universal. However ,  there 

is a finite-size limitation arising from the fact that  our  starting configurations are 

on 164 and 84 lattices, so that  we can carry out at most  three blockings o f  the smaller 

lattice. It is consequent ly  important  to take advantage o f  our  f reedom in the choice 
o f  the RG t ransformat ion  to extend the definition o f  the block link variables to 

include a free parameter  which can be used to maximise the rate o f  convergence 
o f  the trajectories th rough  g2 and g2 [2]*. If, by varying this parameter ,  we could 

get perfect matching,  after one blocking of  the larger lattice, o f  all physical  quantities 
which can be fitted on to the finite lattice, i.e. the points g2 and g2 2 lie on the same 

RG trajectory as shown in fig. 2, then we would  have determined ,aft exact ly  from 

the first blocking. All subsequent  blockings would yield the same Aft, as the two 
lattices " fo l low each o ther"  along the same trajectory. In practice o f  course perfect 
matching is never achieved but optimisation speeds up convergence o f  the sequence 

o f  estimates {Aft (")} by making the trajectory through g~ initially flow close to the 
g2 axis (and hence to g2). Furthermore,  knowledge of  the sequences {Aft(")} for a 

range o f  block t ransformations a round  the op t imum can be used to obtain monotoni-  

cally increasing (decreasing) lower (upper) bounds  on Aft = A/3 ~) ,  which are impor-  
tant for estimating the systematic error induced by this finite-size effect. 

FP 

2 2 g 
g g 

1 2 

Fig. 2. Schematic diagram of the effect of optimising the RG transformation as discussed in the text. 

* In [2] a similar idea to that of Hasenfratz et al. has been put forward and applied to the 3d Ising 
model recently by Swendsen. The basic idea of a MCRG analysis is suggested by Ma and by Swendsen 
in the second reference by him. 
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Our  ma in  results  are  the  fo l lowing ma tch ing  values  at t h r ee /3 -va lues :  

Aft (/3 = 6.0) = f {0.35 
+ 0 .02,  

L0.34+ 0.02,  

A/3 (/3 = 6.3) = 0.43 + 0 . 0 3 ,  

A/3 (/3 = 6.6) = 0.56 ± 0 .06,  

scheme 1, 

scheme 2 ,  

scheme 1 , 

scheme 1,  (3) 

where  the er rors  inc lude  our  es t imate  o f  bo th  s tat is t ical  and  sys temat ic  uncer ta in t ies .  

Resul ts  a t /3  -- 6.9, 7.2, and  o f  o ther  ca lcu la t ions  will be p resen ted  e lsewhere  [3]. 

The resul ts  quo ted  above  are cons is ten t  with those  o b t a i n e d  ear l ier  by  a different  

M C R G  me thod ,  the i m p r o v e d  rat io  m e t h o d  (fig. 3) [4]. The s tar t ing po in t  o f  this 

la t ter  p r o c e d u r e  is the  obse rva t ion  [5] tha t  those  rat ios o f  Wi l son  l oop  expec ta t ion  

values  f rom which  the self-mass  and corner  con t r ibu t ions  cancel  sat isfy the 

h o m o g e n e o u s  r eno rma l i s a t i on  group  (RG)  equa t ion ,  at least  if  the loops  involved  

are  large c o m p a r e d  to the  lat t ice spacing.  Since the h o m o g e n e o u s  R G  equa t ion  is 

0.7 
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0.4 
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0 I l l l l  

5.7 6,0 

w I I i 

• opt imised blocking: scheme1 

o opt imised blocking: scheme 2 

[] l - l o o p  improved rot io  method 

I I i i I '  , , 

6.3 6.6 

Fig. 3. The shift zlfl as a function of/3 obtained from l-loop improved ratios (~) [4] and from optimised 
blocking scheme 1 (O) and scheme 2 (C)) in this work. In the case of the ratio results the thin error bars 
refer to the statistical error while the thick error bars refer to the average fluctuation of the large number 

of different ratios included in the analysis. The dashed line is the asymptotic prediction. 
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linear in these ratios, arbitrary linear combinations of  the basic ratios satisfy it also. 
The method can be optimised by taking particular combinations of  the basic ratios 
to cancel lattice artifacts order by order in perturbation theory. An advantage of 
this method is its simplicity. Any high statistics measurement of  the potential or of  
the string tension can easily be extended to perform this analysis, and it is expected 

to work even at large correlation lengths. Its disadvantage is that it is difficult to 
see how to do the optimisation non-perturbatively and the method requires very 
good statistics. The statistical error of  the block loop matching results at /3 = 6.0 
quoted in eq. (3) is about 4 times smaller than the corresponding error quoted in 

ref. [4] .  

2. The block transformations 

The block variable VAB associated with the block link A-B in fig. 4a is chosen 

with the probabili ty 

prob ( VAB ) ~ exp ~P Tr ( V*AaX + h.c.). (4) 

( 0 )  x * x " x 

2 3 

I 4 

:i i B 5 6 1o 

8 9 

(b) 

X * X " X 

B A B 

A B 
Fig. 4. (a) Construction of the block link in scheme 1, as described in the text. (b) The additional classes 

of paths used in the definition of the block link in scheme 2. 
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In blocking scheme 1, X is taken to be the sum of the matrix products along 7 
different paths connecting the sites A and B: UsU6, U~U2U3U4, UTUsUgUto and 
the corresponding paths in the orthogonal planes [6]. To test for possible systematic 
effects arising from this choice of  blocking scheme, a second scheme, 2, was tried 

at/3 = 6.0, in which the set of paths connecting A and B was extended to include 
a further 36 paths of  the classes indicated in fig. 4b. A/3 should of course be 
independent  of  the blocking scheme. The parameter  P is used for optimisation as 
described in sect. 1. 

3. Configurations and statistics 

The 164 SU(3) configurations at /3 =6.0, 6.3 and 6.6 were created on the DAPs 
at Edinburgh. After every 112 pseudo-heatbath [7] sweeps the configuration was 
stored for later blocking and other measurements [3]. The first 1500 sweeps were 
discarded. The limited memory of the Edinburgh DAPs forced us to store the link 
variables as 16 bit integers after multiplication by a scale factor N = 32 000, while 
the matrix multiplications in the updating were done in 3 byte real arithmetic. The 
corresponding rounding errors introduce additional randomness into the system 
resulting in a slight systematic error: the configuration looks somewhat  "hot ter"  
than the nominal/3-value would require. However  this effect is very small. Theoretical 
considerations and test runs with an artificially decreased scale factor, N, suggest 
that the corresponding error in the plaquette expectation value is O( t0  -8) - well 
below our statistical accuracy. Details are given in table 1. 

The 84 configurations at /3 = 5.4, 5.6, 5.7, 5.8, 5.9, 6.0 and 6.1 were created at 
C E R N  and DESY starting from the last, well-equilibrated configurations of  earlier 

studies. These configurations were separated by 10 pseudo-heatbath sweeps. 
Using scheme 1 the blocking was done on the C E R N  IBM machines at /3 = 6.0 

at four values of  the free parameter,  P: 20, 30, 35 and 40. These values were picked 
after a few trial runs. Similarly at/3 = 6.6, the values 22, 25, 30 and 40 were chosen 
but a preliminary analysis clearly indicated that all the matching results behaved 
linearly in 1/P, as observed at /3 = 6.0. Thus the complete analysis at /3 = 6.6 and 

at 6.3 was done at just two P values: 25 and 40. 

TABLE 1 

Effect of various scale factors, N, used for integer storage as described in the text, on the average 
plaquette for a single 164 configuration at/3 = 6.0 

N 32 000 284 248 124 62 31 15 11 9 
([]) 1.781 1.781 1.780 1.779 1.781 1.773 1.768 1.755 1.744 
AE 0 0.000 0.001 0.002 0.000 0.008 0.013 0,026 0.037 

AE is the shift in the average plaquette relative to the value obtained with the maximal scale factor 
of 32 000. 
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The results quoted in eq. (3) 
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for scheme 1 are based on the following statistics: 

164: /3 =6.0 

/3 =6.3 
/3 =6.6 

84: /3 = 5.4 

/3=5.6 
/3=5.7 

/3 =5 .8 ,  
/3 =5 .9 ,  
/3 =6 .0 ,  

/3 =6 .1 ,  

50 configurations 
59 configurations 
99 configurations 
32 configurations 
96 configurations 
64 configurations 

96 configurations, 
288 configurations, 

96 configurations, 
96 configurations. 

The result at 13 = 6.0 for the second blocking scheme is based on an analysis of 36 
164 configurations using three P-values: 26, 21 and 17. Linear interpolation was 
used throughout to get intermediate fl-values. 

The statistical errors were estimated by measuring time correlations and also by 
the usual binning. 

4. Results 

If for some block transformation the renormalised trajectory runs along the line 
of the standard Wilson action in the multi-parameter coupling constant space*, then 

after the first blocking step the effective action is again a standard action at some 
coupling /3'=/3- A/3. In this case the block loop expectation values are equal to 
the corresponding Wilson loop expectation values of  the standard action at coupling 
/3' on a lattice of half the size. The parameter P is fixed by requiring that one gets 
as close as possible to this situation. To say it in another way: an optimal value of 
P at each /3 is determined by requiring the best possible consistent matching for 
many observables after the first blocking step. 

Fig. 5 illustrates the matching values of 12 different loops (1 × 1, 1 × 2 , . . . ,  4 x 
4, 8 ,  ~ )  after the first blocking step at /3 =6.0, using scheme 1 while fig. 6 
shows the effect of subsequent blockings on the matching of the 1 x 1 Wilson loop. 
Decreasing P-dependence at large length scales is manifested in two ways in these 
figures. Firstly, at a given level of blocking, matching for the larger loops is in 
general less P-dependent than for smaller loops. Secondly, matching becomes less 
P-dependent as the level of blocking increases. The results suggest 

popt  +1o 
= 3 5 _ 5  . (5)  

It should be emphasised that in principle any value of P is appropriate; the 
different block transformations should give the same final prediction for A/3. 

* Even in principle this is possible only up to the exponentially small corrections discussed in the 
introduction. We are indebted to J. Kripfganz for a discussion of this point. 
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~ = 6 . 0  
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l x l  
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I I I I I 

1140 1130' 1125 1/20 
1/35 l I P  

Fig. 5. The matching predictions obtained in scheme 1 from 12 different block loops after the first 
blocking step at/3 = 6.0. P is the free parameter in the block transformation. For P ~ 30 the predictions 
obtained from a given loop are linear in I/P. The mean deviation of the matching predictions has a 

broad minimum in the region P = 35~  °. 
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0.4 

SU(3): ~=6.0 1x1 block loop motching 

+ Blocking step 1 

I + 

1 + ~ Blocking step 2 

1 + 

3 

Blocking step 3 

I I I I I 

1/40 I/30 I/20 
I/35 I / P 

Fig. 6. The matching predictions obtained for the 1 x I block loop in scheme 1 at subsequent blocking 
levels as a function of l / P  for/3 =6.0. 



164 K.C. Bowler et al. / Lattice gauge theory 

A similar analysis a t /3  = 6.3 yields, after the first blocking step, 

popt _ 27+35 (6) 
I - -  

whilst after the second blocking step 

popt_  32+_8 (7) 
2 - -  

At/3  = 6.6 the cor responding  results are 

plopt - - - -  23.5 +-4 , (8) 

popt _ 28+_8 (9) 
2 - -  

Figs. 7-10 show the raw data on which these estimates are based. They illustrate 
that as /3 increases, so also does the P -dependence  o f  a/3 (for part icular  Wilson 

loops at a given blocking level); hence it is increasingly impor tant  to optimise the 
blocking prescript ion at the higher/3-values.  

The predict ions for A/3 (/3 = 6.0) obta ined f rom matching four  different block 

loops (plaquette,  61( = ~ ), 62(= ~ '2)  and 63( = ~ f ' ) )  are given for P = 3 0 ,  
35 and 40 at subsequent  blocking levels in table 2. As the statistical errors o f  the 
block loops 6, and 63 after the third blocking step are very large no matching value 
is quoted there. The P-dependence  is l inear in 1 / P  (as suggested by per turbat ion 
theory) for  P ~  30, which makes it possible to follow the predict ions for large P 

even without  actually measur ing them. For  the 1 × 1 block loop matchings p o p t  50. 

This is the value where the predicted A/3 is the same after the first and second 
blocking step: 3/3 = 0.35 + 0.01 and is consistent with the extrapolated third blocking 

result. A simple averaging of  the third blocking step predictions at P = 30, 35 and 
40 gives za/3 = 0.359 + 0.013. It is also encouraging that using the alternative blocking 

scheme yields results for A/3 (/3 = 6.0) which are completely  consistent with those 

o f  scheme 1 (see eq. (3)). 

TABLE 2 
The matching predictions A/3 (fl = 6.0) are summarised for 4 different block 

loops at different blocking levels and different values of P in scheme 1 

P Blocking ~ ~ ~ .~7 
step 

30 l 0.461 (3) 0.471 (3) 0.414 (3) 0.392 (3) 
2 0.382 (6) 0.375 (7) 0.372 (5) 0.368 (5) 
3 0.359 (13) 0.383 (25) 

35 1 0.420 (2) 0.444 (2) 0.386 (3) 0.370 (3) 
2 0.371 (6) 0.369 (5) 0.365 (5) 0.362 (5) 
3 0.368 (13) 0.348 (21) 

40 1 0.388 (2) 0.424 (2) 0.363 (3) 0.352 (3) 
2 0.361 (5) 0.360 (6) 0.367 (5) 0.355 (5) 
3 0.351 (13) 0.342 (20) 
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Fig. 7. The matching predictions obtained from various block loops after the first blocking step at fl = 6.3. 
Error bars have been omitted for clarity but are broadly comparable with those shown in fig. 5. 
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Fig. 8. The matching predictions obtained from various block loops after the second blocking step at 
/~ = 6.3. 
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TABLE 3 

/tfl (n = co) is given as obtained by assuming that the subleading 
eigenvalue of the linearised RG transformation is ¼ 

30 0.358 (8) 0.346 (9) 0.358 (7) 0.360 (7) 
35 0.356 (8) 0.346 (7) 0.358 (7) 0.359 (7) 
40 0.353 (7) 0.340 (8) 0.355 (7) 0.356 (7) 
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The fo l lowing  s imple  cons ide ra t ion  helps  to give us conf idence  that  the sys temat ic  

errors  are  rea l ly  unde r  control .  It is expec ted  that  in the c o n t i n u u m  limit  the 

sub lead ing  e igenope ra to r  is o f  d imens ion  6 with an e igenvalue  o f  1 (up to negl igible  

loga r i thmic  correc t ions) .  This impl ies  the  behav iou r  

Aft (")= Aft('=°°) + a (P)(1)"  , (10) 

where  n is the n u m b e r  o f  b lock ing  steps and  Aft ("-~) is the  P - i n d e p e n d e n t  result  

af ter  n = oo b lock ing  steps. Eq. (10) gives 

Afl( ,=~)  = ½[4Aft(, =2) _ Aft( ,= 1)]. ( 1 1) 

I f  this p r o c e d u r e  is consis tent  the p red i c t ed  Aft ( '=~) shou ld  be i n d e p e n d e n t  o f  

P and the b lock  loop  cons idered .  The numbers  are summa r i s e d  in table  3, where  

the errors  quo ted  are stat ist ical .  On the basis  o f  this  tab le  and  o f  the previous  

cons ide ra t ions  we feel that  the error  es t imates  in eq. (3) are ra ther  conservat ive .  

The  ma tch ing  results  for  the same four  b lock  loops  at fl = 6.3 and  at fl = 6.6 are 

s um mar i s ed  in tables  4 and  5 respect ively.  The es t imate  o f  Aft (" =~¢) in eq. (1 l )  does  

not  work  qui te  so well at these larger  values  o f  ft. (The prev ious  a rgument  using 

the d imens ion  o f  the sub lead ing  e igenopera to r  is val id  only  i f  finite-size effects are 

negl ig ible  in cor re la t ion  funct ions ,  which is cer ta in ly  not  the case when fl is as large 

TABLE 4 

The matching predictions za/3 (/3 = 6.3) together with estimates for A/3 ~"~°°) as discussed in the text 

P Blocking step [~ [ ~  ~_~ .~f 

25 l 0.592 (6) 0.600 (6) 0.534 (5) 0.503 (5) 
2 0.487 (9) 0.475 (10) 0.474 (9) 0.467 (10) 
3 0.44 (2) 0.45 (_+32) 0.44 (+-5) 0.45 (+-32) 

~(4A13("-2)- Afl(n=l) ) 0.451 (14) 0.433 (15) 0.454 (13) 0.456 (14) 
l(4Afl(n=3)--z~fl(n=2)) 0.43 (3) 0.44 (-4)+3 0.43 (+_43 ) 0.44 (-4)+3 

40 1 0.356 (3) 0.439 (5) 0.347 (3) 0.348 (4) 
2 0.421 (9) 0.426(11) 0.419(10) 0.419(12) 
3 0.428 (+_,4) 0.43 (2) 0.43 (2) 0.43 (+_2) 

~(4Afl(":2)-- Aft ~":t)) 0.442 (13) 0.422 (17) 0.443 (14) 0.443 (17) 
31-(4Aft ("=3) --A/3 (n=2)) 0.43 (2) 0.43 (3) 0.43 (3) 0.44 (+_43) 
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TABLE 5 

As table 4 but for /3 = 6.6 

P Blocking step ~]  ~ ~ ' ~  .~7 

25 l 0.592 (5) 0.625 (7) 0.544 (5) 0.520 (5) 
2 0.551 (10) 0.554 (21) 0.547 (16) 0.545 (19) 
3 0.55 (5) 0.56 (6) 0.56 (6) 0.56 (6) 

~(4A/3("-2)- Aft ("-~1) 0.538 (15) 0.53 (3) 0.548 (23) 0.553 (28) 
1(4A/3(,,-3)_ dfl( ,  =2)) 0.55 (7) 0.56 (9) 0.56 (8) 0.57 (9) 

40 l 0.285 (3) 0.401 (5) 0.289 (3) 0.303 (4) 
2 0.453 (17) 0.474 (26) 0.457 (20) 0.459 (22) 
3 0.52 (5) 0.53 (6) 0.53 (6) 0.53 (7) 

1(4//3 (~=2)- Aft ("=D) 0.508 (23) 0.499 (36) 0.512 (28) 0.511 (30) 
½(4dfl(n =3) _ Afl(.=z)) 0.57 (7) 0.55 (9) 0.55 (9) 0.55 (9) 

as 6.6.) A more reliable estimate of  A/3 (~-~) based u p o n  A/3 (n=2) a n d  A/3 (n=3) is also 

given. An alternative approach is to note that even without any extrapolation A/3 (n) 
is decreasing as n increases for P = 25, whereas Aft (n) is increasing as n increases 
for P = 40, in agreement with the expectation that poor lies somewhere between 25 

and 40. 
There is one trivial type of systematic error which we did not check, however: 

the error coming from the linear interpolation between /3-values on the 84 lattice. 
This error is very easy to avoid completely (by blocking 84 configurations at the 
estimated value of /3 ' )  and we intend to do so in the future. The effect is expected 

to be small. 

5. Discussion 

Fig. 3 shows a pronounced dip in A/3(fl) around /3 =6.0 which implies that in 
the accessible range of/3 the asymptotic value is approached from below and that 
its onset is delayed. For /3 = 6.6 this deviation is rather small, which is supported 
by recent M C R G  measurements by Gupta  and Patel [8] using a special "x/3" block 
transformation [9] at /3 = 6.5 and 7.0. However,  whilst for us optimisation of the 
block transformation appears  to be an essential ingredient, this is not the case in 

ref. [8]; this aspect requires clarification e.g. by perturbative analysis. Recent precise 
string tension [ 10] and critical temperature [ 1 l] (in [ 1 l] deviations from asymptotic 
scaling for the deconfinement temperature have also been observed by Montvay 
and Pietarinen) measurements show the same qualitative behaviour for A/3(/3). A 
similar structure seems to be emerging in SU(2) according to string tension [12] and 
preliminary M C R G  results [13]. (However,  it appears [14] that the SU(3) mass gap 
has a qualitatively different behaviour and is consistent with asymptotic scaling in 
the range 5.5 </3 < 5.9.) It is an interesting theoretical problem to understand the 
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origin o f  this  " u n n a t u r a l "  behav iour ,  which is unl ike  that  found  in the d = 2 s t anda rd  

non- l inea r  t r -model ,  where  the asympto t i c  value  is a p p r o a c h e d  smoo th ly  f rom above  

[2, 15]. It is even more  impor t an t  to de te rmine  /3min above  which  the different  

me thods  give quant i ta t ive ly  the same A/3( /3 ) .  For  /3 >/3min--A/3(/3min) a unique  

/3-function can be def ined and  the theory  reflects the con t inuum proper t ies .  

Conce rn ing  the first ques t ion  it is a na tura l  a s sumpt ion  that  the d ip  in A/3 is 

re la ted  to the  cri t ical  po in t  at the end o f  the f i rs t -order  t rans i t ion  line in the 

f u n d a m e n t a l - a d j o i n t  coup l ing  constant  p lane .  The flow away  from the spur ious  

cri t ical  po in t  is expec ted  to slow down the flow f rom fir = ~ unti l  the  flow has passed  

the n e i g h b o u r h o o d  o f  the  spur ious  cri t ical  point ,  when the two flows re inforce  and  

speed  up  the flow towards  the fixed po in t  a t / 3 f - - f l a  = 0. The s lowing down  impl ies  

that  A/3f  a p p r o a c h e s  its a sympto t i c  value  f rom below.  A re la ted  exp lana t ion  was 

sugges ted  by  M a k e e n k o  and  Po l ika rpov  recent ly  [16]. Acco rd ing  to these ideas  

smoo the r  b e h a v i o u r  and  ear l ier  onset  o f  a sympto t i c  scal ing is expec ted  a long the 

lines /3f / /3a = - c  ( c > 0 ) .  It is known that  the peak  in the specific hea t  is s t rongly 
r educed  in this region [17]. 

The exp l ana t i on  o f  the d ip  in A/3 in terms of  h ighe r -o rde r  pe r tu rba t ive  terms o f  
t h e / 3 - f u n c t i o n  is very i m p r o b a b l e  [18]. 

The answer  to the second  quest ion requires  prec is ion  data .  It is exci t ing and  

reassur ing  that  the k ind  of  prec is ion  quo ted  here and  in re la ted  works  might  p in  

down  flmin and  pred ic t  t h e / 3 - f u n c t i o n  with a r easonab le  accuracy.  
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