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We have studied the chiral phase transition in SU(3) lattice gauge theory with f species of staggered
fermions at nonzero chemical potential and temperature. The results at infinite coupling are improved
by adding systematic 1/g* corrections. At zero chemical potential we find a flavor dependence of the
chiral transition which is in qualitative agreement with Monte Carlo data. At zero temperature, howev-
er, the chiral transition turns out to be flavor independent. The thermodynamics of the chiral-symmetric

and broken phases is discussed in detail.

PACS number(s): 12.38.Gc, 05.70.Jk, 11.30.Rd

I. INTRODUCTION

Monte Carlo simulations of strong-coupling QCD
[1-3] have shown that the mean-field analysis of large-d
or large-N approximations of the QCD partition function
[4-6] leads to a rather good quantitative description of
the phase diagram in the finite-temperature and finite-
chemical-potential plane. This includes the order of the
phase transition as well as the location of the critical cou-
plings. It yields a second-order phase transition at finite
temperature (7) and vanishing chemical potential (u) and
predicts a first-order transition for any nonzero value of
1, in agreement with Monte Carlo data. Of course, the
mean-field analysis does not lead to the correct critical
exponents of strong-coupling QCD [7].

A rather striking feature of QCD Monte Carlo simula-
tions is the strong flavor dependence of the order of the
chiral phase transition as well as its temperature depen-
dence [8]. The former seems to follow closely the pattern
expected from the analysis of the phase structure of gen-
eral effective three-dimensional (3-d) chiral Lagrangians
[9], which also has been confirmed in numerical studies of
these effective models {10]. The flavor dependence of the
transition temperature has been studied in the mean-field
approach for the case of U(N) gauge groups for u=0,
B=0 [11]. In,the present paper we will extend this
analysis to the case of SU(3) for =0 as well as >0 and
we will include first order corrections in 1/g2 which pre-
viously have been calculated only for the case of one
species of staggered fermions [6, 12].

The main result of this analysis is a flavor dependence
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of the finite temperature transition temperature at u=0,
which is in qualitative agreement with Monte Carlo data,
and a flavor-independent transition as a function of p at
zero temperature. This led us to reexamine the nature of
the chiral transition at zero temperature, which has been
puzzling for quite some time [2, 4, 13-17]. We conclude
that at zero temperature the chiral transition coincides
with the threshold effect, describing the transition from
the ordinary QCD vacuum without baryons to a state of
extended nuclear matter with finite baryon-number densi-
ty. The critical value of the chemical potential is a direct
measure for the binding energy of nuclear matter.

The paper is organized as follows. In Sec. II we de-
scribe the application of the mean-field method to strong
coupling QCD with f species of staggered fermions
(f=1,2,....) at nonzero p and nonzero T and discuss the
O(1/g% corrections. In Sec. Il we study the flavor
dependence of the critical temperature at x=0. In Sec.
IV we discuss the chiral phase transition at nonzero p
and the thermodynamics of the two phases. Finally, in
Sec. V the concluding remarks are presented. Some fur-
ther technical details concerning the analytic formulas
used in our calculations are given in Appendixes A and
B.

II. EFFECTIVE PARTITION FUNCTION
AND MEAN-FIELD METHOD

Qur starting point is the effective partition function de-
rived at infinite coupling and in the large-d limit {12,
18-20] generalized to an arbitrary number of Kogut-
Susskind flavors f:
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where {x,y ) denotes spatially neighboring sites at equal time. A/(x,y) is a finite-order polynomial in the variables
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Summation over repeating flavor indices a, b, ¢, and d is
understood. The first and the second term in (2.2) are the
leading and the next-to-leading orders in a systematic
large d expansion, respectively. All other terms are suc-
cessively 1/d suppressed {21]. We work on an asym-
metric lattice with N, points in the time direction and N,
points in the d space directions with an anisotropy 7. In
the naive continuum limit ¥ can be interpreted as a ratio
of the space and timelike lattice spacings:

as
y=—. (2.3

a,

The finite-temperature behavior will be studied in the
infinite-volume limit (N, — o0 ) as a function of y and N,.
The parameters a, and b, at each space-time point x are
usually set equal to the constants @ and b related to the

|
2(A+m)l va,1 0
—vb,;1  2(A,+m)1 va,l
D(U)= 0 —yb,1  2(A;+m)l
~vay, U 0 0

Here the x dependence has been omitted and the mean-
field A has been allowed to vary in time points. The in-
tegration over dU is performed by exploiting the ap-
propriate SU(N) group integral. The results for f=1, 2,
and 3 we give in Appendix A. In the final expressions we

put

AM=Ay="-" =ANt=k )
(2.8)
ay=a, - =ay=et, by=by - =by=e".
The mean-field consistency requires
1982, _ 2N, 2.9)

Z, o ' d

']N[Ya(‘x)Xb(X)fb(y)Xa(y)]2+Ya(x)Xb(x)Yb(y)Xc(y)fc(x)Xd(x)Yd(y)Xa(y) +

(2.2)

—
chemical potential. The most convenient prescription is

a=e!, b=e™H. (2.4)

We now apply the mean-field ansatz by replacing each
of the 2d spatial neighbors of the fermionic pair ¥,x, at a
site x by a constant mean field A:

b(y))(a(y)-+ )»5,,‘, . 2.5
Keeping only the first term in Eq. (2.2) the interaction is
then linearized and the integration over ¥,(x) and y,(x)
can be performed. The partition function factorizes into
a product of “one-dimensional” partition functions at
each space point x:

Z;= [dU[detD(U)V g (2.6)
with D (U) being an N,N X N,N matrix:
szv, ut
0
0 . (2.7)
2AAy +m)1
r

Solving Eq. (2.9) is equivalent to minimizing the mean-
field free energy defined as

N.fN
F=—1 AM—InZ, . (2.10)

We improve infinite-coupling calculations by replacing
the mean-field free energy (2.10) by
5
F—F— 3 8F;, (2.11)
i=1

with 8F, being corrections of order 1/g* or 1/d [12].
These corrections are obtained from the cxpansion of the
gauge sector combined with the fermion sector in the full
partition function. For f=1 one can express 8F; in
terms of derivatives of the partition function Z, given in
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(2.6) with respect to a;, b;, and A; [6, 12]. In Appendix B
we show that for arbitrary number of flavors f the same
procedure leads to similar expressions with additional
color- and flavor-dependent factors. From (B16)-(B19)

we have
_2Nd _ |0z, az,
oF, = 7P, —a—a—/ /zf (2.12)
= f3N3 3 /zf : @.13)
_ 4N d(N?-1) 5
PONAN -
1 822f 1 82Zf
2 3a0r /%7 | |2 ban 214
N.d(N—f) 3z 2
SFy=~—t f_11 2’/ , o @19)
AN2f(fN — 4 A
Nd lazanf
SF =—— |= : 2.16
> 8N? |2 aa? 2.16)
with
1 v
55— » B = b (2-17)
g:Ny ~ 7' gN

where g, and g, are the coupling constants associated to
the spacelike and timelike plaquettes in the gauge sector
of the lattice action. 8F, and 8F5 are the corrections of
the same order in 1/d. 8F, is a contribution due to the
next-order term in (2.2) and 8F; is a contribution ob-
tained by integration of quadratic fluctuations around the
mean-field solution [21]. Analytic expressions for the
derivatives of Z, are given in Appendix A.

We note that 8F, and 8F, behave like O(A?) for small
A whereas all other terms are of order A*. Therefore only
6F, and 8F; influence the location of the second-order
phase transition which we discuss in the next section.

IT1. PHASE TRANSITION
AT ZERO CHEMICAL POTENTIAL

In this section we discuss the f dependence of the criti-
cal temperature at the point of second-order phase transi-
tion predicted at strong coupling. At zero temperature,
chiral symmetry is broken for any value of the anisotropy
parameter y. For fixed N, there exists a chiral-
symmetry-restoring phase transition at some value ¥,
with ¥ ,— o if N,— . We thus can vary the tempera-
ture of the system by varying the coupling ¥ on a lattice
with fixed N,. However, unlike the weak-coupling re-
gime, where the anisotropy parameter can directly be re-
lated to the spatial and temporal lattice spacings [22] and
thus allows one to establish a connection between ¥ and
the temperature T=1/N,a,, such a direct relation does
not exist in the strong-coupling limit.

The location of the critical point is determined by the
properties of the mean-field free energy. For u=0 our
mean-field free energy is an even function of A. Even
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after including corrections of order 1/d and 1/g% Eq.
(2.2), the transition stays second order. As ouraction has
a global U{(f)XU(f) chiral symmetry, the general
analysis of [9] would suggest a first-order transition to
occur for f>3. At present we cannot exclude that the
reason for the difference in our findings is an artifact of
the mean-field analysis. However, there is also the possi-
bility that in our case the effective 3-d Lagrangian, which
is expected to control the order of the chiral phase transi-
tion, is not yet of the general form considered in Ref. [9].
It may be restricted to an O(2f)-invariant subspace,
which can give rise to second-order phase transitions. A
detailed analysis of critical exponents, which is beyond
the scope of our present mean-field analysis, would thus
be interesting in order to clarify this point.
The chiral symmetry is restored if

&F
oA?
since in this case A=0 is a true minimum. The second
order phase transition takes place at the point when (3.1)
becomes an equality. From Eq. (2.10) together with

(2.11)-(2.16) and using Egs. (A8)-(A13) we find the fol-
lowing expression for F in the neighborhood of A=0:

20,
A=0

(3.1)

N 2
F= NN 1—ﬁ+3, 2d— f——ll‘z’ y—f A2
d 2 Yy
0\, 3.2)
with
7,(2)=_]_V_'_1__£ (3.3)
f Zf dh A=0

being the critical anisotropy at infinite coupling. The
derivative in (3.3) is taken with respect to the parameter
defined in Appendix A. At the transition point the ex-
pression in square brackets in Eq. (3.2) should vanish,
yielding the critical anisotropy as a function of A,

1

2
=y3—B, |2d —fNT (3.4)

We note that the correction to the critical anisotropy
does not depend on N, although y3 itself is proportional
to N;. For f=1 the critical anisotropy at infinite cou-
pling y, takes on the values

y3=——d(N6+2> N, (3.5
for U(N) [11], and

2 d(N+ (N +2)
Yo 6(N +3)

for SU(N) [12] gauge groups. We show 73 as a function
of f for both U(3) and SU(3) in Fig. 1. For noninteger
values of f we have used a numerical integration of the
group integral (2.6). The decrease of the critical lattice
anisotropy v, with f roughly fits £ ~'/2 for f <2, as sug-
gested by the chiral-Lagrangian models [23, 24]. For a

N, (3.6)
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FIG. 1. Critical lattice anisotropy as a function of flavor
number f.

large number of flavors the decrease is, however, much
weaker. We note that the finite 1/g2 correction in (3.4)
has an opposite trend; i.e., the correction term decreases
with f and becomes even negative for f>2, which in
turn produces an increase of y,. This may indicate a
poor convergence of the 1/g* expansion for large f,
which could be a first hint for the appearance of a first-
order transition for f=3 [9] or even indicate the ex-
istence of a bulk transition in QCD with a large number
of flavors, which could occur before the chiral transition
takes place [25]. In total, however, we find that the
correction is small and only slightly modifies the leading
term.

Another effect of the strong coupling corrections is
that for f =1 and 2 the “critical temperature” decreases
with increasing 1/g% This decrease, however, is not
sufficient to fit the Monte Carlo (intermediate coupling)
data for N, =4.

IV. PHASE STRUCTURE
OF THE CHIRAL TRANSITION

In this section we find a numerical solution to the
mean-field equation
oF
—=0, (4.1)
oA
with F defined in Egs. (2.10) and (2.11) in the chiral limit
(m —0) for arbitrary values of p. The solution gives the
value of the mean field A which is related to the chiral
condensate through Eq. (2.5):

)= %&x , 42)

(XaXa
In Fig. 2 we plot our solution for =0 and N, =4. The
chiral condensate as a function of ¥ shows a second-order

phase transition. The transition stays second order even
when 1/g? corrections are included. For N, < a
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FIG. 2. Chiral condensate as a function of lattice anisotropy
parameter for various flavor numbers f.

chiral-symmetry-restoring transition takes place at the
value of y given by Eq. (3.4).

We next consider nonzero chemical potential. In this
case the chiral phase transition, predicted by the mean-
field method, becomes first order [6]. The critical value
of the chemical potential as a function of ¥ we find by
solving Eq. (4.1) numerically, with F given by (2.10). The
phase diagrams for three values of f are shown in Fig. 3.
We observe a stronger f dependence when the transition
point approaches the critical point at u=0. The 1/g*
corrections do not change the qualitative structure of the
phase diagrams.

Let us now discuss the limit N,— o corresponding to
the zero-temperature limit. Using (A15)-(A25), we find a
nontrivial solution to the mean-field equation (4.1) which

o 1 A, e
0.0 0.2 0.4 gy 0.6

FIG. 3. Phase diagram of the chiral transition for various
flavor numbers f.
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in the strong-coupling and large-d limit can be approxi-
mated by

- B, 1 B B 3f N*—1
=k |1 =+ e —— |1+ =L 43
Mol T T 2d N 4.3
for all u <arcsinh(A/y ), with

1 AT in

= (VY rdi— 44

being the solution at infinite coupling [S]. As soon as u
becomes greater than arcsinh (A /y) only the trivial solu-

tion, A=0, survives.
The chiral transition takes place at the chemical poten-

tial  obtained from the requirement

F(0)=F(}), 4.5)
which yields
o 2, B, 1 B
p=arcsinh(A/y) 7 + 2 + sd  4d
B, f N1
+ d 1+ i N . (4.6)

In Egs. (4.3) and (4.6) we keep the dominant 1/d and 1/g?
corrections only, and the lowest order f-dependent term
which is 1/d suppressed but color enhanced. We note
that for y =1 the systematic 1/d and 1/g? expansion for
the critical chemical potential gives

ﬁly=1=——;rmN—A, 4.7)
with
N 1
= 2 Ns2__ Y , .
my=In(2d) ER (4.8)

being the strong-coupling nucleon mass calculated to the
same order in 1/d and 1/g* [21, 26], and

(4.9)

The reason for writing @ in this way will become obvious
from a consideration of the thermodynamics.

In order to understand better the thermodynamics of
our model let us now discuss the pressure and the energy
density. The pressure is defined as

F
p=—-20_p ., (4.10)

Nt
with F_; being the minimum of the single-site mean-field
free energy (2.10) for given y and u. The subtracted vac-
uum pressure is calculated at 7=y =0 using the N,— o
limit of Z, derived in Appendix A:

Pvac =f N['_l’ ’
with I being the transition chemical potential at zero

temperature (4.6).
We plot the pressure as a function of u for £ =1 in Fig.

4and for f=1, 2, and 3 in Fig. 5. In Fig. 4 we give the

4.11)
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FIG. 4. Pressure as a function of chemical potential for fixed
v =2 and for various temporal sizes of the lattice.

N, — o result corresponding to the zero temperature and
the N,=4 and 6 results at finite temperature for y =2.
The behavior of the pressure is typical for the first-order
phase transition. Figure 5 shows that the phase transi-
tion at finite u becomes weaker first order with increasing
f. This can easily be understood from the phase diagram
shown in Fig. 3. By increasing f at fixed y we come
closer to the second-order phase transition at y, =0.

Next we consider the energy per baryon in the zero-
temperature limit near the transition point [ given by Eq.
(4.6). The baryon-number density we define as

= 1 aFmin
NN @.12)
0.4
p.—PVBC
I
]
/
/
0.2} /
F=3 . J
b | J
f=2/// I//
L..____,...-/// //
. f=4 - y
0.0bzzzzz=mmmromet .
o 0.3 0.5
MY

FIG. 5. Pressure as a function of chemical potential for fixed
¥ =1.5 and for various flavor numbers.
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and the energy density as

_OF

min

aN, let '

é

(4.13)

The energy density is usually defined as a derivative of
the free energy with respect to ¥ which in the weak cou-
pling regime is related to the temperature. However, as
we have already mentioned, such a direct relation does
not exist in the strong-coupling limit. In fact, the rela-
tions (3.5, 3.6) suggest that in the strong coupling limit
y*~T is a more natural relation. We therefore use the
definition (4.13) which is independent of the interpreta-
tion of y. In the definitions (4.12, 4.13) we have omitted
inessential dimensional factors. In the limit N, — o the

J
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energy per baryon near the threshold f is then given by

6—6,,c _ |Narcsinh ifu<p,

g
Ni ifp>i. 4.14)
Thus, in the chiral-symmetry-broken phase the energy
per baryon near the threshold equals the value of the
lightest baryon mass in the large-d limit [21, 26]. On the
other hand, in the symmetric phase it approaches the
transition value of the chemical potential multiplied by
N.
Let us compare our results with an ideal gas of massive
baryons. The energy per baryon of such a system is given
by [27]

-1
_— 2 2
66, fo dpp°Vp“+m~* |exp T +1
. = = - -3 , (4.15)
B © +mi—
d 2 p 4
fo Ip p*© |exp T +1

which in the limit T— 0 near the threshold m yields

m if u<m
6~ 6 ac _ K (4.16)

ng - ,u—%(,u—m)-f—O((‘u-—m)"') ifu>m .

This result obviously reflects the fact that the threshold
value of the chemical potential of an ideal gas of massive
baryons at zero temperature equals the baryon mass. In
strong-coupling QCD, however, there is a difference be-
tween two limiting values of the energy per baryon due to
interaction. This difference, which in the large-d limit
precisely equals the difference between the strong-
coupling nucleon mass and the chemical-potential thresh-
old, may be interpreted as a binding energy of nuclear
matter. It should, however, be noted that at u=f the
number density jumps directly from zero to the maximal
value ng =1 corresponding to three quarks per site on the
lattice. Since baryons are also localized to single sites in
the strong-coupling limit we cannot distinguish a high-
density nuclear matter phase from a quark-gluon-plasma
phase. One eventually expects that in the continuum lim-
it two “transitions” show up as a function of u at T=0.
The first one is a threshold effect corresponding to the
transition from the QCD vacuum to a state of extended
nuclear matter and should be first order. The second one,
occurring at a larger value of u, corresponds to the
chiral-phase transition from hadronic matter to a quark-
gluon plasma.

V. CONCLUSIONS

In our analysis we have found that the structure of
finite 4 and finite T chiral transition at strong coupling

[

may quantitatively and qualitatively change when the
number of flavors change. At infinite coupling the effect
is more pronounced for small number of flavors (Fig. 1).
We find a flavor dependence of the finite-temperature
transition at =0, which is in qualitative agreement with
Monte Carlo data, and a flavor-independent transition as
a function of p at zero temperature. As is clearly seen
from Figs. 2 and 3, the flavor effects on the chiral conden-
sate are more pronounced at temperatures and chemical
potentials closer to the critical point.

By analyzing the thermodynamical quantities such as
pressure and energy density we conclude that at zero
temperature the chiral transition is a threshold effect,
describing the transition from the ordinary QCD vacuum
without baryons to a state of extended nuclear matter
with finite baryon number density. At least in strong-
coupling QCD there is no low-density, chiral-symmetry-
broken gas phase of nucleons. The threshold value of the
chemical potential is a direct measure for the binding en-
ergy of nuclear matter, which is large in the strong-
coupling limit.

We have also found that the 1/d dominant part of the
1/g? corrections to the critical temperature does not de-
pend on f. The effect of this term is to lower the critical
temperature approaching thus correctly the weak-
coupling regime. However, the part of the corrections
which is subdominant in 1/d and has the sign opposite to
the dominant term, is proportional to f. The overall
effect is that for f between two and three the corrections
change sign suggesting more complicated structure of the
chiral transition for systems with large number of flavors.
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APPENDIX A: PARTITION FUNCTION
AND ITS DERIVATIVES

In this section we calculate the partition function and
its derivatives for f=1, 2, and 3 for the SU(3) group and
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a=le b=TIb:
i=1
(A1)
a;=a;b;, I;=2A+m)/y .

Evaluation of the group integral (2.6) yields in general

arbitrary n=N, and for the SU(N) group in the limit zZ,= Y Cyabnt (A2)
n— oo using general formulas derived in Ref. [12]. We i+j+k=fN
use the notation and, in particular for N=3 and f=1, 2, and 3,
Z,=h3-20bh +2°+5°, (A3)
Z,=h%—20bh*+ 42> +5°)h3 + 325 —6(@> +5°)abh +at+ 5%+ 62757 (A4)
Z,=h°+10b°h%+102°h5+92%b*h5— 1586*h *— 15a°bh*
+106%03+362°6°h>+102°h3+182%5°h 2+ 188°H%h2
—12ab"h —548°b*h — 1287bh + b°+ 182°6 ¢+ 182%%°+a° , (AS)
where h as a functionof I',...,I, and a;, . . ., @, is defined by
h=B,I,,...,.I; o ...,¢,_)ta,B, I ....0J,_y ay...,a,_,), (A6)
with B, being the n Xn determinant:
1, a; O
—b, I, a,
0 —b, I
B,(I;,....I;a,...,0,_)=1 . (A7)
I,y a,
0 0 0 ~b,_, I,

The derivatives of Z; can be easily calculated using
(A3)-(A5) with (A6) and (A7). In the final expressions
the parameters a;, b;, and A; are set equal to the values
given in Eq. (2.8). In this case we have

h=2 cosh(nd’), (A8)

Oh _ cosh[(n —1)A']

da; coshA’ ’ (A9

Oh __ 2 sinh(nA’)

oA, v cosh) (A10)
with

A'=qarcsinh[(A+m)/y] . (A11)

In the special case when £ =0 and A=0 from Eq. (A2) we
find the useful relations

82, 82, ,%%; _ fNZ (A12)
oa  ab oh ro
¥z, ¥z ?Z 3Z
J s f_ f
42 =(fN—1)—~ . A
3adh  dboh Bh? S ) oh (A13)

The n— oo limit of Z ¢ and its derivatives can be de-
rived for arbitrary N and f using the asymptotic form

Z, =@+ +hM) [ 1+en)], (A14)

where e(n) denotes the terms vanishing exponentially
with n. Applying the n — oo limit to Eqs. (A8)-(A11) we
find the limiting values of In Z and its derivatives in the
two regimes depending on the magnitude of A' with
respect to u.

(D A"> p:
%lnzf nw=ﬂvx', (A15)
_217% Hw:sz_c%e—# (A16)
%f% ,,.,;szzo—s};x ¢ A
ZLI%Z){_ JMw=ﬂ\r—y——c—(—:sh—k7 , (A18)
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9’z - oz 2
1 %45 =fN(fN—1)—e-————2e_“, _1 %y L_a Z
Zs 0adl |,_ . 2y(coshl’) Zs b |, (Z; dad)
1 98z, ] R =1Z 3mn =0. (A24)
=fN(fN—1)-—————ek, ! ”
Z, abdn |, 2y(coshA’)?
(A20 1%, L2, =0
) Z;n |, |z e |, A
L8 v — ! (Aa21)
Z, 3\ |, L. (y coshA’)? ’
() A <p:
APPENDIX B: FLAVOR STRUCTURE
2
%lnzf =fNur , (A22) OF THE 1/g* AND 1/d CORRECTIONS
n— w0
| 3Z; ~ In this section we calculate the flavor tensor structure
7 30 =fNe™#, (A23)  of the averages over two and four fermionic fields with
f n— o respect to the generating functional:

a U_ 5 —Jib Uls Xa(y)

xy9x,y— xy Y%y +2

Rp(Aya,b)=[ TI [dU] H[dxa(x)d)(a x))exp

¢t links

~ 3 Falx)
X,y

(B1)

= > A X (X)), (x)
X

obtained from Z . after the replacement (2.5). Integration over ¥,(x) and y,(x) in (B1) yields our partition function
(2.6). 1/g? corrections are proportional to the averages appearing in the expansion of the gauge sector combined with

the fermion sector:

8F,=C; I (T (U, (x)x,(x +D)) Xy +DU 01, (»)) (B2)
(x,y)

8F,=C, 3 3 (X (x)xs )X WX 0T + -y, 0+ Talx + By, (x +£)) (B3)
(xy) &

8F;=C; 3 (T, 0 (0)%. (x)U, (g (x +D) T 0 0T (v +DUT)x . (0) (B4)
(x,y)

In addition we have the 1/d correction due to the second term in Eq. (2.2):

Fy=Cy 3 N-H IRy At ALY AENFEIN —<x,, Wa WX s+ WINPT WX 3)) | - (BS)
{x,y)
(x,y) denotes spatially neighboring sites at equal time 1 azRf N
and 7 and X are the unit vectors in temporal and spatial R, 3200 = (X, (X)X, (X)X (XU, (»)x, (x +1)) ,
directions respectively. C; are flavor-independent con- i
stants which can be found in Refs. [6,12]. Repeating (B9)
flavor indices run from 1 to f. We need to relate the -
averages in (B2)-(B5) to the derivatives of R, given by _k_l_ a?, . ;f\ =TTy + DI, f(y) L)),
1 OR _ . . S 9%
x 2oL =X U +1) (B6) (B10)
X
— L= U, »), (B7) L = (3, 00K, ()T, (XK (%) . (B11)
Rf ab (Xa(y_’— ) I(y)xa y Rf a)\‘z Xa X b b
1 - x)), (B8) It is easy to verify the following flavor tensor structure of
our forms:

R, ax
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(XX (X)) =881 (B12)
(Ya(x)Xb(x)yc(X)Xd(x)>: lSabﬁcd——leaadﬁbc 87>
(B13)
(¥, ()U,(x)y,(x +%))=8,,8; » (B14)
(Xo (X)X (X)X, (XU, (p)xa(x +7))
1
= Sabacd_waadabc gs, (B15)

and similar expressions for the averages containing U,Jr .
The functions g; are flavor scalars. Combining now Egs.
(B2)~(B11) with Eqs. (B12)-(B15) we find

1 R, 1 OR
T N o

(B16)
f (x,y) Rf aax Rf aby

b
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1 1 aRf 1 aRf
SF,=—C >t
2op 2%) “ R, oA, R, 34,
3R R
L r 1 % gy
Rf akx-?—ﬁ Rf a}\y-}-ﬁ
2 2 2
_ 3’R 3R
sF,= | X—Llc, s L i_l_a L,
fN‘_l <x,y) Rf 3axa x Rf b},a y
(B18)
P WN=NIN-1) o 1 ¥R, 1 ¥Ry
YOrUN-r TSy Ry A2 Ry
(B19)

From these expressions we derive Egs. (2.12)-(2.15).
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