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We present the one-loop (order g4) perturbative calculation of the expectation values of Wilson 
loops and Polyakov lines on finite asymmetric lattices. Analytical as well as numerical results are 
given. We also give some applications of these results pertaining to the "ratio method", the Coulomb 
potential on finite lattices, the internal energy of the gluon gas at high temperature and the order 
parameter of the finite temperature deconfinement transition. 

1. Introduction 

The formula t ion  o f  gauge theories on a lattice by Wilson [1], providing a non- 
perturbative regulator,  has opened  the way to the appl icat ion o f  non-per turbat ive 

methods  to these theories,  most  notably Monte  Carlo simulations (for reviews, see 
e.g. [2]). But such simulat ions are restricted to lattices of  rather small size. Non-  

perturbative measurements  require that the correlat ions length be (much)  smaller 
than the lattice size, which makes it necessary to work at rather large (bare) couplings. 

The con t inuum limit, on the other  hand,  is obta ined when the coupl ing becomes  

small. To make  the results o f  MC simulations predictive for con t inuum physics, a 

connect ion  between MC simulations and per turbat ion theory has to be established. 
But when the correlat ion length becomes large, one has to expect the influence o f  
lattice artifacts to be rather  sizeable. Then  it becomes  impor tant  to have control  
over these lattice effects by doing the per turbat ion theory on the same finite lattices 

that  are used in MC simulations. 
We present  here a one- loop  calculation ( including terms up to order  g4) for the 

expectat ion value o f  Wilson loops and Polyakov lines on la t t icesof  size V = L d - l  × L d 

for gauge groups  S U ( N ) .  Wilson loops have been calculated to order  g4 on a lattice 

in the tempora l  gauge by Miiller and Riihl [3] for  the gauge group SU(2). Due to 
the particularities o f  this special choice o f  gauge, the extraction o f  values on finite 

lattices, however,  seems to be very cumbersome.  For  general N, Wilson loops have 
been compu ted  by several groups  using certain con t inuum approximat ions  [4, 5]. 

But since it is just the lattice effects that  we are interested in, we consider  such 
approximat ions  insufficient for  our  purpose.  While we were involved in the numerical  
part  o f  our  computa t ion ,  we became aware o f  a similar calculation by Curci et al. 
[6], where Wilson loops are also calculated up to order  g4. The revised version o f  
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ref. [6] is now in agreement with our results presented here up to a 1 /V contribution, 
which is due to a slightly different contribution of the Haar  measure to the effective 
action (see sect. 2 for a discussion of this point). 

In the next two, rather technical, sections, we present the perturbative computation 
of Wilson loops, average plaquettes and Polyakov lines. Sect. 2 serves to fix our 
conventions and to discuss the (unsolved) problems of the zero-momentum modes 
in perturbation theory on finite lattices. Sect. 3 contains our results in analytical 
form, as far as is possible. In sect. 4, we give the numerical results together with a 
few applications of  the perturbative calculations. Since we have performed the 
computations on asymmetric hypercubic lattices, we can use the results to discuss 
zero- as well a finite-temperature effects. For zero temperature, we will discuss the 
extraction of  the coulombic part of the heavy quark potential on finite lattices. At 
finite temperature,  we analyze the high-temperature behaviour of  the interacting 
gluon gas [7] and the order parameter  of  the deconfinement phase transition [8]. 
We compare these weak coupling results with MC data for SU(2). As another 
application, we discuss the usage of the weak coupling expansion in the selection 
of perturbatively improved operators used in the " improved ratio method"  [9, 10] 
to determine the lattice/3-function. Finally, sect. 5 contains our conclusions. 

2. Perturbation theory on a finite latt ice  

2.1. THE EFFECTIVE ACTION 

The setup of perturbation theory on a lattice is well known [11]. Therefore, we 
use this section mainly to fix our notation. Since we want to calculate also some 
quantities relevant at finite temperature, besides Wilson loops, we will work on an 
asymmetric lattice of  size V = L a-~ × Ld. For the sum over the Fourier modes, we 
use the notation (lattice spacing a = 1) 

~ , (2.1) 

(p#o) 

where p = (Pb • • . ,  Pa-~, Pa), P~, = (2rr/L)n~,,  n~, = 0, 1 , . . . ,  L -  1 for /x  # d and Pa = 

(2rr /Ld)nd ,  nd =0,  1 . . . .  , La - I. In the sum (2.1), the zero-momentum mode is left 
out (see below). In the Fourier transforms, we take link variables to live in the 
middle of  the link, plaquette variables to live in the middle of  the plaquette and so 
on ,  e.g.,  

A ~ ( p )  = ~ e- 'Px- 'P, /2A~(x)  (2.2) 
x 

defines the Fourier transform of the gauge field A ~ ( x ) .  We use the Wilson action 
( z  = f 17 d u exp s )  

s-ZE - tr (Up+ U ~ - 2 )  (2.3) g2 p 
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At weak coupling (Ug(x)= exp {igAg(x)}, A~,(x)= A~(x)t ~) we find the effective 
action, including gauge fixing (we use the Feynman gauge), Faddeev-Popov deter- 
minant and the contribution from the rewriting of the Haar measure dUg(x) in 
terms of the Ag's: 

Ser f = S O -k g S  1 q- g 2 S 2 q- g 2 S  2 q-  g 2 S v p  -'l- g 2 S . . . . .  • (2.4) 

So is the term quadratic in the A~,'s: 

So = _l x,g y" A~(x)(-A)A~(x)  = _ l  fp A~(-p)D(p)A~(p) ,  

where za is the lattice laplacian and 

(2.5) 

4 , ~  S2~1 x D ( p ) =  L pt~P), (2.6) 
p 

We use the notation sp (a )=s in  ap and cp(a)=cosa a. So is the free part of the 
action in the perturbation expansion and gives the free gluon propagator 

a b (A,(p)A~(k))o = 6abSg~V6p+k, oD-l(p) , (2.7) 

where gp, o is the Kronecker 6 modulo 27r. 
S1 gives the three gluon vertex and $2+$2 the four-gluon vertices from the 

expansion of the action (2.3). They can be found in ref. I l l] .  We separated the 
four-gluon piece with $2 given by 

$2 = ~4 Y. Y. tr (AgA~(x) - A~4g (x)) 4 . (2.8) 
x g,l ,  

Firstly, $2 will give a different N-dependence from $2 in the results, and secondly, 
for one-plaquette actions other than the Wilson action, eq. (2.3), $2 will have a 
different coefficient than in (2.8), whereas all the other parts in the expansion (2.4) 
remain unchanged. 

The contribution from the Faddeev-Popov determinant is 

A . ( - p ) A . ( p )  --~NId Ad(--p)Ad(p) 
N¢d 

ffp f 1 1 1 1 Sg(~p)s~(~k)cg(~k)c~(~p) (2.9) 
- 2 N  g.~2 k A ~ ( p - k ) a ~ ( k - p )  D(p)D(k) ' 

where I and Id are defined as 

I = 4 f s2(½p) 
J. D(p) ' 

I S2d(~p) 
Ia =4 e D(p) (2.10) 
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For a symmetric lattice (La = L), we find, using the cubic symmetry, 

I a = d ( 1 - 1 )  fo r sym,  lattice. (2.11) I =  

The 1 / V correction arises, since we leave our the zero-momentum mode. In appendix 
A, we will discuss the changes that occur when one uses a slightly different gauge 
fixing term. The contribution from the measure finally is 

S . . . . .  = - ~ N  E (m~(x)) 2. (2.12) 
x , /z  

For reasons not clear to us, Curci et al. [6] use in S . . . . .  an additional factor of  
(1 - 1 / V ) .  This gives the slight discrepancy in our final results. 

In the following, we will also use the notation 

Ao = D(p) '  

al = Ip 
c l ( p )  

D(p) ' 

Adl = f Ca(p) (2.13) J~ O(p) ' 

which denotes the propagators  at distance 0, 1 in the directions 1 to (d - 1) and 1 
in the direction d. 

2.2. THE ZERO-MOMENTUM MODES 

As can be seen from (2.5), the zero-momentum modes are non-gaussian. The 
propagator  D-l(p)  is singular, like p-2 at p = 0 ,  and on a finite lattice is not 
suppressed by phase space. They have thus to be treated separately. For LGT's ,  the 
zero-momentum modes are not zero-action modes. The action is quartic in the 
zero-momentum modes, proportional at lowest order to ~ , ,  ~ tr ( [ A , ( p  = 0), A~(p = 
0)]2). Therefore, they cannot be treated by using collective coordinates, contrary to 
the case of  the O ( N )  non-linear o--models [12]. The zero-momentum modes corre- 
spond to constant gauge field configurations. It has been argued that, except when 
they belong to the centre of  the gauge group, their contributions to the partition 
function are highly suppressed [13]. Due to the lack of a better way of  treating the 
zero-momentum modes, we decided, as is usually done [6, 13], to neglect them 
completely. Thus our momentum sums never include the zero-momentum mode 
[see (2.1)]. The error introduced in doing so is expected to vanish as 1 /V in the 
infinite volume limit. 

When the constant gauge fields are centre elements, we simply make an expansion 
around them instead of around the unit element. However, the centre elements do 
not contribute to the action and to Wilson loops. Thus, expanding around each 
centre element gives the same contribution, and therefore gives in the partition 
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function just an overall multiplicative factor which drops out in the expectation 
values of Wilson loops. Polyakov lines, on the other hand, are of interest at finite 
tempeature. There the perturbative regime lies in the deconfined phase where the 
Z(N)  symmetry is sponteneously broken [14]. We assume that it has been aligned 
to the unit element and thus we have to expand only around it. 

3. Wilson loops and Polyakov lines to one loop 

We consider planar Wilson loops 

1 
W(R, T)=~tr(e~c Ue) , (3.1) 

where the path C is a rectangle with sides R in the /,-direction and T in the 
v-direction. At weak coupling, the Wilson loop can be expanded as 

W(R, T) = 1 - g2e02 - g3093 - g4094 - -  g40~ 4 "[- O(gS). (3.2) 

The oJ~ are given in appendix B. The expectation value of Wilson loops is then, up 
to order g4,  

( W ( R ,  T ) } =  1 - g 2 W 2 ( R ,  T ) - g 4 W 4 ( R ,  T ) + O ( g 6 ) .  (3.3) 

The lowest-order part is geven by W2(R, T)--(tO2)o = (N 2 -  I)/NITC2(R, T) with 

W2(R, 7")= s~(~pr)S.(~pR) l 1 ~ + ~  . (3.4) D(p) s,(~p) s~(~p) 

Here (. • ")o denotes the (connected) expectation value with respect to the quadratic 
part of the action So given in (2.5). The order g4 contribution we write as 

W4(R, T)=  WSI -~- W|-~-- WIl-~- Wwp"~- ~/rVp. (3.5) 

Ws, is the contribution from the "spider" graph (fig. 1): 

W~, = (~O~Sl>o 

s.(spR ) s~(½pT)G(½p)s.(l(2k + p) ) 
2 D(p)D(k)D(p+k) s.(½p) 

x [  s~(½pT`)s~(½(2k+p)) s~(l(2k+p)r) 1 
[s~(½p)s~(½k)s~(½(p+ k)) s ~ ~ + k - ) ) J  

s,(½pR) s~,(½kR) s~(½(p+k)T)&(lpT)G(½kT) 
+4 s,(lp) sg(½k) s~(½(p+k)) 

x c,(½(p + k)R)G(½( p + k))s,(½(k -p))} + {(/x, R ) ~  (v, T)}] . (3.6) 

W~ is the expectation value of the non-abelian part of the order g4 expansion of 
the Wilson loop. It is 
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Fig. 1. Order g4 contribution of  the three-gluon vertex S~ to the Wilson loop expectation values. 
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W~ = (~O4)o 

s 2 ' T 2 1  )} _ N2-_____ll . [ f  ~ ~(~p ) (s,.(~pR) 1 s~.(lpR)s~(½p(R-2)) 
3  oLtL \ s~(~p) 2 s2(½p) 

] :s~(~kT) ~_~ 
+{(., R)(--~(~,, T)} 2 \ s~(~k)2 I 2 1 s~,(~k) ] 

f .  s~.(~pR)l ] x s~(½pT) 2 l 
_2-2T7i~_, +{(/.L, R)(--~(u, T)} D(p) s~(~p) J 

+ 12 LtLJ~ ~ ~ J J ((m R)*-*(v, T) 

f k  2 1  2 1 ~ 2 1 2 1  s ~(~pT) s~,(~kR) +2(N2- 1) s,.(~kT) s~,(~pR) 
D(k) 2 1 Jp 2 1 s~.(~k) D(p) s~(~p) 

N 2 _ I I  1 21 fp 2, s~.(~kR) 1 s.(~pT) 
+ 4 k D(k) 2---T--- 2 1 s.(~k) D(p) s.(~p) 

N2-1  1 [~[s.(½(p+k)R)s~(½(p-k)) - k ) R )  
+ 32 O(p)O(k)  L[L ~ ( - ~  s.(½(p 

s2(½(p + k) T)] + {(/z, R) .~ ( u, T)}] × s2(½p)s2(½k)) 

N 2 -  1 1 , ~ ( ½ p r ) -  - -  

+ 6 k D(p)D(k)  s,.(½p) s~.(½k) ~ - ~ J  

+((/z, R) ~--~ (v, T)}] 

N2- I  f f 1 [~" s2(lpT)s~, (½pR)[s~, (½p(R-2))c~, (p+k)  
6 Jp Jk D(p)D(k)  L( =.(½p) k s~,(½p)s2(½k) 

s~,(½(p+k)(R-2))c~,(½k(R+ l)+p) s~,(½p(R-2))q,(½p-k) 
- s,.(½(p+k))sE(½k) -~ , , , s~. (~p )s,. (~k )s~, (~( p + k ) ) 

_ s~. (½k(g - 2)) c,. (½(p + k)g  +½k -p )  q s~.(½(p + k)(g  - 2))c,.(½k(R + 2) +lp) 
2 1 l I l 1 s~.(~k)s~,(~(p + k)) s.(~p)s,.(~k)s,.(~(p + k)) 

s . ( ½ k ( R - 2 ) ) c . ( ½ ( p - k ) R - p - k ) ] }  ] 
2 a +{/z, g ) * - ) ( u ,  T)} (3.7) s,.(~p)s,.(~k) J 
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Wll is the contribution from the abelian part of the expansion of order g4. We have 
separated it from W~ since it has a different N-dependence. It is 

( 2 N 2 - 3 ) ( N  2 -  1) [ W2(R, T)] 2 • (3.8) 
W l l  = (o)4) 0 = 6N 2 

(a) 
Wvp results from the insertion of the vacuum polarization part II~,~(p) (figs. 2b 
and 2c), defined in appendix C, 

(¢..o2(~S I "4- S2-4- SFp-[-  S . . . . .  ))0 WV P = 1 2 

N 2-  1 [_ s~(½pT)s~(½pR) (") ~,.,,e, 4 _ ~ I I ~ , ~ , ( p )  _ I I  (a)( -~ I-l(f)(p)'~ . ( 3 . 9 )  

N -e D(P) 2 [ s2(½p) 2 s~,(½p)sv(½p) s~(~p) J 

Finally, ff'vP is the contribution from the insertion of the part H~)(p)  of the vacuum 
polarization (fig. 2a). For spacelike Wilson loops (/z, v # d) it is 

f f , vp  = ( 2 N 2 - 3 ) ( N  2 -  1)/ff'2(R, T)+ ( 2 N 2 - 3 ) ( N 2 -  1) (Ia - l) 
6N 2 3N z 

x Sd(~p)s~(~pr)s~,(~pR) 1 1 
2-T77-77_,+~ for/x, v # d,  (3.10) D(p) 2 s~,(~p) s~(~p) 

while for timelike ones (v = d) we find 

~V~Tvp ( 2 N 2 - 3 ) ( N 2 -  1) fps~(½pT)s2(½pR) f 2-T7i~_, I + I a ]  
12N 2 D(p) tsu(~p) Sa(~p)~ 

( 2 N 2 - 3 ) ( N : - l )  ( I a - I )  Ip s2a(½pT)s~(½pR) [s~(½p) + } 1 .  (3.11) 
+ 3N 2 D(p)  2 s~,(~p) 

la $2 v 

(b) 
$1 $I v ~ SF P SF P v 

xx / 
(c) .......... -- '- '- :--- " 

$2 I J. SF P v ~ Smea s V 

Fig. 2. Order g2 contributions to the vacuum polarization tensor H~,~ (p).  Fig. 2a shows the contribution 
from the four-gluon vertex $2, while figs. 2b and 2c contain contributions from the three-gluon vertex 
S~, the four-gluon vertex $2, the Faddeev-Popov term SFe and the measure term S . . . .  . The analytic 

expressions are given in appendix C. 
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On a symmetric lattice, the second parts in (3.10) and (3.11) vanish and the 
contributions for spacelike and timelike loops are, of course, equal. The rather 
complicated expressions in eqs. (3.6) to (3.11) involving sines and cosines come 
from explicitly doing the sums over the links along the Wilson loops given in 
appendix B. Care has to be taken when their denominators vanish, because either 
pp, k o or ( p + k ) p  equals zero for p =/z or v. Then the limit, e.g., p ~ 0 ,  has to be 
taken carefully for numerator and denominator. We have checked that this gives 
the right results by explicitly doing the summation over the links for these "excep- 
tional" momenta. 

The average plaquette can, of course, be obtained as the R = T = 1 Wilson loop. 
However, in this case, the expression simplifies considerably and we will give it for 
the spacelike and timelike plaquettes: 

( 1 Re (tr UP)) spacelike 

= 1 2 ~  g 2 I + 2 ( N 2 -  l)g4 c ~ ( s p ) s . ( ~ ( 2 k + p ) )  
.p k D ( p ) D ( k ) D ( p + k )  

+~(N 2- 1)g4{ao(3Ao- 2A,)- zl,(2Ao+ 5al)} 

N 2 - 1 g 2  fvD_~p)2{s2(½p)li~a~(p)_s~(~p)s~(~p)ll~,~(p)}l 1 (a) - 2  N 

+ ( 2 N 2 - 3 ) ( N  2 - 1 ) g 4 I  2 ( 2 N e - 3 ) ( N  2 - 1 ) g 4 I  2 
24N 2 12N 2 

2 ( 2 N 2 _ 3 ) ( N 2 _ l )  f 2 i 2 1 
S,,(~p)Sd(~p) for /z~ ~,;/z, v ~ d ,  3 N  2 g4(Id -- I )  Jp D ( p )  2 

(--~N Re (tr UP))timelik ~ 

N 2 -  1 
- 1 - -  g 2 ( l + I d )  

4 N  

Ip l k  2 l 2 l 2 I 2 l + ( N  2_ 1)g4 C d ( ~ p ) s ~ ( ~ ( 2 k + p ) ) + c ~ ( ~ p ) s d ( ~ ( 2 k + p ) )  
D ( p ) D ( k ) D ( p + k )  

N 2 -  1 
+ 

48 
g4{2Ao(3Ao-- A l -  A a)_ A~a(2Ao+4AI+ A~ a) -Al(2Ao+4Aa+ AI)} 

fp  1 2 I a I I a g2 
S d(~P) 11 ( )~(p)-2sd(~p)s~(~p)Hd~(p)~ ) 

N 2 - 1  ______~_{ ~ ~ ~o~ 
- - - N  D ( p )  z + s , ( ~ p ) H  ad (p)} 

( 2 N 2 - 3 ) ( N  2-1)  g , ( I+Id)2 ( 2 N 2 - 3 ) ( N  2-1)  
96N 2 -4 -ff--~ g " l ( I + 3 I d ) 

( 2 N 2 - 3 ) ( N  2 -  1) f S2d(½P) 
g 4( Ia - - I )  Jp --A--/CTS_ ,2 {s2 (½p) + s2 (½p)} . (3.13) 3 N  2 i_l~ p ) - 
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The last two terms in (3.12) and (3.13) come from the four-gluon vertex $2 and 
change their coefficients for other one-plaquette actions. 

We finish this section by giving the one-loop expansion for Polyakov lines. A 
Polyakov line L is the ordered product of the link elements Ue along a direction in 
the lattice that closes on itself because of  the periodic boundary conclitions. We 
take it along the d-direction of the asymmetric lattice. L has an expansion similar 
to the Wilson loops [(3.5) and appendix B]. For the expectation value up to order 
g4  we obtain 

N 2 - 1  Ip 1 N 2 - 1  f ' / / ~ ) ( p )  
(L) = 1 4----N g2Ld D(p) 4N gELa Jp 

N 2 - 1  I i  1 I l-t~'k¢,o(2_ 3 ) 
- 4 - - - ~ g 4 L d  ~ k D(k) sE(½k) 

N 2 - 1  [ f  1-gk~o c~(½k) 
- 3----~ g'Ld .p--k D ( k ~ D ~  k) s2d(½k) 

_4 ( 2 N 2 - 3 ) ( N 2 - 1 )  [ I ' 1 - ~ ] 2  
96N 2 g'L2 Jp D ( p ) J  

( 2 N 2 - 3 ) ( N  2 - 4 8 N  2 1) g4Ld(i+in ) D(p) . (3.14) 

The last term comes from the vacuum polarization insertion IICfd)(p) and we have 
used the notation 

Ill - - L d - I  ~ ~pd, o. (3.15) 
p 

(p~o) 

4. S o m e  numer ica l  results  and appl i ca t ions  

In the analytic expressions given in the last section, the sums over the momentum 
modes still have to be carried out. This has to be done numerically. We have 
evaluated the Wilson loops on symmetric lattices of  size L 4 for various L's between 
6 and 24. Since the computation involves double sums over momenta k and p, both 
four-dimensional, the required computer time grows like L 8. All expressions are 
symmetric under the simultaneous change p ~ 27r - p, k ~ 2~r - k. We have used this 
symmetry to reduce the sum over p in terms of the integers n~ (p~ = (27r/L)n~) to 
0, 1 , . . . ,  ½L. (We have restricted ourseves to even lattice size L.) This reduces the 
computer time by a factor [(½L+ 1)/L] 4 and makes it possible to go up to L =  24. 
While the computation on a 64 lattice takes ~3 CPU sec on a CYBER 875, it goes 
up to - 2 0  h of CPU time for L = 24. The 4th order coefficient W4(R, T) has pieces 
with two different N-dependences. Therefore we write 

W4(R, T)=(N2-1)X(R,  T)+ (2N2-3)(N2-1)  Y(R, T) (4.1) 
6N 2 
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where in the notation of  (3.5) 

1 
X ( R ,  T ) -  N 2 _  1 (Ws,+ WI+ Wvp), (4.2) 

6 N  2 
Y(R, T ) -  (2N2_3) (N2  - 1) (W n +  l~'vp). (4.3) 

On a symmetric lattice of  size V = L 4, we obtain for Y(R,  T) 

Y(R,  T ) = - [  rW2(R, T)]2+¼(1- I/V)IV2(R, T) .  (4.4) 

ff'2(R, T) and X(R,  T) are independent of the gauge group. They are listed in tables 
1 and 2 for selected Wilson loops on lattices of various sizes. Table 1 contains the 
Wilson loops on an 84 and 124 lattice, as well as the corresponding loops of twice 
the size on a 164 and 244 lattice. 

Table 2 illustrates the dependence of small Wilson loops on the lattice size. The 
finite size effects grow with the size of the Wilson loops and seem to decrease roughly 
as 1/V. It would take too much space to list all our numbers. Interested readers 
can obtain them from the authors. In the following, we will discuss some applications 
of  our perturbative results. 

4.1. THE RATIO METHOD 

Ratios of Wilson loops combined in such a way that the corner and self-mass 
contributions cancel, can be used to study the non-perturbative lattice B-function 
of the SU(N)  gauge theories. The basic idea of the method was already proposed 
several years ago by Creutz [15]. In the ratio method, ratios of Wilson loops, like 

W(il, i2) 
RE(il, i2, i3, i4) = -  il + i2 = i3 + i 4 ,  w(i3, i , ) '  

W(i,, i2) W(i3, /4) 
R4(i~, i2 , . . . ,  i8) = i l  + "  • " + i 4  = i5+" • "+i8,  (4.5) 

W(i5,/6) W(i7, i8)' 

are compared with ratios formed from loops twice as large. These ratios satisfy the 
homogeneous renormalization group equation 

R2(2 i t , . . . ,  2i4, g2, L) = R2(i~, . . . ,  i4, g,2, ½L), (4.6) 

which determines the change in g2 necessary to vary the lattice spacing by a factor 
of 2 [g2(a)--> g'2(2a)]. (A similar equation is valid for Rn, n = 4 . . . ) .  

In eq. (4.6), the lattice volume is scaled together with the correlation length to 
reduce the finite size effects. The basic ratios defined in eq. (4.5) may be sufficient 
to study the non-perturbative /3-function at intermediate correlation lengths. 
However, a tree-level perturbative calculation already shows that in practice, i.e., 
in a MC simulation on finite lattices where only small Wilson loops can be measured, 
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TABLE la  

Coefficients of the perturbative expansion of Wilson loops on a 84 lattice and of corresponding 
Wilson loops of twice the size on a 164 lattice 

8 4 lat t ice 16 4 lattice 

R T 
"ff'2(R, T) X(R,  T) "~'2(2R, 2T) X(ER, 2T) 

1 1 0.124969 -1.03246 

1 2 0.215433 -1.58383 
2 2 0.341778 -6.27233 
1 3 0.300224 -5.42197 
2 3 0.451484 -1.47960 
3 3 0.573010 -2.81174 
1 4 0.383725 -1.15742 
2 4 0.556886 -2.69621 
3 4 0.686217 -4.53413 

4 4 0.802559 -6.72169 

10 -4 0.342297 -6 .27874-10  -3 

10 -3 0.559537 -2 .72088-10  -3 
10 -3 0.814820 -6.91343" 10 -2 
10 -3 0.770462 -6 .29591-10  -2 

10 -2 1.051051 -0.128285 
10 -2 1.297682 -0.208902 
10 -2 0.980396 -0.113325 
10 -2 1.283756 -0.205021 

10 2 1.537299 -0.307195 
10 -2 1.779707 -0.425781 

ff'2(R, T) is the N-independent  factor of the O(g2) contribution and ( N  2 -  1)X (R, T) is the non-trivial 

O(g 4) contribution defined in eq. (4.2). 

TABLE lb 

Same as table la  but on 124 and 244 lattices respectively 

124 lattice 244 lattice 

R T 
~'2(R, T) X(R,  7") gz2(2R, 2T) X(2R,  2T) 

1 1 0.124994 
1 2 0.215538 
2 2 0.342227 

1 3 0.300491 
2 3 0.452603 
3 3 0.575748 
1 4 0.384295 
2 4 0.559226 

3 4 0.691777 
4 4 0.813459 
1 5 0.467773 
2 5 0.664681 
3 5 0.805455 
4 5 0.931381 
5 5 1.051981 
1 6 0.551110 
2 6 0.769604 
3 6 0.918007 
4 6 1.047429 
5 6 1.169836 
6 6 1.288525 

-1.01812 10 -4 

-1.58180 10 3 
-6.27854 10 -3 
-5.42873 10 3 
-1.48542 10 2 

-2.83508 10 2 
- 1 . 1 6 1 8 4 '  10 -2 
-2.71843" 10 -2 
-4.60265" 10 -2 
--6.89345' 10 -2 
-2 .01219-10  -2 
-4.31870" 10 -2 
-6.78589" 10 -2 
-9.60886" 10 -2 

-0.128408 
-3 .09260-10  -2 
-6.28172.  10 -2 
-9 .37974 .10  -2 

-0.127473 
-0.164877 
-0.206188 

0.342322 -6 .27861 '  10 -3 

0.559644 -2 .72161 '  10 2 
0.815269 -6 .91966-10  -2 

0.770727 -6.29988" 10 -2 

1.052154 -0.128523 
1.300350 -0.209676 
0.980943 -0.113455 
1.286003 -0.205689 
1.542625 -0.309157 
1.790061 -0.430382 
1.190904 -0.178564 
1.518898 -0.300741 
1.782925 -0.427337 
2.034280 -0.570339 
2.281021 -0.731622 

1.400745 -0.258316 
1.751323 -0.413661 
2.022215 -0.564242 
2.276799 -0.729165 
2.525252 -0.911505 
2.770278 -1.111840 
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these simple observables are not sufficient to connect the non-perturbative regime 
with the known perturbative behaviour of the/3-function at large correlation length: 

dg(a)  a - -  bog3-b lgS+O(gT) ,  (4.7) 
da 

with 

bo = I l N  bl 34{  N ]2 
487r z '  =-3- \1 -~2 ,  ] " 

While eq. (4.7) leads to a constant shift in g2 necessary to change the lattice spacing 

by a factor of  2, 

Ag -2 = 2bo log 2,  (4.8) 

the ratios, eq. (4.5), would lead to a shift which diverges in the limit g2~ 0. As the 
ratios R~(il, iz , . . . )  and Rj(2il, 2i2, . . . )  have different perturbative coefficients in 
order g2: 

Rj(nit, ni2,. ..) = 1 - at(nit, hi2, . . . )g2,  n = 1, 2 ,  (4.9) 

one finds from eq. (4.6) 

(a~(2 i l ,2 i2 , . . )  1)g_ 2 (4.10) 
A g - 2 = \  aj(i,----~,i2--~,~ i) 

This problem has been observed in renormalization group studies of  the O (N )  spin 
models [9, 16], and it has been shown in ref. [9] that a successful way to proceed 
is to use, instead of  the simple operators eq. (4.5), improved observables which 
already show a better weak coupling behaviour on finite lattices and for finite loop 
sizes, i.e., the O(g z) coefficient is the same when the loops involved in these 
observables are scaled by a factor of 2.These improved ratios are given by 

with 

Rjk = Rj( il, i2 , . . . )+aRk( l l ,  12, . . . ) ,  (4.11) 

aj( 2il, 2i2, . . . )  - a3( i,, i2, . . .)  
ak( 21,, 212,...) -- ak( l,, 12,...)" 

The shift Ag -2 for these ratios can be calculated in the limit g2 __~ 0 using our one-loop 
results for the Wilson loops given in tables 1 and 2. Of course, these tree-level 
improved ratios will not give the exact one-loop result eq. (4.8) either, but will 
scatter around this value as the lattice artefacts still influence the finite loops involved 
in the ratios. However, neglecting observables which contain very small loops will 
improve the results further. In figs. 3a and 3b, we show the matching predictions 
A (6/g 2) in the case of SU(3) obtained for improved ratios comparing loops measured 
on 164 and 84 lattices (fig. 3a) and 244 and 124 lattices (fig. 3b) respectively. These 
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Fig. 3. Asymptotic  (g2~  0) behaviour of  the shift A(6 /g  2) obtained from tree-level improved ratios of  
SU(3) Wilson loops. Figs. 3a and 3b show the distribution of  matching predictions when ratios 
Rjk(i~, i 2 . . . .  ) calculated on a (½L) 4 lattice are compared with corresponding ratios R~k(2il, 2i 2 . . . .  ) on 
an (L) 4 lattice. To be compatible with the MC analysis of  ref. [10], only ratios where the total area of  
the loops in the denominator  minus the area in the numerator  is non-zero (positive) and the mixing 
coefficient a is in the range a E (0, 3) have been analyzed. In fig. 3a, L = 16 and only ratios which contain 
loops with perimeter larger than  4 have been considered. In fig. 3b, L = 24 and loops with perimeter 

larger than 6 are used in the analysis. 
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figures show that leaving out observables formed from very small loops systematically 
improves the prediction for the asymptotic shift A (6/g2) and reduces the scattering 
of the individual observables around the exact value A (6/g 2) = 0.579 for SU(3). The 
distribution of asymptotic shifts shown in fig. 3b involves 136 686 observables formed 
from loops with perimeter larger than 6, which gave an average shift A (6/g2) = 0.5735 
with a variance of 0.0316. 

Using our one-loop results we can, however, go one step further and consider 
"one-loop improved" observables which already yield the exact one-loop prediction, 
eq. (4.8), for loops of any finite size. This can be achieved by combining three basic 
ratios of the type defined in eq. (4.5): 

R~)k = Ri + aRj + f i R  k . (4.12) 

The mixing coefficients c~,/3 can be determined using the one-loop results given in 
tables 1 and 2. These observables have been used in ref. [10] to study the SU(3) 
lattice/3-function. 

4.2. THE LATTICE COULOMB POTENTIAL 

At short distances, compared to the correlation length, the heavy quark potential 
is dominated by the coulombic part resulting from gluon exchange. This should be 
seen in MC simulations at larger values of fl = 2N/g: .  However, on finite lattices, 
the Coulomb potential is distorted by lattice artefacts. We can get an idea of this 
lattice effect by computing the potential from our weak coupling expansion of 
Wilson loow in the same way that it is done in MC simulations. One builds finite-T 
approximants VT(R) of the heavy quark potential. We obtain their perturbative 
expansion as 

[ (W(R,  T - - l ) ) ]  2 N : - I  - 
VT(R)=Iog L (W(R ,  r ) )  ] = g  - - - ~ [ W 2 ( R ,  r ) -  ff'2(R, T - l ) ]  

+ g 4 ( N 2 -  1)IX(R, T ) - X ( R ,  T -  1) 

+~(Wa(R, T) 2 -  W2(R, T-1)2)]  

+g4 ( 2 N 2 - 3 ) ( N  2 - 2 4 N  2 1 ) ( 1 - 1 ) [  ff'2(R, T ) -  I~,'2(R , T - l ) ] .  (4.13) 

For large distances, R ~, a, the lowest-order part (one-gluon exchange) is just the 
usual Coulomb potential plus a self-energy term: 

N 2 - 1  C 
V(2)(R) = lim V~)(R) = Vse , f -g  2 -  R ~ , a ,  (4.14) 

T ~  N R '  

with C = 1/8~-= 0.0398. For smaller distances (and T's) this is distorted by lattice 
effects. If we still assume the form (4.14) and extract C from the finite-T approxi- 
mants V ~ ) ( R ) -  V ~ ) ( R -  1), we find the values listed in table 3. We can see that 
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TABLE 3 

The "Coulomb" coefficient C and logarithm of the scale parameter M for SU(3) 
extracted from the weak coupling expansion of finite-T approximants Vr(R)- 

VT(R-  l) on lattices of size 16 4 and 24 4 

269 

C log Mfor SU(3) 
R T 

164 244 164 244 

2 6 0.0437 0.0438 4.288 4.289 
7 0.0434 0.0435 4.281 4.282 
8 0.0431 0.0434 4.278 4.278 

10 0.0432 4.275 
12 0.0432 4.275 

3 6 0.0438 0.0490 4.277 4.282 
7 0.0468 0.0477 4.254 4.261 
8 0.0458 0.0470 4.239 4.247 

10 0.0463 4.232 
12 0.0459 4.225 

4 6 0.0491 0.0511 4.330 4.338 
7 0.0453 0.0480 4.311 4.323 
8 0.0427 0.0462 4.289 4.305 

10 0.0443 4.278 
12 0.0432 4.263 

6 6 0.0573 0.0660 4.296 4.293 
7 0.0448 0.O%0 4.373 4.362 
8 0.0358 0.0500 4.407 4.389 

10 0.0435 4.387 
12 0.0396 4.367 

in the weak coupl ing  limit,  V T ( R )  approaches  the l imit T ~ o o  much  slower than  

measured  in MC s imula t ions  at g 2  O(1). We can clearly see lattice and  finite size 

effects, the latter becoming  smaller  when the size is increased as it should be. But 

these effects are not  overwhelming,  which might explain why fits of  the form 

Cou lomb  + l i n e a r  to the potent ia l  de termined in MC simulat ions  work rather well 

(for recent measurement  of the SU(3) potent ia l  see, e.g. [17]). Close to the c o n t i n u u m  

limit, the order  g4 cont r ibut ions  to the potent ia l  can be absorbed into the defini t ion 

of a r u n n i n g  coupl ing cons tant  and a scale parameter .  If we do this for our  lattice 

potential ,  i.e., if  we write [for SU(3)]: 

VT( R ) = g 2 VT)(  R ) qt_ g 4 V(~)( R ) 

8 2 C T ( R )  (4.15) 
= Vse l f - -~gT(R)  R ' 

with C T ( R )  determined  from lowest order and  

gE(R)  = g2( 1 11 2, + 1-~52 g log ( R M - r ( R ) ) 2 / ,  (4.16) 
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we find for log MT(R) the values also listed in table 3. For T--> ~ and R ~, a, M r ( R )  
should become independent of  R and take on the value [18] 

Ap 
log M = T~olim log M r  = log ~LL = 4.407. (4.17) 

Already at the distances (and T) considered, the agreement is quite good. 

4.3. INTERNAL ENERGY OF THE GLUON GAS 

With the definition of  the average plaquette as 

1 
P = 1 - ~  (tr Up), (4.18) 

the internal energy of  the gluon gas can be obtained as [7] 

e=6N(~(P~-Pr) - t -c~(Psym-P~)q-c~(Psym-P~)} ,  (4.19) 

where [19] 

f N  2 -  1 } 
c" = 4N~. 3-~'- ~ -  × 0.586844+0.000499 , 

{ N2-1 } 
c ' = 4 N  32N~ x 0.586844+0.005306 , (4.20) 

and P~, P, are the average plaquettes in space-space and space-time directions 
respectively. Psym is the average plaquette on a symmetric lattice. At g2= 0, one has 
a gas of non-interacting gluons, and the internal energy should obey the Stefan- 
Boltzmann law ( r  = I/L4) 

eSB = ( N  2 -  1)~5'rr2 T 4 . (4.21) 

But on finite lattices, the lattice artefacts cause (sometimes large) corrections to this 
law [20]. Away from g2= 0, other corrections due to the interactions between the 
gluons appear. For small g2, these corrections can be computed in perturbation 
theory. We find the necessary expansion of P~ and P~ as 

p~,~ = g2 N2 -- 1 
N _~.~ + g 4 ( N 2 -  1 . 

+ g 4 ( 2 N 2 - 3 ) ( N 2 - 1 )  
N2 P(~) + O(g6), (4.22) 

The coefficients P(~) _~,~ are N-independent  and given for various asymmetric lattices 
in table 4. We have computed the internal energy for SU(2) on a lattice of size 
l0 3 ×3 as a function of the temperature T =  (L4a) -I, using the one-loop relation 
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between a, AL and g2. Only  the first term in eq. (4.19) contributes to O(1). On a 
finite lattice, this contr ibut ion differs slightly f rom the cor responding  ideal Bose 
gas, with 2 ( N  2 -  1) degrees o f  f reedom [20]. We find 

= e l (-~:-5') 4') + 0 ( g 2 ) .  (4.23, 
su(N) 4 \ L ] 4 \ L /  / 

In fig. 4, we show this lowest-order term and the O(g 2) corrections together wi th 

MC data  f rom ref. [7]. As can be seen, the agreement  between the MC data and 
the weak coupl ing  expansion at high temperature  is excellent. We checked that  the 

same is true for  a compar i son  of  our  weak coupl ing results with the high temperature  

tail o f  the SU(3) gluon gas [21]. 

4.4. POLYAKOV LINES 

Finally, we want  to give the perturbative expansion of  Polyakov lines: 

( 2 N 2 - 3 ) ( N 2 -  1) 
( L ) =  1 _ g 2  N 2 - 1  Q ( 2 ) _ g  4( N 2  - 1 ) Q ( 4 a ) _ g  4 N 2 Q(4b) + O ( g 6 )  " 

N 

(4.24) 

The N - i n d e p e n d e n t  coefficients Q(i) are listed in table 5 for lattices o f  spatial size 
8, 10 and 12, and various extensions in the time ( 4 - )  direction. Polyakov lines are 
used as an order  parameter  in the investigation o f  the finite temperature  deconfine- 
ment  transition. However ,  because o f  the perturbative contributions,  they are not  

1 0  

0.5 

. . . .  + -  . . . . . .  

÷ 

? 

, ~ -L i ~ ~ ~*~ , L l 2L00 , , 0 10 2 30 50 100 150 300 500 
T/AI. 

Fig. 4. Comparison of the perturbative corrections of O(g 2) to the high-temperature limit of a gluon gas 
with SU(2) MC data on a finite lattice of size l03 x3. The MC data are taken from ref. [7]. They are 
normalized to the energy density of an ideal Bose gas on a lattice of the same size [20]) (esa). The O(1) 
perturbative result for the SU(2) gluon gas (dashed-dotted curve) agrees with esa up to (L4/L) 3 

corrections. The broken line shows the O(g 2) corrections due to one-gluon exchange. 
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TABLE 5 

Coef f ic ien ts  o f  the  p e r t u r b a t i v e  e x p a n s i o n  o f  the  P o l y a k o v  l ine L o n  v a r i o u s  a s y m m e t r i c  l a t t i c e so f  size 

L 3 x L4: t h e  p e r t u r b a t i v e  e x p a n s i o n  is de f ined  in eq. (4.24) 

/.,4 Q(2) Q(4a) Q(4b) 

83 2 0.112303 1 .51970 .  10 -3 2 . 3 5 1 4 8 '  10 -3 

3 0 .168454 3 . 7 5 1 3 0 - 1 0  -3  2 . 2 1 9 5 5 '  10 -3  

4 0 .224606 3 . 5 1 2 3 4 "  10 -3  9 . 2 3 6 1 9 "  10 -4  

5 0.280757 1 .12068"  10 -3 - 1 . 4 5 2 8 1 "  10 -3 

103 2 0 .115100 7 .74240"  10 -4 2 . 3 5 7 9 1 - 1 0  -3 

3 0 .172650 2 . 7 6 8 6 2 '  10 -3 2 .15562 ' 1 0  -3 

4 0 .230200 4 .03790"  10 -3 7 . 3 3 4 9 8 .  10 -4 

5 0 .287750 1 . 8 8 1 1 0 - 1 0  -3 - 1 . 8 2 2 8 9 "  10 -3 

6 0 .345300 - 2 . 2 4 4 7 1 "  10 -3 - 5 . 4 9 1 8 2 '  10 -3 

123 2 0.116971 - 1 . 3 1 7 2 2 '  10 -4  2 .36045"  10 -3 

3 0.175457 3 .59013"  10 -3 2 . 1 0 9 2 7 '  10 -3 

4 0.233942 4 . 3 2 8 2 5 - 1 0  -3 6 . 0 0 1 8 9 '  10 -4 

5 0.292428 2.52525 "10  3 - 2 . 0 7 9 8 4  "10  -3 

6 0.350913 - 1 . 6 3 3 6 9 "  10 3 - 5 . 9 0 8 7 5 "  10 -3 
7 0.409399 - 7 . 5 1 5 9 6 "  10 -3 - 1 . 0 8 8 0 7 "  10 -2 

functions of  the physical temperature alone, but also depend on the extension L4 
of the lattice in the time direction. This is due to the self-energy contribution of the 
static quark source used as order parameter. Elimination of this self-energy term is 
necessary to obtain an order parameter which is a function of the temperature alone 
[9], and would allow the extraction of critical exponents for the deconfinement 
transition. We checked that the subtraction of the perturbative part (4.24) from MC 
measurements for SU(2) o n  103 X L4 lattices brings the L 4 --- 3 and L4 = 4 results onto 
a universal curve. 

5. Conclusions 

We have analyzed the one-loop perturbative expansion of planar Wilson loops 
and the Polyakov lines on finite asymmetric lattices. The agreement of our perturba- 
tive results for Wilson loops with those of ref. [6] gives confidence in the final 
numbers obtained from the rather involved calculation. Although the zero- 
momentum modes have been treated in a rather naive way, the solution of this 
problem is expected to give O(1/V) to the results presented here. This, however, 
will not affect the comparison of the weak coupling expansion with MC data. This 
comparison works well for the energy density of a gluon gas at high temperature. 
The Coulomb part of the heavy quark potential can be reproduced quite well by 
the weak coupling approximants on a finite lattice and supports the validity of fits 
of the type "Coulomb + linear term" used to extract the string tension from MC data. 
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What we consider most important, however, is the possibility to construct, from 
the present results, one-loop improved observables which satisfy the homogeneous 
renormalization group equation and yield the correct weak coupling solution of  this 
equation. This allows a study of the lattice/3-function on finite lattices by operators 
constructed from loops of finite size which are free from lattice artefacts to order 
g4, and smoothly connect the perturbative and non-perturbative regimes. 

We thank P. Hasenfratz for many helpful discussions and suggestions. We are 
indebted to C.P. Korthals-Altes for discussions on the problem of  gauge fixing on 
finite lattices and the zero-momentum modes in LGT. We would also like to thank 
R. Trippicione for a clarifying discussion on the computations in ref. [6]. 

Appendix A 

GAUGE FIXING 

For the gauge fixing term 

we have taken 

SGv = -1E  ( Ga(x) ) 2 , (A.I) 
x 

6 ° ( x ) = E  - ° a , , A , , ( x )  ( A . 2 )  
tx 

[z~uf(x) = f ( x )  - f ( x - / 2 ) ] .  For the use of  BRS transformations to discuss Slavnov- 
Taylor identities on the lattice, it is more convenient to use a slightly different gauge 
fixing term [22]: 

where 

G ' ° ( x ) = E  - ° , A,H~,(x) (A.3) 
/z 

1 
-gg  Au(x)+O(g 4) (A.4) H~,(x)=~tg(U~,(x)_U+(x))=A.(x)  , 2 3 

This introduces a new four-gluon term in the effective action: 

6St  1 2x~ GF=~g 2. ~ tr[AuA~,(x)A~43~(x)] (A.5) 
x /~,v 

It also gives an additional term to the Faddeev-Popov determinant 

~SFp - 2 N 2 - 3  ffp 
1 2 ~  g2I E A~(-p)A~(p)  

,u.#=d 

2N2 - Iv _~ 3 g2i d A~(-p)A~(p) .  (A.6) 
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To the order we are considering, both contributions enter our results only through 
a change in the vacuum polarization: 

2(2N 2 -  3) g2Aos,(½p)s~(ip). (A.7) 
8H~,~(p) = 3N 

This is a purely longitudinal contribution and one easily checks that it does not 
contribute to the expectation value of gauge invariant objects. 

Appendix B 

EXPANSION OF WILSON LOOPS TO O(g 4) 

Making repeated use of the Baker-Hausdorf formula 

eXe v =  exp {X+ g+l[x ,  Y]+~[X,  [X, Y]]+~[[X, Y], Y] 

+ commutators involving 4 X and Y + .  • .}, 

we find 

[I Ue=exp{ig~eAe-½g2 ~ [Ae~,Ae2]-¼ig 3 ~ [[Ae,,Ae~],Ae3] 
~ e C  £a I <:Zta 2 tal < C 2 < t a 3  

- l i g  3 E [Ae, ,  [Ae2, Ae3]]-l~ig 3 E [[Ae,, Ae2]Ae2] 
(~ 1,£¢'2) <Z~3 ¢#1 ' ~ 2  

+ g4 × (commutators with 4A~s) + O(gS)}. 

(B.l) 

Here, ~e, etc., denote ordered sums along the path C of the Wilson loop which we 
take to have the four corners Xo, Xo + R/2, Xo + R/2 + T~, Xo + T~. # ~ < ~a2 means that 
the link tal comes before the link #2, and Ae is 

Ae=A~(x) for t = (x, x + / 2 ) ,  

Ae = -A+,(x -/2) for ~' = (x, x - / 2 ) .  (B.3) 

Expanding the exponential in (B.2), taking the trace and using (i) the cyclic property 
of the trace, (ii) the fact that the trace of a commutator vanishes, and (iii) the fact 
that A~,(x) is traceless for SU(N), we obtain the expansion coefficients of eq. (3.2): 

1 2 1 2 

i 3 • 
tOa = ~--~ tr ( ~  Ae) + ~ N  tr ( ~  Ae e,~<e~ [Ael, Ae2]) , 

(a.2) 
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4 N  tr Ae Y. [Ae,, Ae2] 
Ca i <Ca 2 

- 8--N tr [Ae: Ae~] 
Ci C2 

---tr A:  E [[Ae,, Ae2], AeJ  
a N  ca i <~ ta2 < ta 3 

) 1 - ~  tr Ae E [ Ae : [ Ae2, A:3]] 
( l t , t 2 ) < # 3  

- 12---N tr Ae ~, [[Ae,, Ae2]Ae2] 
d ' t < C  2 

o34 2 4 N  tr Ae • (B.4) 

It turns o u t  that  the first te rms in oJ3 and  0.) 4 do not  contr ibute  to the expecta t ion  
value at o rder  g4 due to symmet ry  proper t ies  in the colour  indices. 

A p p e n d i x  C 

THE VACUUM POLARIZATION TENSOR 

In this append ix  we give the vacuum polar iza t ion  tensor  H~,v to order  g2 for  an 
a symmet r i c  L d-I × Ld lattice. We split it into two parts  

H~,~(p) = (~) (b) I I , , ( p ) +  H~,~(p). (C. I )  

The  second par t  comes  f rom the four-g luon vertex $2 (see fig. 2a), and  is given by  

II,~.(p)(b) _ ( 2 N 2 - 3 )  .#.,d ~" s2(lp)+(I+Ia)s2a(lp)]  f o r / z # d  

H.v(p)(b) _ 2 ( 2 N 2 - 3 )  g 2 I s ~ ( ½ p ) s ~ ( ½ P ) 3 N  for  I z #  v" /x, ~ , ~ d ,  

H~aba)(p)=(2N2-a)g2(i+ia) ~ 2 ~ sp(~p) , 
3 N  pad 

H~)d(p) - ( 2 N 2 - - 3 ) ( I + I d ) s . ( l p ) s d ( l p )  f o r / x # d .  
3 N  

For  writ ing convenience ,  we split (a) H.~(p) again into two parts: 

/I~,~ (p)(a) __-- --~/-7(a~)(,P)-~ +_F/~(a2) (p )  

(c.2) 

(C.3) 
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II(al) ~ comes from the three-gluon vertex $1 and the last contribution from SFp in 
(2.9). It is depicted in fig. 2b and is given by 

I { 2 1 2 I I-l(a,)( n~ = 2Ng 2 1 26~.~cv(~k) ~ sp (~(2p + k)) 
--~" . . . .  D(k)D(p+k)  k p 

+ 2s,~(½(2p + k))s~(½(k - p ) l c . ( ½ ( p  + k))c~(½k) 

- 2s~. (½(p + k))sv(½k)c~(½k)c~(½(p + k ) )} .  (C.4) 

/I(%) .~ comes from the four-gluon vertex $2, the rest of SFo and the measure contribu- 
tion S . . . .  . It is shown in fig. 2c, and amounts to 

H(a2)( = ~ N g26 .~ { - I - ½+ ( 3d - l ) A o - (2d -4 )A ,+3a , c . ( p )  ,,~ , p )  

- (2Ao+5A, )  ~ co(P)-(2Ao+4A,+Af)Cd(p)} 
p#d 

--~Ng2(ao+ Al)S~(½p)s~(½p) for t~, v#  d, 
( a )  1 2 d l 1 II~,'d (p) = -~Ng (2Ao+AI+A~)S~,(~p)Sd(~p) for /x # d,  

II~?)(p) =~Ng3{-Id -½+ (3d - l ) A o - ( 2 d - 4 ) A  a 

-(2Ao+4A~a+A,)  E co(p)-2(ao+Af)ca(P)} 
p # d  

--~Ng2( Ao+ Ad~ )S 2d(½P) . (C.5) 

One easily checks that the vacuum polarization tensor II~,~(p) satisfies the Bose 
symmetry: 

17,,~(-p) = 11,~(p) , (C.6) 

and is even in the external momentum p: 

II~,~(-p) = l-l..(p) , (C,7) 

The definitions o f / ,  Ia, Ao, a~ and a l a can be found in sect. 2. 

References 

[1] K.G. Wilson, Phys. Rev. DI0 (1974) 2445 
[2] M. Creutz, L. Jacobs and C. Rebbi, Phys. Reports 95 (1983) 201; 

C. Rebbi, Lattice gauge theories and Monte Carlo simulations (World Scientific, 1983) 
[3] V.F. Miiller and W. Riihl, Ann. of Phys. 133 (1981) 240 



278 U. Heller, F. Karsch / Wilson loops on finite lattices 

[4] T. Hattori and H. Kawai, Phys. Lett. 105B (1981) 43 
[5] R. Kirschner, J. Kripfganz, J. Ranft and A. Schiller, Nucl. Phys. B210 [FS6] (1982) 567 
[6] G. Curci, G. Pattuti and R. Trippicione, Nucl. Phys. B240 [FSI2] (1984) 91 
[7] J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. B205 [FS5] (1982) 545 
[8] R.V. Gavai, F. Karsch and H. Satz, Nucl. Phys. B220 [FS8] (1983) 223 
[9] A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, Phys. Lett. 140B (1984) 76 

[10] A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, Phys. Lett. 143B (1984) 1983 
[11] B.E. Baaquie, Phys. Rev. DI6 (1977) 2613; 

A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B (1980) 165; 
A. Di Giacomo and G. Paffuti, Nucl. Phys. B205 [FS5] (1982) 313 

[12] P. Hasenfratz, Phys. Lett. 141B (1984) 385 
[13] H.D. Politzer, Nucl. Phys. B236 (1984) 1 
[14] A.M. Polyakov, Phys. Lett. 72B (1978) 477; 

L. Susskind, Phys. Rev. D20 (1979) 2610 
[15] M. Creutz, Phys. Rev. D23 (1981) 1815 
[16] J.E. Hirsch and S.H. Shenker, Phys. Rev. B27 (1983) 1736 
[17] A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, CERN preprint TH.3842 (1984), Z. Phys. 

C, to be published; 
D. Barkai, K.J.M. Moriarty and C. Rebbi, Phys. Rev. D30 (1984) 1293 

[18] A. Billoire, Phys. Lett. 104B (1981) 472; 
E. Kovacs, Phys. Rev. D25 (1982) 871 

[19] F. Karsch, Nucl. Phys. B205 [FS5] (1982) 285 
[20] J. Engels, F. Karsch and H. Satz, Nucl. Phys. B205 [FS5] (1982) 239 
[21] T. Celik, J. Engels and H. Satz, Phys. Lett. 129B (1983) 323 
[22] C.P. Korthals-Altes, Carg~se Lectures, September 1983; private communications 


