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A MONTE CARLO STUDY OF THE B-FUNCTION OF THE SU(3) WILSON ACTION 

F. Karsch*, CERN, Theory Division, 1211 Geneva 23, Switzerland 

We discuss the behaviour of the B-function of the standard SU(3) Wilson 
action at intermediate couplings. Results obtained from measurements of 
the deconfinement temperature and string tension on large lattices are 
compared with those obtained from a systematically optimized Monte Carlo 
Renormalization Group method. 

i. INTRODUCTION 

In the large cut-off limit of renormalizable theories it is possible to 

tune the cut-off and coupling(s) in such a way that the physical content of 

the theory remains unchanged. The functional relation between the 

coupllng(s) and the cut-off is given by the B-function(s) of the theory. In 

an SU(N) lattice gauge theory the B-function describes the way the bare 

coupling g(a) has to be changed when the lattice spacing a is varried in 

order to leave all physical predictions unchanged: B(g)=-adg(a)/da. 

However, for a generic value of the cut-off the function g(a) depends on the 

specific quantity which is kept fixed - there is no way to keep all physical 

predictions unchanged. It is only in the large cut-off limit that a unique 

B-function can be defined. But also in this case it still depends on the 

renormalization scheme choosen. In particular, the B-function depends on 

the lattice action choosen, only the two leading terms in its perturbative 

expansion are universal: 

B(g) = -b o g3 _ bl g5 + O(g7) 

with (i) 

b o = IIN/(48~2); b I = ~ (N/16n2) 2. 

Early exploratory studies of both SU(2) and SU(3) gauge theories indicated 

that already at moderate correlation length (i.e. at intermediate coupling 

constant values) physical quantities seem to scale according to the above 

perturbative SU(N) B-function [I]. However, recent detailed studies on 

large lattices (which allow to study the theories at smaller couplings) 
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behaviour are still present at intermediate couplings [2-5]. This led to 

sometimes confusing interpretations of quantitative results for physical 

observables. For a, correct interpretation of results obtained at inter- 

mediate couplings and their extrapolation to the continuum limit it is thus 

basically important to reveal and understand the quantitative structure of 

the ~-function. 

In the following we will discuss the determination of the SU(3) B-function 

by using the deconfinement temperature as a physical observable which is 

held fixed under changes of the cut-off. In section 3 we will discuss a 

MCRG approach to determine the B-function [6] and compare the results with 

those of section 2 and recent measurements of the string tension [4,7]. 

Section 4 contains our conclusions. 

2. ~TRACTING A B-PUNCTION FROM THE SU(3) DECONFIN~ENT T~PERATURE 

At finite temperature the SU(3) gauge theory exhibits a first order 

deconfining phase transition [8,9]. On a lattice of size N B x N 3 (N o >> 
o 

NB) the order parameter for this transition, the thermal Wilson line, is 

discontinous at the critical coupling B C (NB)= 6/g~ (a). This jump in the 

order parameter provides a very clear signal for the critical temperature 

Tcl= NBg(g2c). (2) 

Demanding that T c remains unchanged when the cut-off a is varried allows to 

determine a discretized version of the B-function: Changing the temporal 

extend of the lattice by a factor n corresponds to a decrease of the lattice 

spacing by the same factor in order to keep T c unchanged 

-I (g2cl) (g2c2) T c = Ns,la = NB,2a 

with (3) 

( 2 
a gc2 ) NB, I 

a( 2 
gel ) N3,2 

In the following we will restrict ourselves to scale changes by a factor 

n=2. The change AB in the critical couplings 8 c (N 8) = 6/g2c, 

AB = B e (2N B) - Bc(N B) (4) 
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Is re]ateN to the B-Function through 

B 
dx 21n2 (5) 

~-AB x3/2Bfunct((6/x)i/2 ) /6 

From the perturbative B-function, eq.(1), one finds that in the limit g2 + 

0 AB approaches a constant value: 

= 132 in2/(16~ 2) = 0.579 (6) (A6) 2 
g ÷ o 

At finite g2 the inclusion of the two-loop perturbative corrections leads to 

somewhat larger values for AB. For instance in the coupling region B " 6.0 

one would expect to find A6 = 0.61, if the perturbative B-function is still 

valid in this intermediate coupling regime. The critical temperature T c has 

by now been determined on lattices of various temporal extend N 8 [2,5,8,9]. 

The available results are summarized in table I. As can be seen the 

critical temperature does not stay constant when one assumes the validity of 

the two-loop perturbative result for the 8-function. 

N2 
~ Na 

12 

3 10 

4 10 

5 12 

6116 

18o . 

6/g z Tc/A L Ap 

5,11 ¢0.D1 78~1 

5.097=0.001 

5.55~0.01 86±1 

5.70~0.01 76=1 

0.59~0.02 
5 696±0.004 

5.78-5.82 685~1 

592-594 66.5~1 0.38±0.02 

5.877:0.006 62:.3 0~33±0.01 

6.00:0.02 53:1.5 0.30=0.02 

622~0.07 55:4 0.41±0,09 

Table I: Summary of critical couplings of the SU(3) deconfinement transl- 

3 N8" The rows with N a ~ refer to the tion on lattices of size N a x = 

extrapolated data of ref. [5]. The other data are taken from ref. [2, 8]. 

Also given are the critical temperatures Tc/A obtained by assuming the 

validity of eq. (I) and the AB obtained from eq. 4. 

The last column of table I shows the resulting values for A8 when T c is 

kept fixed. They clearly show that the asymptotic scaling regime has not 

been reached below 8 = 6.0. Indeed they are still decreasing between 8 " 5.5 

and 6.0. 
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To extract A8 from measurements of T c for larKer values of B much lar~er 

lattices are required. In addition T c is just one physical observable and 

more observables have to be analysed in order to check whether the B-function 

is unique for all these observables in the ~ range considered. In the 

following we will discuss a MCRG study of the SU(3) B-function which 

analyses a large set of different physical observables and allows to make 

contact with the perturbative regime. 

3. THE RATIO METHOD 

The basic idea of the ratio method [i0] is to extract the ~ -function 

from ratios of Wilson loop expectation values which are combined in such a 

way that the self mass and corner contributions cancel. These ratios 

satisfy the homogeneous renormalization group equation, thus by comparing 

ratios of loops calculated at some value of ~ with corresponding once formed 

from half as large loops at an appropriate 8' the change of the couplings 

AS=B-8' neccessary to achieve matching between these ratios can be 

determined. 

There are two problems, however. First, ratios composed of small loops 

are contaminated by lattice artifacts resulting in a systematic error which 

increases linearly with ~ [6,11]. Second, the matching prediction is 

distorted by finite size effects if the correlation length is comparable or 

larger than the lattice size. While the last problem can easily be handled 

by measuring Wilson loops at ~ and 8' on lattices of size L 4 and (L/2) 4 

respectively, the first problem requires a selection of systematically 

improved observables, which are free of lattice artifacts. These are 

constructed as follows: First the basic ratios are formed as 

W (il, i 2) 

W i 4 ) 
f(i I, i2; i 3, i 4) = (i3, ' if+ i2= i3+ i 4 

(7) 

W(i I, i 2) W(i 3, i 4) 

g(i I, i2; i 3, i4; i 5, i6; i 7, i 8) = W(is,i6) W(i7,i 8) ' 

if+ i2+ i3+ i 4 = i5+ i6+ i7+ i 8. 

and so on. Here W(il,i 2) is the expectation value of a planar Wilson loop 

of size il,i 2. Apart from lattice artifacts these loops satisfy the RG- 

equation 
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( 2 f l ,  2 t 2 ;  2 t 3 ,  2 f 4 ;  8 , L ~  = f ( t l ,  t 2 ;  i ' 3 ,  t 4 ;  8 ' ,  L / 2 3  (R3 

and similar equations for g, .... Any linear combination of the functions 

f,g,.., defined in eq.(7) satisfy eq.(8) also. In the improved ratio method 

the mixing coefficients are determined by the requirement of cancelling the 

lattice artifact corrections to eq.(8) systematically order by order in 

perturbation theory [6,12]. The improvement procedure is illustrated in 

table 2. 

BASIC RATIOS 

W(3,3) 
RI = 

W(2,4) 

W(1,1)W(3,3) 
R 2  - 

W(1,2)W(2,3) 

W(1,2)W{2,3) 
Ra = 

W(1,3)W{1,3) 

WEAK COUPLING 613 

- o . i ~  

-0.057[] 

0.046p 

1 - LOOP IMPROVED RATIOS 

R12~ = R2 + 0.0279T7 R2 + 0.702917 R, 0+579 

Table 2: lllustration of the improvement procedure for three basic 

ratios. Tree level and one-loop improved ratios are formed fromm the three 

basic ratios RI,R 2 and R 3. The mixing leads to a systematic improvement of 

the weak coupling behaviour by canceling the O(B -I) (tree level) and 0(8 ° ) 

(one-loop level) lattice artifacts for the observables considered. The last 

column shows the shift A~ for the listed ratios obtained in the weak 

coupling limit. 

A large number of systematically improved ratios can be obtained this 

way. These mixed ratios have been used in a MC analysis to determine AB 

[6]. Ratios of Wilson loops measured on a 16 4 lattice at several values of 

[4] have been compared with those on a 8 4 lattice at B'. The results 

obtained for A8 are shown in fig. i together with those deduced from the 

deconfinement temperature and measurements of the string tension [4,7]. 

TREE LEVEL IMPROVED RATIOS 

R,~ = R2 + 0.E88298 R, 0.582 
R=3 = R~ * 0.523659 R~ 0.492 
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Figure I: The average shift AB as a function of B obtained from the 

analysis of one-loop improved ratios (squares). (At B = 5.8 the basic 

ratios are used.) The error bars refer to statistical fluctuations (thin 

bars) and the average fluctuations (thick bars) of the matching predictions 

obtained from different ratios. Also shown are the predictions for AB 

obtained from the string tension (crosses) and the critical temperature 

(full points). 

As can be seen the matching predictions start approaching the perturbatiqe 

result above B = 6.0. In particular the result at B=6.6 

~B (B = 6.6) = 0.56 + 0.06 (9) 

shows that there are only small deviations from asymptotic scaling for 

B ~ 6 . 0 .  

4. OONCLUSIONS 

The available information on the SU(3) ~-function shows that there are 

substantial deviations from asymptotic scaling in the intermediate coupling 
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r~m~ 8 ~ ~.~ - 6.N . ~wever, shove 8 = 6.N the Hev~t~ons From 

asymptotic scaling seem to he small. The fact that quite dlffernt 

approaches and physical observables lead to compatible results for A8 seems 

to indicate that already in the non-asymptotic regime a unique E-function 

exists. This is supported by recent MCRG calculations [[3,14] where block- 

spin transformations have been used to extract AS. Thus a consistent 

quantitative understanding of the rather non-trivial way the standard Wilson 

action approaches continuum seems to be emerging. 
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