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Thermal Green’s functions and transport coefficients on the lattice

F. Karsch
CERN, Theory Division, 1211 Geneva 23, Switzerland

H. W. Wyld
University of Illinois at Urbana—Champaign, Department of Physics, Loomis Laboratory,
1110 West Green Street, Urbana, Illinois 61801
(Received 14 October 1986)

We discuss the formalism needed to extract transport coefficients from SU(3) gluon thermo-
dynamics on Euclidean lattices. These can be obtained from analytic continuations of thermal
correlation functions of the energy-momentum tensor. The feasibility of such a procedure is
analyzed. A Monte Carlo simulation on an 8%X4 lattice has been performed as a first attempt to
study the behavior of thermal correlation functions of the energy-momentum tensor. The results are
compared with analytic calculations of transport coefficients in the collision-time approximation.

1. INTRODUCTION

The analysis of QCD thermodynamics using nonpertur-
bative lattice techniques up to now has mainly concentrat-
ed on equilibrium properties of the theory."? This has
given important information about the existence of a
phase transition to a quark-gluon plasma, the critical pa-
rameters of the transition as well as the equation of state.
These properties will be studied in forthcoming heavy-ion
experiments whose first generation has started at CERN.?
In these experiments, however, hot QCD matter will not
be produced in equilibrium; nonequilibrium effects will be
significant.

Transport coefficients are important ingredients in the
description of disspative effects in an expanding quark-
gluon Aplasma using hydrodynamical equations of
motion.*® It has been suggested that within the linear-
response approach transport coefficients could be calcu-
lated in the framework of lattice Monte Carlo (MC) simu-
lations.>” 1In general this will require the calculation of
thermal correlation functions of the energy-momentum
tensor, which then have to be analytically continued to
real time. Besides the problem of analytic continuation,
this procedure clearly is difficult due to the fact that the
analytic structure of the thermal correlation functions has
to be extracted from their long-distance behavior. Thus
rather large lattices in temporal (imaginary time) direction
will be necessary to obtain reliable results.

A less ambitious approach is to use the information ob-
tained from Monte Carlo simulations at finite tempera-
ture to check the validity of approximate analytic calcula-
tions,>® which have been performed in the collision-time
approximation. Here data from lattices of moderate size
may be meaningful and the data may be used as input for

the analytic calculations. _
~ The purpose of this paper is to study thermal correla-
< tion functions of the energy-momentum tensor at finite

temperature. To this end we have performed a Monte
Carlo simulation on a rather small 8°X4 lattice for the
SU(3) Yang-Mills systems. This will give first indications
on the analytic structure of the thermal correlation func-
tions and the validity of the collision-time approximation
for temperatures close to the deconfinement transition
temperature. The paper is organized as follows. In Sec.
1T we will discuss the method to calculate transport coeffi-
cients once the analytic structure of thermal Green’s func-
tions is known.”® Section III is devoted to a discussion of
the lattice version of the energy-momentum tensor and
correlation functions suitable for the calculation of trans-
port coefficients. In Sec. IV we discuss our MC results
and their implications for transport coefficients. Finally
in Sec. V we give our conclusions and discuss the prospect
of performing these calculations on larger lattices.

II. KUBO FORMULAS
FOR TRANSPORT COEFFICIENTS
AND ANALYTIC CONTINUATION

The calculation of transport coefficients for the quark-
gluon plasma has recently attracted much attention*—$
since dissipative effects are expected to play an important
role during the expansion of the plasma. In particular the
rate of entropy production is directly related to shear
viscosity 7, bulk viscosity &, and thermal conductivity X
(Ref. 5). Analytic calculations have been performed to es-
timate these coefficients in the collision time approxima-
tion.> In general transport coefficients can be calculated,
within the linear-response approach, from Kube-type for-

mulas as integrals over retarded Green’s functions for the

energy-momentum tensor.”® Following the derivation of
Zubarev® one obtains for shear viscosity 7, bulk viscosity
&, and heat conductivity X,
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Herc the limit €é— +0 has to be taken, and T,, denotes
the energy-momentum tensor, which in terms of the field

strength tensor F,, is given by
Ty =2Tr(FysF g — 58, FpeFpq) .

The retarded Green’s function {A(x,)B(x’,t'}) . is de-
fined as

(AQe,OB(xX" 1) ) o= —i6(t' —t){[A(x,t),B(x",t')])o
2.3)

(2.2)

with {...), denoting the usual thermal expectation value
of the correlation function with respect to the thermal-
equilibrium distribution. The correlation functions ap-
pearing in Eq. (2.1) represent correlations in real time. In
a nonperturbative lattice calculation on a Euclidean lattice
we obtain instead thermal Green’s functions. The deter-
mination of the retarded Green’s functions in Eq. (2.1)
thus requires an analytic continuation of the thermal
Green’s functions:

Gglx,t)=—i(A(x,7)B(0,0))9, O<T<B=1/T.

The formalism to do this has recently been discussed by
Hosoya et al.? (see also Ref. 10).

Knowing the thermal Green’s function Gg(x,7), we can
determine the Fourier transform GZ(p,w,) at the discrete
set of frequencies w,=2mn/B with n 0,+1,.... In
terms of the spectral function p(p,w), G# is given as

G"(p,w)=fdwl.’—(&@— .

iw,—o

(2.4)

2.5

Once the spectral function p is known, the analytic con-
tinuation is immediate as the retarded Green’s function
has the same spectral representation as G® with iw, re-
placed by p, +ie.

Thus the aim of a nonperturbative MC calculation of
transport coefficients should be to extract from thermal
correlation functions of suitable components of the
energy-momentum tensor the spectral function p(p,w) and
use it as the input for an analytic continuation. In prac-
tice, however, we are far from this ideal possibility. On
lattices with a finite number of sites in the temporal direc-
tion the thermal correlation functions can only be deter-
mined for a finite number of points, so that even with pre-
cise data the analytic continuation is in principle impossi-
ble. The best we can do is make a reasonable ansatz for
the spectral density which contains a few parameters. Us-
ing the Fourier transform of Eq. (2.5) gives then an ansatz
for the thermal correlation function Gg(x,7) which can
be used to fit the Monte Carlo data.

It is expected and supported by existing MC data"? that
the SU(3) Yang-Mills system in the limit of low (high)
‘temperatures is well approximated by an ideal glueball

plo)=

2519

2.1a)

2.1p)

2.1c)

M

(gluon) gas. Thus it is presumably a good starting point
to use the spectral function of a free theory and modify
this to take into account the influence of weak interac-
tions.” Of course, a more refined ansatz will be necessary
in the transition region. The zero-momentum spectral
density function for a free theory is given by

plo)y=A4(1—e~P™)[8(m —0)—8(m +w)] . (2.6)

Here the coefficients A,m determine the amplitude and
exponential decay of the thermal Green’s function. Using
Eq. (2.5) and performing the Fourier transform one finds,

for Gglr),
Gylr)=—idle ™ +e~™B-7) 0<r<B. (2.7)

An obvious way to introduce the effect of interactions in
the system is to replace the § functions in Eq. (2.6) by
smeared & functions:
A(1—e—Pm) 7. _ Y
m (m—-wP+y? (m+oP+y?
(2.8)

This introduces a third parameter y, which has to be
determined from fits of the thermal correlation functions.
Using Eq. (2.8) we find

Gri(t)=—24(1—¢

~Pm)g(¢)e ~V'sin(mt) 2.9)

but obtain Gg(r) only in terms of an integral over the
spectral density

Gary=—i [ d e (@) 2.10)
T)=—1 (] e @) . .

8 oo 1 p

To show the influence of the interaction parameter ¥ on
the thermal correlation functions we give in Fig. 1 an ex-
ample of the behavior of Gg(r) for mB=12.0 and
v/m=0, 0.05, 0.1. These parameters reflect typical

values used in fits of the MC data we will discuss in Sec.

IV. As can be seen, a nonvanishing value of ¥ results in a
flattening of the correlation functions in the central re-
gion. Using this ansatz for the analytic structure of the
thermal Green’s functions the transport coefficients can
be calculated. From Egq. (2.1) we find

a=24(1—¢~bm) 2
(r’+m??

with a=7, $9+&, or XT.

This simple ansatz already involves three parameters
which have to be determined from the Monte Carlo data.
This is the maximum number of parameters one can pos-
sibly determine from the MC simulation on an 8X 4 lat-
tice which we are going to discuss in Sec. IV. However, it
should be emphasized that our ansatz, Eq. (2. 8) may,
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FIG. 1. Thermal Green’s function Gg(7) vs 7 for fixed

mpB=12.0 and various values of the interaction parameter
v /m=0.0, 0.05, and 0.10.

neglect important features of the spectral density function
which should become visible if more parameters could be
determined. Thus, as discussed, for example, in Sec. III
of Ref. 4, the hydrodynamical equations predict the ex-
istence of poles in the Green’s function at w= —ik?Dy
and w=c, k —ik’T", where Dy is the thermal diffusivity,
¢, is the sound speed, and T is the sound wave damping
constant. Furthermore, the residues of these poles are
constrained by analyticity requirements and the f sum
rule. It is clear that our present data is inadequate to
determine the parameters necessary to describe these
modes, so we shall do the best we can with the simple an-
satz (2.8).

I1I. THE ENERGY-MOMENTUM TENSOR
ON THE LATTICE

In Wilson’s lattice approach!! to continuum QCD com-
ponents of the field strength tensor F,, are expressed in
terms of plaquette van'ables Us uv

Us,uv=Us,uUs +pv Ux+n+qu;v 3.1)

with Uy , an element of SU(3) defined on links (x,x +u)
of a four-dlmensmnal hypercubic lattice. In the naive
continuum limit we find

Uy yw=1+ia gF" Tb— —a‘ngﬁvF‘vT"T‘ (3.2)
with a denoting the lattice spacing and g being the bare
coupling constant. The generators T°b=12,...,8 of
the SU(3) group are traceless and satlsfy TrT "T‘——S,,,,

Thus we see that diagonal components of the energy-
momentum tensor can be expressed in terms of plaquette
variables -

T, (x)--g-—[ zTar,,,+ S TrUmv] (3.3)

O, V5,0 >V

In the definition of diagonal components of T,, we have |

. ignored O(g?) terms which appear in the definition of en-

o) and pressure: (T,‘) as denvatwes of the parti-
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in calculations of Ty we expect the influence of the
neglected terms to be small in correlation functions.

For the off-diagonal components it is necessary to com-
bine two plaquettes in different hyperplanes

2
Tr Ux,;w Ux vo s

g’

where we have defined the traceless antisymmetrized pla;
quette variable U, ,, as

T,(x)= (3.4)

(3.5)

Ux,pv:.' - '2_( Ux,p.v_ Ux,vp)traceless part
Using these definitions for the energy-momentum tensor
we can calculate thermal correlation functions of its com-
ponents. In the evaluation of those correlation functions
relevant for the calculation of transport coefficients we
will take advantage of the cubic symmetry of the space
components of T, which implies that the general tensor
structure of spacelike correlation functions is given by

(T,'j(x)Tkl(y»=A( (5 61+5,15k)+B( ,y)6,,6k1 ,
) I,j,k1=123. (3.6)

Equation (3.6) implies that correlations of off-diagonal
space-space components of T, can be expressed in terms
of diagonal elements. In particular, we have

(Ty0)T () =5[{Tyx) Ty () = {T(x)Ty()] .

3.7

This allows us to express the shear viscosity 7 in terms of
diagonal elements of T,,, which will be an advantage in
practical Monte Carlo simulations. Moreover this repre-
sentation makes manifest that expectation values of off-
diagonal components of Tj; vanish in thermodynamic
equilibrium. Using Eq. (3.7) and summing over all possi-
ble space directions makes this statement true on each in-
dividual gauge configuration. This reduces the statistical
error and makes 77 the most accessible coefficient in MC
simulations.

Before discussing the MC data let us give the analogue
of Eq. (2.11) in terms of the corresponding lattice parame-
ters. On the lattice the zero-momentum thermal correla-
tion functions of T,, have dimension a~>. A fit thus
gives us transport coefficients in terms of the dimension-
less parameters 4;=Aa’, m;=ma, and y/m. With the
temperature given by N,a =1/T, Eq. (2.11) becomes

24, 2y/m

___N 3 .
—e™N ™) [+t /m )P

T3 m,z( 1

(3.8)

IV. MONTE CARLO RESULTS

We have performed a Monte Carlo simulation for the
SU(3) Yang-Mills system on an 8°X4 lattice to measure
various thermal correlation functions of the energy-
momentum tensor which are relevant for the calculation
of transport coefﬁcients In pamcular we have maasured
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TABLE 1. Thermal Green’s function C,(r) for r=0,1,2 at 6/g*=4.8, 5.2, 5.6, and 5.8 based on
12000, 28 000, 36000, and 36 000 measurements, respectively.

6/g° T Cy Cx Canrzse

0 6.543+0.030 1.93710.024 9.987+0.041

4.8 1 0.2321+0.022 —0.001+0.024 0.258+0.030

2 0.04410.031 0.008+0.024 0.048+0.042

0 6.878+0.021 2.364+0.037 10.614+0.028

5.2 1 0.277+0.014 0.015+0.037 0.288+0.020

2 —0.009+0.020 0.001+0.037 —0.029+0.028

0 6.0051+0.016 2.768+0.160 9.36210.022

5.6 1 0.347+0.011 0.090+0.160 0.360+0.016

2 0.050+0.016 0.064+0.160 0.023+0.022

0 5.325+0.014 2.691+£0.091 8.292+0.019

5.8 1 ' 0.334+0.010 0.001+£0.091 0.368+0.014

2 0.0451+0.014 0.0141+0.091 0.046+0.019
Cy= (Tp1(0,0)Tg(x,7)) , (4.1a)  tance 2 quite difficult. We will thus first restrict our-
x selves to extracting information about the mass parameter
C, = (T,(0,0)T1(x,7)) , (4.1b) m controlling the exponential de;ay of the correlation
K § 12 12 functions. In Table I we summarize our results obtained
410 at 6/g*=4.8, 5.2, 5.6, and 5.8. The data are based on

C41,/3+;=2 <T11(0,0)T1;(X,’T)> ’

with 7=0,1,2. In the actual calculation we averaged over
all equivalent space directions and used Eq. (3.7) to evalu-
ate C,).

At best we can only measure correlations up to distance
2 on a lattice with only four sites in the temporal direc-
tion. Thus we clearly cannot get much information about
the analytic structure of these correlation functions on lat-
tices of sizes 83X 4. Already the simple ansatz discussed
in Sec. II requires the determination of three parameters,
which, moreover, should be extracted from the long-
distance part of the correlation functions. Actually it
turned out that the correlation functions drop quite rapid-
ly as functions of 7, making even a measurement at dis-

TABLE II. Effective masses extracted from the exponential
decay of the thermal Green’s functions at various values of
6/g% mg(r) denotes masses extracted from ratios of the corre-
lation function C, at distance 7 and 7— 1. It was not possible to
obtain masses corresponding to the heat conductivity Green’s
function.

6/g% T my, Man/34¢

4.8 1 3.341+0.10 3.6610.13

2.35+1.30 2.3612.08

52 1 3.21+0.06 3.6110.07
2

5.6 1 2.85+0.04 3.2610.05

2 2.62+0.42 3.45+3.31

5.8 ' 1 2.7710.03 3.12+0.04

2 o 2.70:):0.40 2.77£0.58

runs with up to 180000 sweeps with measurements taken
every fifth sweep. We have checked that these measure-
ments were statistically independent by monitoring their
time correlations. As can be seen only C,, could be mea-
sured at distance 2. This is partly due to the fact that the
disconnected part of the correlation function, Eq. (4.1b), is
strictly zero on each individual gauge configuration as we
have discussed in the previous section. The correlations
of off-diagonal matrix elements of T,, entering the heat
conductivity could not be measured. This is due to the
circumstance that complicated six link operators are in-

volved in the definition of Ty;. In the following we thus
will restrict our dlscussxon to the behavior of C,. The
measurements at 6/g2=5.6 and 5.8 are performed close to
the critical couplmg for the deconfmement transition,
which one this size lattice occurs at 6/g%>=5.68 (Ref. 14).

Comparing the behavior of C, below and above the phase
transition, we see that it behaves in much the same way in
both cases, dropping rapidly, indicating a large effective
mass for the particles in the system. Thus even above T,
we observe the influence of massive excitations, which
shows that close to 7, the plasma cannot be described by
a free gluon gas. This observation is in agreement with
recent results of Ref. 15. The effective masses we obtain
from ratios of successive measurements of C, by fitting
these with the periodic ansatz, Eq. (2.7), are given in
Table II. We see that at low temperature these effective
masses approach the lowest glueball mass, as expected 7
Indeed, for the smaller values of 6/g? our results are in
agreement with glueball masses extracted from thc short-
distance part of plaquette correlation functions.'® In the
vicinity ‘of the deconfinement transition, however, the
masses in lattice units stay more or less constant, in con-
trast with the glueball case where they drop significantly
over the range of 6/g2 cons1dered here.' In units of the
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FIG. 2. (a) Thermal Green’s function Gglr) vs 7 for

mfB=11.6 and various values of the interaction parameter
y/m=0.0, 0.02, and 0.04. Also shown are Monte Carlo data
from simulations at 6/g%=>5.6 for the shear viscosity correlation
function C,. (b) Thermal Green’s function Gg(7) vs 7 for vari-
ous values of mB=11.2, 11.6, and 12.0 and the interaction pa-
rameter ¥/m=0.02. Also shown are Monte Carlo data from
simulations at 6/g2=5.6 for the shear viscosity correlation
function C,.

temperature we thus find

m

in the temperature range close to 7,. One should, howev-
er, be aware that in most cases we got information on the
masses only from distance O and 1 correlation functions.
In the cases where we could measure up to distance 2 the
masses drop by about 10%. We thus expect the asymp-
_ totic values to be within the lower bound given in Eq.

(4.2).

t us finally attempt to draw some conclusions about

ytic structure of the thermal correlation functions..
out, we shmﬂd extract ;;he pm:amems
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from the long-distance part of the correlation function.
On our 834 lattice we have seen that a pure exponential
fit already gives reasonable results. This would suggest
that the parameter y, which leads to a flattening of the
correlation functions in the central region is small. We
can obtain an estimate for y by using the ansatz (2.10) and
(2.11) to fit the whole correlation function. As the ex-
ponential decay then basically is fixed by the distance 0
and 1 results for the correlation function we get an upper
bound for y. Such a fit is shown in Fig. 2. From this we
conclude that

X £0.05. @.3)
m

Using this upper bound for y and 4=C,(0) we get from
Eq. (3.8) for the shear viscosity

—;!; <9.5 4.4)

close to T, in the confined as well as in the deconfined
phase. This is in reasonable agreement with the analytic
estimates of Ref. 5 from the collision time approximation.

V. CONCLUSIONS

We have discussed the framework for a calculation of
transport coefficients in the context of lattice gauge
theory. This study made the limitations of such a pro-
gram clear. From a first exploratory analysis of thermal
Green’s functions for the energy-momentum tensor on an
8% 4 lattice we have seen that it will be quite difficult to
measure these at large temporal distances, which would be
necessary to get information about their analytic struc-
ture. The best results have been obtained for the correla-
tion functions entering the determination of the shear
viscosity, while space-time components of T,,, which
determine the thermal conductivity, were most difficult to
measure.

From the exponential decay of the Green’s functions we
saw that in the confined region as well as in the decon-
fined region close to T, the exponential decay of the
correlation functions indicates the existence of excitations
with masses of the order of the lowest glueball states.
While this was expected in the confined region it shows
that above T, we do not just find a massless gluon gas;
massive modes are still relevant.

Probably it will be rather difficult to extract a good
value for 9 from simulations of the sort studied here for a
while, but by analyzing the deviations from a pure ex-
ponential decay on larger lattices it may be possible to es-
tablish upper bounds on 7, as we attempted to do on the
8°%4 lattice. To get better results for correlation func-
tions at larger distances one should investigate the possi-
bility of using source methods for the energy-momentum
tensor. The small number of temporal values accessible in
a Monte Carlo simulation on a Euclidean latfice presents
a gevere restriction for the analysis of the analytic struc-
ture of the spectral density functions. It thus may be use-

“ful to introduce anisotropic lattices, ie., lattices with dif-
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ferent lattice spacings in the space and time direc-
tions.>17 In this way more lattice sites in the temporal
direction could be introduced without the need of going to
too large couplings 6/g2, where one would lose the signal
for the correlation functions. In this way it might be pos-
sible to determine more than three parameters characteriz-
ing an ansatz for the spectral density function.
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