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The deconfining transitions of SU(N) lattice gauge theories, both with and without quarks, 
are studied using strong coupling techniques combined with a mean field analysis. In the pure 
gauge sector our analysis suggests first-order transitions for N/> 3 and a second-order transition 
only for N = 2. Quarks are incorporated via an effective external field h related to the Wilson 
hopping parameter. For N = 2 the transition disappears for arbitrarily small h, whereas for finite 
N/> 3 it disappears above a non-zero critical field h c. h c approaches zero as N-~ oo even though 
the pure gauge sector transition remains first order. Our results for hc in the SU(3) case agree 
well with recent Monte Carlo simulations. 

1. Introduction 

Deconfinement in finite temperature SU(N) gauge theories is known to occur in 
the pure gauge sector [1-5]. However,  it is profoundly influenced by the presence 
of dynamical quarks. Recent Monte Carlo results [6, 7] and theoretical consider- 
ations [8] indicate that the transition actually disappears in the real world of 
interacting quarks and gluons. This is because the quark fields break the global 
Z(N)  symmetry which signals deconfinement for all temperatures. Such a breaking 
smooths out the phase transition if it is second order [8], just as an external magnetic 
field smooths out the phase transition of an Ising model. In the case of a first-order 
transition, the jump in the order parameter disappears only if the breaking is strong 
enough. Thus the quarks must have a sufficiently small mass. The numerical results 
for SU(3) [6] and Z(3) [7] indicate that this critical mass, below which there is no 
phase transition, is quite large. Certainly it is desirable to check these findings with 
analytic calculations. That is, in part, the purpose of this paper. 

In addition, there are some questions as to the nature of the N/> 4 transitions. 
It has been suggested that these theories may have second-order transitions in the 
same universality class as certain Z(N)  spin systems [8-10]. It should be emphasized 
that this is a weak statement for N 1> 4 since the order of the transitions depends 
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on the exact structure of the Z ( N )  invariant model under consideration [10]. 
However ,  ref. [11] showed a relation, for ultra-strong coupling, connecting pure 
SU(N)  gauge theories with N state clock models. This picture favours second-order  

transitions for all N # 3. Then the critical quark mass would be finite only for the 
N =  3 theory. This has been noted in ref. [12]. It is nonetheless important to do 

explicit calculations since the order of the Z ( N )  transitions is very sensitive to the 
type of model [13]. 

In this paper  we present a mean field analysis of the SU(N)  lattice gauge theories 
at finite temperature  and strong coupling. We find, as expected, second- and 
first-order transitions for the N = 2 and 3 pure gauge theories, respectively. Remark-  
ably, however,  the pure gauge sector has first-order transitions for all N/> 4. Thus 
the critical masses are finite for all N > 3 (with the exception of N -- oe!). Utilizing 
a hopping parameter  expansion to incorporate quarks, we calculate critical hopping 
parameters  Kc(N) (i.e., critical masses) for the various theories. The Kc's are small, 
thus justifying the expansion, and in agreement  with Monte Carlo. In fact for N = 3 
the numbers themselves are in excellent agreement,  both for K~ as well as the 

critical coupling. Our values for these critical parameters  for N/> 4 are offered as 
rough estimates for future more detailed investigations. In any case, the N/> 4 
results are significant and are in agreement  with a qualitative argument  [14] that 
they are first order. The approximation of ref. [11] which leads to clock models 
seems to be too drastic. 

2. Generalities 

The theories are defined on an euclidean lattice with N, links in the time direction 

and N~-* oc links in the three spatial directions. Thus for lattice spacing a, the 
tempera ture  T = (N.a) 1. Wilson fermions are incorporated as usual by first integrat- 
ing over  the fermionic degrees of freedom. The partition function is, for n~ flavours, 

I " ] Z = [dU]  I] det Of exp /3N tr Up+c.c. , (2.1) 
f = l  

where 

Of = ~- KfM, (2.2) 

M..~. = (1 - Y.) 0x,.ax.y_. + (1 + 7 . )  uy . .ay .x+. .  (2.3) 

Due to the antiperiodic boundary conditions for fermions in the temperature  
direction, the /~'s obey 

~]~X,CA . = U( . . . .  ),CA - = (1 - 2~x4,N~4,~, ) Ux4,, (2.4)  

where the Ux,, c SU(N)  are ordinary link variables. The Ue's are the usual plaquette 
variables,/3 = 1/g2N, and Kf is the hopping parameter  for quark flavour f. 
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Consider first the pure gauge sector (Ky = 0). For small /3 spacelike plaquettes 
can be neglected, since they tend to deconfine [1,2,  15]. In that case all spacelike 
links can be integrated [15] and an effective theory obtained in terms of Wilson 
line variables, 

N 1 

Wx = l] U~ .... ,,4. (2.5) 
x4--O 

The effective partition function, up to an irrelevant constant, can be written in terms 
of a character expansion, 

x , e  ~- 

where the first product runs over the sites and the second over the links of a 3D 
lattice. The Xr'S and zr's in eq. (2.6) are the characters and character coefficients 
in the rth representation, respectively (see ref. [16] for notation). The z / s  are of 
increasingly higher order in /3 as we increase r. We assume /3 is sufficiently small 
that we can keep only the fundamental  term in eq. (2.6), proportional  to Z l ;0 ((1; 0) 
denoting the fundamental  representation [16]). Thus 

Ze~(/3, K = O ) = I H d W x e x p ( / 3 ' ~ t r W x t r W ~ + e + c . c .  ) , (2.7) 

where* 

/31 N 
= z~j,. (2.8) 

To leading order, Zl;o=/3 so 1 3 ' = / 3 N + . . . .  Higher orders in /3 are included, in 
part,  by expanding Zl:0. 

Eq. (2.7) describes a Z ( N )  invariant model with nearest-neighbour interactions 
between the spins tr Wx. However ,  it is complicated by self-interactions induced by 
the group measure. At least qualitatively, this can help us determine the nature of 
the phase transition via an effective potential formalism [9, 11]. However,  the 
effective potential is hard to find for N/> 4, and mean field theory is more trustworthy 
quantitatively. 

Now let the quarks have a finite, but still large, mass (K < 1). In order to avoid 
dealing with spacelike plaquettes, keep N, < 4 and expand In det O in K. To leading 
order,  

n f  

Y lnde t  O~,--- h Y~tr Wx+c.c . -~Y~f l (Wx,  h ) ,  (2.9) 
f - - 1  x x 

where 

h =- 2 n f ( 2 K )  NT . 

* Eq. (2.7) is true for N>~3. For N=2, /3' in eq. (2.7) must be replaced with 1/3,. 

(2.10) 
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(For N~ > 4 the leading term arises from spacelike quark paths which, however, do 
not break the Z(N) symmetry.) It is also possible to sum the K expansion for N = 3 
for all quark paths wrapping around the four-direction an arbitrary number of times. 
This results in (for SU(3)), 

lndet  Q ~ 2nj ~ In [(1 + /~3+ (/~ +/~ 2) R e t r  W x ) 2 + ( ( R - I £  2) I m t r  Wx) 2] 
X 

=-~f2(Wx, h) ,  (2.11) 
x 

where /~  = h/2n~. Thus the strong coupling effective partition function becomes 

x , e  x 

where f~(W, h) is one of the functions f~, f2 defined above. Clearly both f ' s  break 
the global Z(N) symmetry and thus h acts as an external field. In general we will 
use only f~; for SU(3), the results are changed very little by switching to f2. 

As long as K ~ K,~ =o, where K,,=0 is the critical hopping parameter which 
corresponds to massless quarks, a suitable way to relate K to a quark mass is via [6, 7] 

1 r n a  K - T e  . (2.13) 
Using N~a = 1/T, this is equivalent to 

m / T  = In (h /2n f ) .  (2.14) 

The mean field (MF) analysis of eq. (2.12) for h = 0 yields the same self-consistent 
equations encountered in SU(N)x  SU(N) chiral models [17]. In fact the model of 
eq. (2.7) is intimately related to chiral models in many ways [15]. Since the MF 
results of ref. [17] were quite reliable in their agreement with Monte Carlo, we 
expect the same to hold here. More importantly, the qualitative predictions of MF 
theory (e.g., the order of the transitions) are almost certainly correct here. 

Following ref. [17], we define a MF free energy*, 

• ~Mv~6~ 'M2+o~s ,  (2.15) 

~ss = --ln Z s ,  (2.16) 

where the 'single-site' partition function is, 

Z~(M, h) = f d W  exp [6/3'M tr W+c.c.  +f~( W, h)].  (2.17) 

For simplicity we take M to be real. The value of the mean field M is determined 
by locating the minima of ~-Mv: 

O ~MV = 0 .  (2.18) 
OM 

'~ Once again, for SU(2), eq. (2.15) should have /3'~½/3'. 
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TABLE 1 

Summary of mean field results for the critical parameters of the 
deconfinement transition and the order of the transition in the 

pure gauge sector for various N 

N Order h c fl'¢(O) fl'¢(hc) 

2 2 0 0.17 0.17 
3 1 0.059 0.13 0.12 
4 1 0.047 0.16 0.15 
5 1 O.ll 0.16 0.14 
6 1 0.087 0.16 0.15 
8 1 0.039 0.17 0.16 

10 1 0.013 0.17 0.17 
1 0 0.17 0.17 
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The  so lu t ion  ~3 is the  expec t a t i on  va lue  of the  Wi l son  line, ( t r  W),  in the  M F  

a p p r o x i m a t i o n .  O n e  must  check tha t  these  min ima  are  s table ,  i.e., that  o~Mv is a 

g lobal  min imum.  The  exis tence  of two s table  min ima  indicates  the  p resence  of a 

f i r s t -o rde r  t ransi t ion.  

N o t e  that  eq. (2.12) with fi = f l  can be  wr i t t en  as 

Z~(y) = f dW exp [y ( t r  W + t r  W*)] ,  (2.19) 

whe re  y = 6 / 3 ' M + h .  This  is a famous  in tegra l ,  and  has been  done  [16-18] .  W e  

ut i l ized bo th  the  series expans ions  of refs. [17, 18] as well  as numer ica l  in tegra t ions  

to  eva lua t e  eq. (2.19).  

The  p r o c e d u r e  is now clear :  increase  h f rom zero.  A t  each value  of h, check to 

see if t he re  is a phase  t rans i t ion  at some cri t ical  /3', /3'c(h). It should  d i sappea r  at 

some  hc (hopefu l ly  small  in o r d e r  to just ify the  app rox ima t ions  made) .  W e  now 

descr ibe  the  specific examples .  A s u m m a r y  of the  results  appea r s  in t ab le  1. 

3. Results 

3.1. SU(2) 

F o r  SU(2)  (see first f o o t n o t e  in sect. 2, keep ing  y = 6 / 3 ' M  + h) 

Z~(y) -- f dW exp [y tr  W ] .  

This  can be wr i t t en  in c losed  form,  

Z ~ ( y )  = I ,  ( 2 y ) / y .  

(3.1) 

(3.2) 
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The  MF equat ion to be solved (see previous footnote) ,  rewrit ing eq. (2.18) in te rms  
of y, is 

y - h  ~I2(2y) 
6/3' - z ~ ( - ~ y ) .  (3.3) 

Cons ider  small y. Then  this becomes  

y - h  
6/3' = y +" " '"  (3.4) 

For  h = 0, this has the unique solution y = 0 f o r / 3 '  < ~;. Since the der ivat ive  of I2/1~ 
never  increases,  this is also the unique solution to eq. (3.3). It  is stable,  so M = 0 
f o r / 3 '  <~,. _/Q increases cont inuously  f rom 0 f o r / 3 ' >  l, so there  is a second-order 
t ransi t ion a t / 3 '  = ~,. 

For  h ~ 0, but small, eq. (3.4) yields the following stable solution f o r / 3 '  < ~,, 

h 
~? = (3.5) 

1 - 6 / 3 '  ' 

Thus  M is non-ze ro  for  any non-ze ro  h even at very small t empera tu re s ,  and the 
phase  transit ion disappears  at hc = 0. 

3.2. su(3) 

For  h = 0, the f i rs t -order  na ture  of the transi t ion is exhibited in fig. 1. O~MV has 
two degenera te  minima at /3"(0)  = 0.134, which could also be ob ta ined  directly f rom 
ref. [17]. In arriving at fig. 1, the g roup  integrat ion was p e r f o r m e d  numerical ly.  A 

0.03 

0.02 

0.01 

-0.0 

0.133 

0.134 

0.135 

I 
2 3 M 

Fig. 1. ~Mv[SU(3)] is plotted versus M f o r / 3 ' =  0.133, 0.134 and 0.135, using numerical  integration to 
evaluate eq. (2,19). The phase transition occurs a t / 3 ' =  0.134, where there are two stable minima. 
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Fig. 2. Behaviour of ,~MF[SU(3)] at ]3~(h) for three different values of h: 0.02 (top curve), 0.04 (middle 
curve) and 0.055 (bottom curve). The series expansion of ref. [18] was taken to 30th order to arrive at 

these curves. The respective values of/3 c are 0.130, 0.125 and 0.122. 

similar calculation using the series expansion (eq. (2.22) of ref. [17]) yields/3"(0) = 
0.14. Thus the series results can be trusted to within (roughly) 10%, at least to the 
orders given in ref. [17]. 

For fl with h ¢ 0, the two minima of fig. 1 approach each other and/3"(h) decreases 
(see fig. 2). The behaviour of the order parameter /3' for various values of h is 
displayed in fig. 3. At hc = 0.059 the two minima of o~MV merge (fig. 2) and the 
jump in ~r disappears (fig. 3). The variation of /3'c(h) with h can be determined 

1 - 

h= 0.04 j o.o6/// 

I I ~ I i 
0.100 0.125 

I~' 

h=O f 

0.150 
I 

0.175 

Fig. 3. The order parameter M as a function of/3' for various values of h using the function f~ [SU(3)] 
as an approximation to In det Q. The solid lines give the order parameter, and the dotted lines indicate 

the unstable and metastable solutions to the MF equation. Numerical integration was used. 
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directly or via an analogue of the Clausius-Clapeyron equation, valid for small h [6], 

( A (O~.~MF/3h)[h=O) h (3.6) 
/3"(h) =/3"(0) (A (0O~eMF/O/3)lh =0 ) 

=/3"(0) - h / (3aMIh=o) ,  (3.7) 

where the A's denote the differences in the subsequent quantities between the two 
coexisting phases. As h~ turned out to be small, eq. (3.7) is valid up to h~. At h = 0, 
A)Q ~ 1.5, so 

/3" (h ) -~ /3" (0 ) - lh .  (3.8) 

The use of f2 does not appreciably change the results. We expect the same to be 
true for N ~> 4 for the analogue of re. 

3.3. SU(N), N~>4 

The series expansions of ref. [17] were used to obtain the values for/3c(0),/3c(hc) 
and hc listed in table 1, so they may be off by - 10%. In all cases, we found first-order 
transitions for N/> 4 with hc ~ 0 as long as N was finite. 

Interestingly, the large N limit (which, like N - - 2  can be solved exactly [17]) 
predicts hc/N = 0, even though the transition is first order. Since corrections to the 
large N group integrations are exponentially small [19], hc itself should approach 
0 faster than any power of N. Indeed, the finite N results indicate that hc itself -~0 
as N - ~ ,  not just hc/N. We are thus faced with a typically pathological situation 
for N ~ o0: one could set det Q = 1 since internal quark loops give 1/N corrections. 
If this is done the phase transition persists for any finite quark mass (h ~ 0). But if 
the 1/N corrections are included, the transition disappears for any finite quark 

mass! The reason for this is that at /3~, the 'potential barrier '  in 5wMv is flat to all 
orders in N. 

4. Comparison with Monte Carlo, and conclusions 

From table 1 we can obtain numbers that can be compared with those obtained 
in Monte  Carlo simulations. For SU(2) the character coefficient z~:o can be written 
in closed form as [/3 -= 1/g: for SU(2)], 

12(4/3) (4.1) 
Zl:0 = It (4/3)' 

N 
Using the critical value for /3" = Z~;o from table 1, we obtain for /3c the numbers 
0.17, 0.46 and 0.71 for NT = 1, 2 and 3, respectively. These are to be compared 
with the Monte Carlo results 0.19 [3], 0.47 and 0.55 [5], respectively, using our/3 
normalizations. Since NT----3 brings us well into the intermediate coupling region, 
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it should not be surprising that the agreement  is bad there. Our  results can be 
trusted, apparently,  only for N, <~ 2. For these values of N, they are also roughly 

consistent with more precise strong coupling estimates (/3~=0.24 for N,  = 1 and 
0.49 for N~ = 2 [15]). 

For SU(3), z~:0 cannot be written in closed form, so we resort to an expansion. 
Including the first few corrections in z~;0, 

z~;o =/3 + ~ / 3 2 - ~ / 3 4 +  O(/35),  (4.2) 

then 

/3, = ~2 ..~ 3~3  _~_ 9/3 4 -- 11~325/3 5 -t- O ( / 3 6 ) ,  (4 .3)  

for ArT = 2. Then for N,  = 2, table 1 yields/3c(0) = 0.27 and/3c(hc) = 0.26. Again this 

is quite consistent with Monte Carlo data which give/3c(0) = 0.28 [20] and/3c(hc) = 
0.27 [6]. The agreement  is also reasonable for ho, which was found to be 0.055 in 
ref. [6] on a 83x 2 lattice*. 

Using eq. (2.10), we can try to relate hc to a critical quark mass. We emphasize, 
once again, that this relation is reliable only when Kc ~ Kin=0, where Km~=0 = 0.25 
in the strong coupling limit [22]. One is of course most interested in nf = 3. In this 
case we find Kc = 0.05 for NT = 2, which is certainly small enough such that we can 
trust the K expansion. Thus, using eq. (2.14), we arrive at 

me~ T~ = In (hc/2n/) = 4.6 ,  (4.4) 

for three flavours. 
In conclusion, we have analyzed the effective theory for SU(N)  lattice gauge 

theory in the presence of dynamical quarks at strong coupling. Mean field theory 
predicts a second-order  phase transition for SU(2), and first-order transitions for all 
other S U ( N ) ' s  in the infinite quark mass limit. This contradicts previous claims for 
N/> 4 [11]. Also via MF theory critical masses and temperatures  were obtained 
which indicate that the deconfining transition already disappears at a very high 
quark mass. They are in excellent agreement  with the existing SU(3) measurement  
at N~ = 2 [6], while our NT >~ 3 results are not trustworthy. One may worry that the 
agreement  between strong coupling and Monte Carlo implies that the Monte Carlo 
data are still in the strong coupling region. However ,  strong coupling results have 

previously been found to be consistent with continuum behaviour in the intermediate 
coupling regime [15, 23]. In any case this indicates that Monte Carlo simulations 
should be performed on larger lattices in order to probe the continuum more deeply. 

The critical masses remain large as N increases above 3. It would be interesting 
to see if these N ~> 4 results are supported by Monte Carlo simulations. 

* This is consistent with recent Monte Carlo results on a 83x 3 lattice, where no first-order phase 
transition has been observed above he> 0.054 [21]. 
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B o t h  a u t h o r s  t h a n k  the  U n i v e r s i t y  of  W a s h i n g t o n  S u m m e r  I n s t i t u t e  on  Phase  

T r a n s i t i o n s  in G a u g e  T h e o r i e s  and  T h e i r  Phys ica l  A p p l i c a t i o n s  w h e r e  this w o r k  was 

in i t i a t ed ,  fo r  its hosp i t a l i t y  and  fo r  p r o v i d i n g  a s t imu la t i ng  a t m o s p h e r e .  F .K.  t h a n k s  

P. H a s e n f r a t z  and  H.  Sa tz  fo r  d iscuss ions .  W e  a r e  g r a t e fu l  to  t he  M a t h l a b  g r o u p  at 

M I T  fo r  t he  use  of  M A C S Y M A .  
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