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We study the scaling behavior of the pseudocritical couplings for tie chiral phase transition in two-
flavor QCD, We show that all existing results from lattice simulations on lattices with the temporal ex-
tent ¥,=4, 6, and 8 can be mapped onto a universal scaling curve. The relevant combination of critical
exponents, 39, is consistent with the scaling behavior expected for a second-order phase transition with
O(4) exponents. At present, the scaling according to the C(2) symmetry group can, however, not be

ruled out,

PACS number(s): 12.38.Gc, 11.15.Ha

The chiral phase transition in two-flavor QCD has
been studied extensively over the last years on lattices of
varying spatial and temporal extent [1-8]. So far no in-
dications for a possible first-order transition have been
found suggesting that this transition is, in the limit of
vanishing quark masses, a second-order phase transition.
If this transition is already controlled by the restoration
of the continuum SUQ)XSU(2) chiral symmetry, one
would expect that the critical behavior can be described
in terms of uriversal properties in the vicinity of the eriti-
cal point of three-dimensional, O{4) symmetric $pin mod-
els [9-11]. In lattice studies of QCD with staggered fer-
mions the situation gets complicated due to the fact that
the lattice action has only a U(1)X Ul(1) chiral symmetry,
which in the strong coupling limit also leads to a second-
order finite temperature phase tran31t10n with O(2) criti-
cal exponents [9).

The critical exponents for O(2) and O(4) spin modes are
quite similar, It thus will remain dificult for quite some
time to distinguish these symmetry groups in numerical
studies of the chiral phase transition in two-flavor QCD
with quarks of mass m,, only through a determination of
the critical exponents. Additional information can, how-
ever, be obtained by examining in how far physical ob-
servables scale according to the expected continuum ver-
sion of the relevant fields, i.e., reduced temperature ¢ and
external (magnetic) field h:
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This implies’ that the temperature and quark mass
dependence of physncal observables studied in the vicinity
of the critical point (T=T,, m,=0) on lattices with
different values of the cutoff should zllow for a common
description in terms of the above continuum parameters,
We will discuss here to what extent such a scahng
behavior is satisfied by the presently available data. In
particular, we will examine the scaling behavior of the
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pseudocritical couplings, determined from simulations at
nonzero values of the quark masses. We will show that
these pseudocritical couplings scale in terms of the lattice
version of the scaling variables ¢ and h. The combination
of - critical exponents (88), controlling the quark-mass-
dependent shifts of these couplings, is at present con-
sistent with the expected behavior for O{4) symmetry res-
toration as well as with scaling according to O(2) ex-
ponents. We will discuss the calculation of further ob-
servables, which should lead to 2 more accurate location
of the pseudoeritical couplings ad thus a better deter-
mination of critical exponents.

In the case of the temperature driven second-order
phase transition in SU(2} gauge theory, it could be shown
that the critical behavior of the continzum theory can be
deduced from a unified finite-size scaling analysis of
simulations at different values of the lattice cutoff {12].
Such a finite-size scaling analysis cannot directly be taken
over to the case of QCD, where the correlation length at
the critical point is limited due to the explicit symmetry
breaking introduced through the finite quark mass rather
than the finite size of the system [9]. Finite-size effects
are thus suppressed for nonvanishing values of the quark
masses. This opens the possibility to study directly the
influence of the symmetry breaking external fields
without having to worry about strong contammatmns of
the scaling behavior due to finite lattice size effects.’

In the presence of an external symmetry-breaking field
h, the singular part of the free energy has the scaling
property '

Flahy=b" b7 Lb ") (2)

where b is an arbitrary scale factor, y, and y, are the
thermal and magnetic critical exponents. In the case of

YThe lattice-size inciependencc of the pseudoéritical couplings
for the currently used quark masses on lattices with temporal
extend N,=4 has been verified in Ref. [3). For N, =8,
ma =0.0125 the same conclusion can be drawn from the data
published in Refs. [6] and [7].
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an O{4) symmetric theory in three dimensions one has,
for instance, d=p,/(1—y,)=4.82(5) and B=(1—y,}/
y,=0.38(1) [13], while the corresponding exponents for
an Of2) symmetric theory are 6=4.755(6) and
B=0.3510(2). In the case of QCD the reduced tempera-
ture ¢ and the external field A are given in terms of the
gauge coupling g2 and the bare quark mass ma on a lat-
tice of temporal extent N, as

_ 6 6
T2 ’
g:x(0)
£ (3)
h=maN,_ .

Here gX(0) denotes the critical coupling in the limit of
vanishing bare quark mass. For nonvanishing values of
the quark mass of pseudocritical coupling gZ(ma), may,
for instance, be defined as the location of a peak in the
magnetic susceptibility, y=(8*/0h%)f(t,h). From Eq.
(2) one finds, for the location of this peak,

—— L. 4)

The pseudocritical couplings in two-flavor lattice QCD
have so far been studied on lattices of size N, X N3 with
N,=4, 6, and 8, and various values of ma [1-8]. Typi-
cally the spatial size of the lattice has been chosen to be
twice as large as the temporal extent, N, ~2¥ . Studies
of finite-size effects suggest that at least for the purpose of
locating the pseudocritical couplings this seems to be
sufficiently large for the presently used range of quark
masses [3,6,7].

So far the pseudocritical couplings have been extracted
by determining the point of the largest slope of the order
parameter ¥ ) as a function of 6/g2. A direct calcula-
tion of the derivative y=(3/0k){¢y) at nonvanishing
6/g? has not yet been performed, although in the strong
coupling limit (6 /g*=0) this has proven to be very help-
ful in locating the pseudocritical couplings [9].2

In the absence of such calculations, the point of largest
curvature car only be estimated from the slope of (4.
In Fig. l{a) we show the relevant data available for lat-
tices of temporal extent N,=8. Our estimates for the
pseudocritical couplings, together with those published
for N.=4 and 6 [1-8], are given in Table 1. We note
that our estimate for the pseudocritical coupling for
N,=8, ma =0.0123 differs somewhat from the previous-
ly published value [7]. For this value of the quark mass
we show data obtained from calculations on lattices with
spatial extent N,=12 [6] and 16 [7). Note that no
lattice-size dependence is visible in the data, We also
have added a data point at £=5.40 to this curve taken
from a simulation on a §X 12* lattice [5). This seems to
be legitimate for our purpose of determining the largest
slope in (), as a caleulation for N, =38 at this value
could only lead to a slightly larger value. A smooth inter-

The derivative of {{f} has been calculated in the quenched
approximation at nonvanishing values of 6/g2 [14]. There it
has been used to improve the extrapolation of the chiral con-
densate to vanishing quark masses.
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FIG. 1. The chiral-order parameter on lattices with temporal
extent N.=8. Details on the data are given in the text. Solid
lines are drawn to guide the eye. The dashed curve in Fig. 1(b)
is the expected behavior for a magnetic phase transition with
O{4) critical indices, {§P)(6/g20)ma)~ma'/s. A curve with
the O(2) exponents would only differ insignificantly from this,

TABLE 1. Pseudocritical couplings on various size lattices
and for various values of the bare quark mass [1-8]. We note
that the numbets for N, =8 are based on a reevaluation of exist-
ing data for the chiral order parameter {1} as discussed in the
fext.

6/gi(ma,N.)

ma N,=4 =6 N,=8
0.004 5.450(30)
0.00625 5.475(25)
0.01 5.265(5)
0.0125 3.270(2) 5.420(10) 5.490(30)
0.025 5288(2) Ref. [3]  5.445(5)
0.025 5.291(1) Ref. [4]
0.05 5.320(10) 3470040}
0.1 5.375(10) . 5.525(40)
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polation of this combined data sample leads to the esti-
mate for the pseudocritical coupling given in the table.
For ma =0.004 some indications for a two-state signal
had been reported 8], which, however, disappeared in a
large volume (8<32°) snmulatlon at the relevant value of
the gauge coupling; 6/g2=5.48 [15]. This suggests that
fluctuations on the 8 X 16% Iattice are large at this small
value of the quark mass.  In Fig. 1(a) we have used an
average of the data given in Ref, [8] for {{i1}) at B=5.48,
ma=0.004 [5].

If the psendocritical couplings reflect the expected
scaling behavior of continuum QCD, their guark mass
dependence should be described by

6  ___ 6
gma,N;)  g2O,N,)

+c(maN )P, {5)

with a universal constant ¢, which in leading order is in-
dependent of N, ma as well as ¢,

The pseudocritical couplings are shown in Fig. 2 as a

function of # =*maN,=m, /T. The data for N.=4 have
been fitted to the scaling form, Eq. (5}, assuming critical
exponents for a three-dimensional, O(4) symmetric mod-
el, i.e.,, 1/86=0.546,

This two-parameter fit fixes the universal slope param-
eter ¢, which then is used in single-parameter fits to the
N_=6 and 8 data sets.

Thls determines the crltlcal couplings in the ma —0
limit. We find

¢ =0,231(20) | (6)
and

5.225(5), N,=4,
6

== 15.363(4), N,=6, )
&

|5.424(16), N,=8.
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FIG, 2. Pseudocritical couplmgs versus m, /T on lattices of
temporal extent V, =4, 6, and 8. The curves are fits to the data
using Eq. (5) with O(4) critical exponents as explained in the
:ext. Using O(2) exponents would allow for fits of similar quali-
V.
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The fact that all pseudocritical couplings for N_=4, 6,
and 8 can be fitted to the form given by Eq. (5] with a
unique coefficient ¢ implies that they ali follow a single
scaling curve when plotted in terms of the reduced exter-
nal field variables ¢ and 4 defined in Eq. (3). This is
shown in Fig. 3. We stress, however, that this analysis
can, at present, not distinguish the Q(4) exponents from a
possible scaling according to the O(2) symmetric form of
the staggered laitice action. In this case one would have
1/86=0.599, which would allow an equally good fit. We
also have performed fits allowing for the exponent 1/4b
as a free parameter. Such a five-parameter fit to the com-
plete sample of pseudocritical couplings from simulations
for N.=4, 6, and 8 yields 1/86=0.57£0, 16, We note,
however, that scaling of the pseudocritical couplings for
different values of N, according to the scaling fields
defined in Eq. (3) is expected only to hold in a regime of
couplings close to the continuum limit; it certainly does
not hold in the strong coupling limit,

A further check on the consistency of the analysis in
terms of a second-order phase transition comes through
the investigation of the quantity

Al ) =—1X_ ®)

()
It has been pointed out in Ref. [9] that this quantity has
properties very similar to those of order-parameter cumu-
lanis examined usually in finite-size scaling studies of
temperature driven second-order phase transitions. In
particular curves for different, but fixed, values of A all
cross at t =0 in a unique point, A(Q,h)})=1/8. At leastin
principle, this allows a unique determination of the zero-
field critical coupling as welt as the critical exponent 8.
Here we want to show that, given the value of 8, Eq. (7)
yields values for the zero-field critical couplings which
are consistent with our previous analysis. We have calen-
lated some approximants for A, using differences of the
order parameter caleulated at neighboring values of ma
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FIG. 3. Scaling plot of the pseudocritical eouplings. The
solid curve is a fit with the O(4) exponent, 1/88=0.546, while
the dashed curve shows a fit with the O{2) exponent
1/88=0.599.
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to determine the derivative y [Fig. 1(b}]. Using data on
the N, =8 lattices for ma=0.004 and 0.006 25, we find

0.34(8), 6/g2=5.43,
Alt,ma =0.005125)= {0.43(4), 6/g*=5.45, (9
0.67(3), 6/g?=5.48,

Although the errors are, at present, large for this quanti-
ty, a linear fit suggests that A will taken on values close to
0.2 for B=5.42, which is consistent with the result from
our fits given in Eqs. (6) and (7). A direct evaluation of
the derivative ¥ should allow reaching a much higher ac-
curacy.

We have analyzed all existing data on the pseudocriti-
cal couplings for the chiral-phase transition in two-flavor
QCD assuming a second-order phase transition. We have
shown that all data for the psendocritical couplings are
naturally explained by this assumption and show scaling
behavior in terms of the variable h =maN , expected to
hold close to the continuum limit. At present our
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analysis certainly doés not give stringent bounds on the
scaling exponent 1/538. In particular we cannot rule out
scaling according to the O(2) symmetry of the staggered
fermion action. However, we want to stress that the.
present analysis suggests that there is no significant
change in the pseudocritical behavior of two-flavor QCD
when going from lattices with temporal extent N, =4 to
N,=8. More detailed studies on N ~4 lattices along the
ling presented here should allow for a more precise deter-
mination of critical exponents than it was possible here.
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