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We present results from a large volume study of the finite temperature deconfinement phase transition. The 
questions of scaling and asymptotic scaling are addressed. We find that an extrapolation of the critical temperature 
and the string tension to the continuum limit is possible when an effective coupling defined in terms of the plaquette 
operator is used. 

1. I N T R O D U C T I O N  

First results for the deconfinement tempera- 
ture [1], all in the region around 200 MeV, were 
promising but very soon it became clear that 
larger lattices are required. Even advanced stud- 
ies of the heavy quark potential on large lattices 
[2-4] showed that asymptotic scaling is not yet re- 
stored at the values of the bare coupling constant 
presently accessible. 

Recent investigations of the finite temperature 
deconfinement transition using finite-size scaling 
techniques showed that finite spatial size correc- 
tions are well under control and that reliable 
methods to determine the critical coupling [5-7] 
are available. We have extended these studies 
to smaller lattice spacings using lattices of size 
N a x N~ with Nr = 8 and 16. This makes it pos- 
sible to study scaling of the dimensionless ratio 
Tc/v~ and the approach to asymptotic scaling in 
different extrapolation schemes. 

2. F I N I T E - S I Z E  S C A L I N G  A N D  T H E  
C O N T I N U U M  L I M I T  

Finite-size scaling techniques can be used to re- 
late the critical behaviour observed on finite lat- 
tices to the corresponding continuum field theory. 

The singular part of the free energy density for 
a continuum field theory with a simple critical 
point in a finite volume can be written in terms of 
lattice variables as the product of a scaling func- 
tion Qjo and a factor y which is the ratio of the 
spatial and temporal lattice size [8]. Q j, depends 

on the reduced temperature t and the external 
magnetic field strength h in form of a thermal 
and a magnetic scaling field g~ and gh. 

f ,(t ,h;N¢;N,)=Y-aQjo (g,Y~,ghY ~ ) (I) 

The Binder cumulant g, is defined through the 
free energy density as 

- 0h' Ih=o/(  0h2 h--o/ g, (2) 

= (L')/(L') 2 -  3 . (3) 

On a finite lattice, g, is measured by the second 
and fourth moment of the Polyakov loop opera- 
tor. The cumulant g, depends only on g~yl/v and 
for small values of the reduced temperature one 
can use a linear expansion. 

g4(gcytlv) = g,,o % g,,ltY 1/~ (4) 

For fixed Nr and varying Nq the critical coupling 
for infinite volume ~c,oo can be determined from 
the fixed point g,(t = 0). For a fixed value of y, 
varying Nr and Nq accordingly, the critical cou- 
pling can be extracted from the shift A~ which is 
necessary to overlay two curves of g4. 

g4(/3 -- A/3; No; N,)  -- g4(/3; 2-N't,; 2N,) (5) 

= + (6) 

The continuum limit can be found by keeping ~/ 
fixed and increasing Nr. The numerical results 
for g4 are shown in Figs. 1 and 2. The continu- 
ous curves were obtained by the density of states 
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Figure 1. The cumulant g4 for N~ = 8. Figure 2. The cumulant g4 for N~ = 16. 

method. Using the fixed point method for Nr = 8 
and the shift for Nr = 16 we obtain the following 
values for the critical couplings 

2.5115(40), N, = 8 
/~c,oo = 2.7395(100), Nr = 16 . (7) 

3. S C A L I N G  AND 
S C A L I N G  

A S Y M P T O T I C  

The scaling behaviour near the continuum limit 
is controlled by the asymptotic freedom property 
of QCD which implies scaling of dimensionless ra- 
tios of physical quantities. 

For SU(N) gauge theories the ratio Vc(R)/V'~ 
scales as a function of Rye" for ~ _> 2.4, 6.0 for 
g - 2, 3 [2, 3]. 

A comparison with string tension data [8] 
shown in Fig. 3 reveals scaling of T c / v ~  in the 
region 4 < Nr _< 16 for SU(2) and in the region 
8 < Nr < 14 for SU(3). By averaging over the 
scaling region we obtain the continuum result 

Tc _ I 0.69 4- 0.02, SU(2) 
-. 0.50 4- 0.03, su(3) (s) 

The fact that we observe scaling but not asymp- 

totic scaling indicates the presence of universal 
scaling violating terms which can be incorporated 
by a redefinition of the bare coupling/~. Follow- 
ing Parisi [9], an effective coupling scheme which 
has been successfully applied [10] can be defined 
in terms of the plaquette operator. 

N 2 - 1 
19E -- 4(1 - (Up)) (9) 

Various other definitions giving similar results are 
possible [11, 12]. In Figs. 4 and 5 we show that 
violations of asymptotic freedom are strongly re- 
duced in the effective coupling scheme. In the 
continuum limit scaling violating terms are ex- 
pected to be O(I/Ina). The data are not (yet) 
sensitive to this logarithmic correction. A linear 
extrapolation to a = 0 yields 

Tc = { 1.23 4- 0.11, SU(2) 
A~--~ _ 1.03±0.19, SU(3) . (10) 

The corresponding extrapolation for the string 
tension, shown in Fig. 5, results in 

v~ [ 1.79-4-0.12, SU(2) 
AIW ~- = ~. 1.75 -+- 0.20, SU(3) (11) 
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Figure 3. The critical temperature in units of the 
square root of the string tension. 

We stress once more that the linear extrapolation 
eventually should turn to a logarithmic one at 
even smaller values of the lattice spacing. 

4. Conclus ion 

The ratio Tc/v~ scales for /~ _> 2.3 over a 
range, where the lattice spacing varies by a factor 
of 4 and the smallest lattice spacing we reached 
was a = 0.09/V~. 

A comparison between the bare and an effective 
coupling scheme shows that violations of asymp- 
totic scaling are strongly reduced in the latter 
case. Converting our continuum result for the 
string tension to a value of the A-parameter and 
comparing with other recent results we see that 
the numbers do not differ significantly. The last 
value in Eq. 12 has been obtained by using the 
perturbative form of the running coupling [13]. 

0.559(37) 
A~I-~S-(2)/v~ - - 0.617(55), Ref.[2] 

0.478, Ref.[12] 
(12) 

0.571(37) 
Asu(s)/.~_ 0 558 +° '° lz  Ref.[3] • -0.00r, (13) 
• -~--~ , v v -  0.581(45), Ref.[14] 

0.532, Ref.[11] 

These results give further confidence that an ex- 
trapolation to the continuum limit a - 0 is within 
reach for the pure gauge theory. For the fu- 
ture systematic errors possibly present in the ap- 
plied methods have to be further reduced• Then 
a remaining challenging task is the extension of 
these methods to full QCD including dynamical 
fermions. 
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Figure 4. Extrapolation of the critical tempera- 
ture in the bare (triangles) and the effective (cir- 
cles) coupling scheme. 

Figure 5. Extrapolation of the string tension in 
the bare (triangles) and the effective (circles) cou- 
pling scheme. 


