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In the lattice regularization of QCD, physical results must be independent of the choice of 
lattice action. Finite temperature thermodynamics provides a ve~ sensitive test of this universality, 
providing a functional comparison between the predictions of different actions. We study thermo- 
dynamics using Wilson's. Manton's and Villain's actions as well as the mixed fundamental-adjoint 
form of Bhanot and Crcutz. Our resalts support universality in all cases, but indicate that in 
general the region of couplings in present lanicc calculation.,, requires the inclusion of higher order 
effects in the perturbativc solution of the renormalization group equation. 

1. Introduction 

The lat t ice regular izat ion of Q C D  is a very fruitful method  both  for conf inement  

studies [1] and for finite t empera tu re  the rmodynamics  [2]. The same classical 

con t inuum theory is, however,  ob ta ined  from a wide class of lat t ice actions,  leading 

to a universal i ty  requi rement  for lat t ice evaluat ions:  the result ing physical  quant i t ies  

must  be independen t  of  the choice of action.  Thus e.g. the relat ion between mass gap 

and str ing tension, or  between deconf inement  t empera tu re  and str ing tension, must  

become the same in the con t inuum limit  of  sufficiently small bare  coupl ing  g2, 

whatever  ac t ion is used in the lat t ice formulat ion.  

Numer ica l  ca lcula t ions  in la t t ice Q C D  are, however,  pe r formed  for finite g2: in 

the scaling region of  the theory,  such calcula t ions  are expected to give us the correct  

con t inuum limit. Hence  we must  verify if universal i ty  holds  within the scaling region 

of  specific lat t ice formulat ions .  

At  T =  0, the str ing tension o has been ca lcula ted  in the scal ing region for 

different  ac t ions  [3-6]  x, each yie ld ing o / A ~ ,  where AI. is the lat t ice scale pa rame-  

ter. Different  act ions  lead to different  values of  o / A ~ ,  so that  A t. = A~ must  depend  

on x. The rat ios of  A~. values for different  x have been ca lcula ted  in the weak 

coupl ing  l imit  g2 __~ 0 [7]. C o m p a r i n g  the rat ios from the numerica l  evaluat ion  with 
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the weak coupling predictions can give us some indications about the validity of 
universality. It is not an unambiguous test, however, as the scaling region is generally 
larger than the region of validity of the lowest order weak coupling expansion; in 
other words, at finite g 2  higher order terms in the g2 expansion may become 
important. 

At T:~ 0, the colour deconfinement temperature T~ can be chosen as relevant 
physical quantity in place of o; Monte Carlo studies now yield TJA~L for different 
actions [8, 9], and we may compare these results to weak coupling predictions. 

In either case discrepancies between numerical results and weak coupling ratios 
may be due to higher order corrections in g2, and for these so far only estimates 
exist [10]. To circumvent this difficulty, one can compare the ratios of physical 
quantities, e.g. a/T~ 2, for different actions, in order to obtain a better test of 
universality. 

One aim of the present paper is to carry out this test, as well as to study the role of 
higher order terms in the weak coupling expansion in this context. 

Moreover, in finite temperature QCD one obtains physical quantities as functions 
of temperature, and this provides us with the possibility of a much more sensitive 
test of universality. Calculating an observable O(T)  on the lattice for different 
actions now requires functional agreement over a whole range, rather than the 
coincidence of two points only. The second aim of this paper is such a functional 
test of universality. 

Finite temperature tests appear of particular interest in view of a recent study [6], 
showing at T = 0 considerable discrepancies between Monte Carlo results and lowest 
order weak coupling predictions, in the case of an action consisting of a mixture of 
fundamental and adjoint gauge group representations [1 I]. Do these discrepancies 
persist at T :~ 0, and do they also lead to functional discrepancies? 

The plan of this paper is the following. In sect. 2, we present our results using 
Wilson's, Manton's  and Villain's forms of the lattice action for SU(2) Yang-Mills 
theory. Besides T~ and o, we compare the deconfinement order parameter [12, 13] 
( I L  I) and the energy density ~ as functions of temperature for the different actions. 
In sect. 3, we consider specifically the mixed fundamental-adjoint action of ref. [6], 
determining T~ as well as ( I L I ) (T) .  Sect. 4 summarizes the conclusions of our work. 

2. Wilson, Manton and Villain actions 

In this section, we want to study the continuum limit of physical quantities 
calculated on euclidean space-time lattices, using the SU(2) form of the Wilson [14], 
Manton [15] and Villain [16] actions. These actions differ from each other at finite 
lattice spacing a, but lead to the same classical continuum limit for a--* 0. Their 
common feature is the dependence on a single dimensionless coupling g, which in 
the scaling region of the theory is related to the lattice spacing a through the 
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Callan-Symanzik equation 

a d g ( a ) / d a = f l ( g ) .  

225 

( l )  

Perturbation calculations yield for SU(2) 

/3(g) =/3og 3 + o(go),  (2) 

with 

,8o = 11/24~2, /31 = 17/96¢r4" (3) 

The coefficient/32 depends on the form of the action and has so far not been fully 
calculated for the cases considered here. Integrating eq. (1), (2) we obtain the 
relation 

aAt = l -  2fl~ g2+O(g4)  exp 2flog e 2fl~ln(flog2) , (4) 

where the lattice scale parameter A L is a regularization scheme dependent integra- 
tion constant. 

In Monte Carlo calculations, the scaling region of a given formulation is generally 
taken to be that range of couplings in which physical quantities of dimension a scale 
according to the leading term of eq. (4), 

l B, ln(B,,g:)}. (5) 
aA L = exp 2fl°g 2 2flo 

An evaluation in this range then yields physical observables in units of A L. By 
universality, these quantities have to be independent of the form of the action, and 
we can thus determine the ratios of the lattice scale parameters for different actions. 
These can then be compared with weak coupling limit predictions for g2 ~ 0. Before 
interpreting this as a test of universality, we have to make sure, however, that eq. (5) 
is indeed applicable to the data used. The higher order corrections terms in eq. (4) 
introduce (via/32) an action-dependent correction 

A L ~ A  / ( l  f12fl°-/3'g2). 
L 2/3o 3 

(6) 

which, when observed over a small range of g2 would appear simply as a change in 
the corresponding A L" 

We want to show in the following that finite temperature Monte Carlo studies 
provide a particularly sensitive test both of universality and of the role of higher 
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order terms in eq. (4). We begin by defining the three actions to be considered in this 
section. On an isotropic lattice, i.e., one with equal lattice spacings in space and time 
directions, they have the common structure 

S(U)  = E S ( U p ) ,  (7) 
(P) 

where the sum is over all elementary plaquettes of the lattice; the plaquette action 
Sp = S(Up) is a function of the plaquette variables Up and the dimensionless 
coupling g. The plaquette variable is given by 

uo = (8) 

for a plaquette P = (ijkl); the U,j are SU(2) elements associated to the link joining 
the adjacent sites i and j. In terms of the angular variable Op and the Pauli matrices 

o,, Up can be written as 

Up = 1 COS0p + io. 'qpSinOp, (9) 

where "tip is a three-dimensional unit vector specifying the remaining two Euler 
angles. Using this notation, we have 

s w = 4 ( l -  cos0 ), (10) 
g- 

for the Wilson action [14], 

for the Manton action [15], and 

s = 7o (ll) 

s v  = _ ln( F.~-o( l + l )sin 'Opsin[( l + l )Op]exp[- ~l( l + 2)g2 ] ) 
Y',~_ o (l  + l ) 2 e x p [ -  ½1(1 + 2)g 2 ] 

(12) 

for the Villain action [16]. 
A quantity of essential interest for the thermodynamics of Yang-Mills systems is 

the deconfinement temperature T~, above which colour screening deconfines the 
gluonium colour singlets. The thermodynamics of the phase transition at this 
temperature can be studied in two ways. On the one hand, one can evaluate the 
expectation value of a thermal Wilson loop [12, 13], 

< l L i ) = e  r , / r / = 0  T~<T~ (13) 
=*0 T > T~ ' 
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which is related to the free energy Fq of a static quark placed into a gluonic system 
of temperature T. On the other hand, one can calculate the energy density of the 
gluonic system as such [2, 8], and then determine the critical temperature from the 
singularity in the specific heat. On finite lattices, the latter appears to provide a more 
precise determination; it yields [8, 9] for the three forms (10-12), respectively 

'42.8A w 

T¢= 10.5Ar~ . 

27.3A v 

(14) 

From these results and the requirement of a universal T~ one obtains the lattice scale 
ratios shown in table 1. 

At T = 0, analogous results are obtained for the string tension o [3, 4, 5] 

(15) 
(83.3 ± 13.9)A~[3.4]  

¢o= ( 1 6 . 2 + 0 . 5 ) A ~  [5] 

(48.5 + 2.6)A~ [5] 

The corresponding A ratios are also shown in table 1. 

Both the T c and the ~/o ratios are compared in table 1 with the weak coupling limit 
prediction for gZ ~ 0 [7]. In both cases, we have order of magnitude agreement, but 
also clear discrepancies. To see whether these might be due to higher order terms in 

(16) 

(17a) 

(17b) 

(17c) 

eq. (4), we consider the dimensionless ratio 

R-dO~L, 
for the three actions. From eq. (14) and (15) we obtain 

R w = 1.94 + 0.33, 

R M = 1.54 + 0.05, 

R v = 1.78 + 0.10. 

TABLE I 

F rom o From T c From theoD'" From theor?fl 

M w A'I. /A |. 5.14 + 0.87 4.08 3.07 3.33 
A ~ / A  v 2.99 :t- 0.19 2.60 2.45 2.92 

*With g2 = 0. from ref. [7]. 
*With higher order corrections, from ref. 110]. 



228 R.V. Gavai et al. / Finite temperature lattice QCD 

Since these results agree, as also noted in ref. [9], within the quoted errors, we 
conclude that universality in fact holds and that the observed deviations from the 

weak coupling limit are indeed finite-g effects. 
So far, our  test of  universality consisted in the compar ison of  numerical ratios. 

Finite temperature thermodynamics,  as already mentioned, gives us a further and 
much more sensitive test: using different actions, we can compare  corresponding 

physical quantities over an entire range of  temperatures. We have, therefore, studied, 

for each action, both the thermal Wilson loop ( I L l )  and the energy density e of  the 
gluon system, on a 10 3 x 3 lattice for g2 values leading to temperatures around T~. 

In fig. 1, we show <ILl )  for the three actions as a function of  T / T ~ ,  with T c given 
by eq. (14). The data points seem to fall on a universal curve over the whole 
temperature range considered. In some sense this observed act ion-independence of 

<ILl )  is rather astonishing. For, strictly speaking, < IL l )  by itself is not  a physical 
quanti ty although it has been widely used [12, 13] in finite temperature studies as a 

deconfinement  order parameter.  As mentioned in eq. (13), it describes the free 
energy of a static quark and as such still contains the divergent self-energy term 
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Fig. I. Thermal Wilson loop as a function of T / ~ .  calculated on a 3 × 10 3 lattice for Wilson action ( x ), 
Manton action ( * ) and Villain action (O). Here T is the temperature of the SU(2) gluon matter while "1~: 

is the deconfincment temperature. 
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typical of a point charge [17]. In order to extract the true order 'parameter  from it, 
and thus test universality, one has to compute this divergent contribution and 
subtract it from Fq. For our purpose, however, it suffices to argue that the divergent 
contribution is independent of action. Unfortunately, we do not have a rigorous 
argument to show this, but intuitively it is expected to be so. The divergence is 
related to the vanishing size of the point charge, and hence the divergent contribu- 
tion is expected to be independent of temperature. If this be so, one can subtract [18] 
the free energy Fq at a fixed temperature T O from Fq at all T to get rid of the 
self-energy contribution. Thus 

Fq(To) = - T o l n  (ILl>17-o, 

so that 

= r ,  - r , ( r o ) .  

\ To/T 
f i L l ) / ( f i L l )  r - r , , )  = e  -Fgh ' / r ,  

is the true order parameter. Since our f i L l )  data themselves fall on a universal 
curve, it follows that also the order parameter is universal. 

However, in view of the important r61e played by f i L l )  as deconfinement order 
parameter in finite temperature QCD, the subtraction scheme for the self-energy 
term should be studied in more detail; work in this direction is in progress and will 
be reported elsewhere [19]. 

In fig. 2, we show the energy density e of the SU(2) gluon matter as a function of 
T/T~. The data points shown here are obtained by subtracting space-like and 
time-like plaquette averages [2,8,9]; higher order corrections, proportional to the 
derivatives of g 2  are not included, since they have not yet been calculated for 
Manton and Villain actions. Here, too, one sees that the data fall on a universal 
curve for all three actions. 

From the functional universality of ( I L l )  and e we can conclude even more 
strongly that the deviation of lattice parameter ratios from their weak coupling limit 
must be due to higher order corrections of the form (6). 

The influence of the action dependent term/32 has been estimated [10]; for our 
lattice parameter ratios one finds 

M W AL/A  L = 3.07(1 + 0.047g2), ( lSa) 

AM/A v = 2.45(1 + 0.077g2). (18b) 

At g2 = 2, which corresponds both to the temperature and o values in question, this 
leads to the corrected values included in table 1. The corrections are clearly seen to 
reduce the discrepancies, as expected. 
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We conclude:  for Wilson,  M a n t o n  and Villain actions,  universal i ty is well sup- 

por ted  by finite t empera tu re  thermodynamics .  Present lat t ice sizes, which require  g2 

to be in the "cross-over  region" of  T = 0 studies,  lead to small  but  not iceable  effects 

from higher order  terms in the scal ing relat ion (4). 

3. The fundamental adjoint action 

In this section, we want  to cons ider  the act ion ob ta ined  by general iz ing Wi lson ' s  

form to include a term cor respond ing  to the adjoint  representa t ion  of the S U ( N )  

colour  group [ 1 I]. Fo r  SU(2) it is def ined as 

SA = 13 ~ ( i - cos ap) +/3A ~ sin2ap, 
( P ~  ( P ~  

( ]9 )  

where we have used the convent ional  no ta t ion  t ,  flA for the lat t ice couplings;  in the 

con t inuum limit  

- I g 2 = (~13 + _~/3A). (20) 

This act ion has a cons iderab ly  richer phase s tructure [11] than the pure  Wilson  

act ion,  as shown in fig. 3. It is therefore of great  interest  to see if universal i ty  also 

holds in this more  general  case. 
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Fig. 2. The energy density of the SU(2) gluon mailer versus T / T  c, calculated on a 3 × I() 3 lattice for 
Wilson action (×), Manton action (*) and Villain action ((3). T, T c are the same as in fig. 1. The dotted 

lines shows the Stefan-Boltzmann limit for the energy density: r = -~r2T 4. 
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Let us denote the lattice scale parameter  for the action (19) by A~; it has been 
studied at T = 0 by Bhanot and Dashen [6]. In the weak coupling limit, A~ is related 
to the pure Wilson action scale A w by 

W A A , / A  c = exp{15¢r2,SA/[ 22(,8 + 2BA)]}. (21) 

In the scaling region of eq. (19) one can thus obtain a prediction for the scale 

parameter  of the pure Wilson action 

At~A -- A ~ . e x p { 1 5 ~ r 2 / [ 2 2 ( 2  + B/&)]). (22) 

provided the weak coupling form (21) is applicable in the region of couplings 
considered, if this is the case, 

ar,  = - (23) 

should hold as consequence of universality. 
In ref. [6] it is found, however, that 

A/~A= 1.21 = (3.0 + 0.3) X 10 3¢0, (24) 

which is a factor four lower than the value of A w obtained in refs. [3,4] and shown in 

eq. (15). Furthermore,  A o / A t j  ^ was seen to decrease parabolically towards unity as 

& 
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Fig. 3. The phase diagram of the action defined by eq. (19) (from ref. [I I]). The dashed lines are first 
order transition lines. The dotted line shows the region of calculation of ref. [6], while our calculations 

span the region covered by both the solid and dotted lines. 
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fl --, 0. The discrepancy shown by eq. (24) and the functional dependence of A~,, on 
,8 A led Bhanot and Dashen to question the validity of universality in the cross-over 
region of the coupling (g2 around two), where these results were obtained. 

To see if these effects persist at finite temperature, we have calculated the order 
parameter ( I L l )  as function of temperature, choosing flA = 1.21 as in ref. [6], and 
varying fl from 1.45 to 2.45; in ref. [6], 1.52 ~< fl~< 1.6, so that the fl range we 
consider here is quite a bit larger (see fig. 3). The physical temperature in units of 
A/~,,_ 12~ is obtained in terms of fl, flA by use of the renormalization group relation 
(5), eq. (20) and eq. (21). 

Data were obtained for the mixed action (19) and the pure Wilson action (10) on a 
123 × 6 lattice. Each data point is an average over more than 1000 iterations after 
attaining thermal equilibrium. The rather large lattice size was necessary to cover 
near T,, the fl interval of ref. [6] and to reduce finite size effects. In fig. 4a. we 
compare ( I L I ) for the Wilson action with ( I L I) for the mixed action, plotting both 
as a function of T / A  w, where we have used the universality relation (23). Except 
possibly at high T, the two curves disagree both pointwise and in functional 
behaviour. Using the empirical value (24) of ref. [6] rather than the universality limit 
(23) yields fig. 4b. The curves are now closer to each other in the region T / A  w -- 

50-100 (where 13 lies in the range used in ref. [6]), but the functional disagreement 

persists. 
Finite temperature calculations thus confirm the shift of A,~,,= k2~ by a factor ¼ 

with respect to the weak coupling value and in addition show functional differences 
between the two actions. What is the reason for these discrepancies? 

0 5  

< I L l )  

0.25 
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x • 

x • 

x 
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O 0  I 9 I I 
10 10 2 10 3 10 4 
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Fig. 4a. Thermal  Wilson  loop ( I L l )  as a funct ion of T/A  w, calcula ted  on a 6 × 123 lat t ice for Wilson 
act ion I × )  and the mixed fundamenta l -ad jo in t  act ion (-)  at flA = 1.21. For  the latter,  eq. (23) has been 

used to obta in  T in the uni ts  of A w. 
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Fig. 4b. Same as fig. 4a, but using eq. (24) to obtain T in the units of AV~ for the mixed action. 

As in sect. 2, in the compar i son  of lattice scale ratios at finite g2 with their weak 
coupling limits, we have here in eqs. (5 /20)  neglected higher order corrections in g2. 
For  tests of  universality in sect. 2, we could avoid this p rob lem either by compar ing  
T~ and (o directly, or by rescaling the A t values over a restricted region of finite g2 

by a constant  factor, in order  to approx imate  a correction of form (6). In the present  
section, the si tuation is more  complex,  since any corrections can depend on the two 
variables ,8 and ,8 A. The ,8 A dependence  of AI~,, observed in ref. [6] and the functional 
discrepancies for the {]L I) curves at fixed fix, shown in fig. 4, indeed suggest such a 
behaviour.  

We shall here pursue two alternatives: we shall consider  the effect of higher order  
correct ions recently est imated [10] for eq. (21), and we shall s tudy if A o/Al~,, at fixed 
j8 A with decreasing g2 approaches  unity, which it should if deviations are finite g2 
effects. 

In ref. [10], the dominan t  next order  corrections to eq. (21) are est imated to yield 

Ao/A~A= [1 + (0.107r+ 20 .188 r2 )g2 ] ,  

r ~  - - , S A / [ 2 ( f l +  2,8A) ] . (25) 

In ref. [6], the ratio Ao/AI& was calculated at a fixed value of the string tension 
o(fl, ,SA); we have therefore calculated this ratio in the same way, using eq. (25). The 
result is shown in fig. 5, together with the curve for a2o = 0.14 from ref. [6]. We see 
that  the higher order  corrections of  eq. (25) account  for all deviations at fl^ < 0 and 
for 50% or more  of the observed discrepancies at /3 A > 0. 
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We note that the higher order corrections in eq. (25) are quite large, in contrast to 
the small modifications in eqs. (18). The deviations here are thus expected to be 

larger than for the actions considered in sect. 2. 
To test whether the deviations of A o / A  & from unity at finite /3 A are a conse- 

quence of finite coupling, we study the behaviour of this ratio for increasing 
temperature, i.e., for decreasing g2. If our conjecture is right, we expect the ratio to 
approach unity with g2 ~ 0. As our calculations of <ILl > cover an extensive range 
of /3  values, we can carry out such a test: we calculate the ratio Ao/Aa,  r ~2~ for 
which a given value of ( ILl  > using the mixed action coincides with the same value 
using the Wilson action. (For example, the points for < ILl> = 0.25 coincide when 
the ratio Ao/A#,,=~2~ is approximately four, see fig. 4.) The result, plotted as a 
function of 4 /g  2, is shown in fig. 6. Here 4 / g  2 corresponds to the temperature for 
the Wilson action; the conclusions remain unchanged, however, if we use the mixed 
action instead. We thus observe that Wilson and mixed actions at sufficiently large T 

indeed lead to the same physical results. 
These two independent checks lead us to conclude that the discrepancies between 

the results from the mixed and the pure Wilson action are in fact also due to the 
neglect of higher order terms in the scaling relations (5/22) and not to a violation of 

universality. 
In closing this section, we comment briefly on two other alternatives to account 

for the results of ref. [6]. It has been suggested [20], that instead of including higher 
order terms in g 2  one should resum the perturbation series with I / N  as expansion 
parameter. While this does seem to provide the observed decrease of A#,,_ ~.21 in 

Ao /ApA 

-1.0 - 0 . 5  

5 

3 • 

2 

. t . . j  ~ "  

I I n 
0 0.5 1.0 PA 

Fig. 5 . . 1 0 / A &  as a function of ~A. The open circle and the curve show lhe results of ref. [6], while thc 
full points exhibit the predictions of weak coupling expansion (eq. (25)). 
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I • 

7.0 4.0 
I I I 

2.5 3 0  3.5 
41g 2 

Fig. 6. Ao/A#^ L 2~ as a function of 4 / g  2. Thc dashed line is the prediction of the lo~,,est order of the 
weak coupling expansion. 

comparison to A o for fl--- 1.6, it does not yield the difference in the functional 
behaviour of ( IL l ) .  In a second proposal [21], it is suggested that weak coupling 
results of any kind are not applicable near the end point of the transition line in fig. 
3, where the calculations of ref. [6] are carried out. There instead, the Monte Carlo 
data are to be described in terms of a higher order strong coupling expansion. We 
cannot exclude this alternative; note, however, that the pure Wilson action appears 
to be in accord with scaling in the g2 region considered, and the ratio Ao/A#~ as 
seen in fig. 6, seems to approach unity rather smoothly. This does not suggest a 
change of regimes from strong to weak coupling in the g2 range considered by us. 

4. Conclusions 

Comparing the finite temperature thermodynamics obtained with Wilson's, 
Manton's  and Villain's actions for the SU(2) Yang-Mills system, we have found 
universal behaviour, both point-wise, for V~-/T~., and functionally, for ( I L [ )  and e 
in their dependence on T/T~. In the g2 region considered, there are deviations, 
however, to the validity of lowest order perturbative solutions to the renormalization 
group equation. 

A similar situation appears to arise for the mixed fundamental-adjoint action. We 
reproduce at finite temperature the discrepancies with respect to the Wilson action, 
as observed by Bhanot and Dashen [6]; moreover, the two actions are found to yield 
different behaviour as function of temperature. These discrepancies are, however, 
removed to 50% or more already by a partial inclusion of the next order in g2, 
moreover, for decreasing g2 at fixed fl^, they are found to disappear. 
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We thus conclude that it is indeed meaningful to evaluate physical quantities even 
in the cross-over region of the coupling. The neglect of terms beyond g5 in the 
perturbation solution of the renormalization group equation may, however, not be 
generally possible in such regions. 
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