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We investigate the thermodynamics of strongly interacting matter described as a system of quarks and antiquarks
in free creation and annihilation, but with pairwise confinement to a volume of hadronic size ( ~ 47/3m, >). At low
temperature, such a system behaves like a hadron gas, giving a quark or an antiquark a spatial mobility of order
m, ~'. At high temperature and hence high density, we obtain a gas of free quarks and antiquarks with infinite
spatial mobility. By calculating the crossover of low- and high-temperature approximations, we find a phase
transition from hadron to quark matter at the critical temperature T, ~ m,. We compare our results with similar
considerations based on the size of hadrons and on perturbative quantum chromodynamics.

I. INTRODUCTION situation we have in mind. In the world of hard-
core hadrons inside a volume V, a given hadron
Phase transitions between hadron matter and sees a vacuum everywhere, except at those places
quark matter have been discussed® ever since the where other hadrons are present. In terms of its
proposal of the quark basis of hadrons. For com- potential U(x), with x denoting the center-of-mass
posite hadrons, the presence of a fundamental coordinate of our chosen hadron, we have

dimensional scale R, becomes as natural as the
Bohr radius for the hydrogen atom. On the other
hand, one then also expects that strongly interact-
ing matter at densities much greater than one
hadron per R,® should be described as a quark
plasma rather than as a multihadron system.

. 2 .
g previousper”ve bave sl e o et ot s 1 i, T the i
free creation and annihilation (zero chemical po- of confined quark-antiquark pairs, t¥1e gituation is
tential). It was found that the presence of a had- exactly complementary. We start vith a Gedanken-
ronic size, V,=4nR,*/3, leads to a phase transi- exp ewmen{,‘ by ranfiomly pfxttmg quarks into the box
tion from a state of high mobility and abundant V, neglecting any interaction between them (and
creation (“hadron gas”) to a state of bounded mo- also the effect of Fermi statistics). When we now
bility and strongly damped production (“hadronic add the antiquarks, then a given antiquark sees
solid”). This transition occurs, qualitatively everywhere a vacuum, except for those regions
speaking, when the hadronic mean mobility, which wht?re no quark is preser.lt. The potential for an
at low temperature in the thermodynamic limit is antiquark can thus be written

{ - lx"xkl S 2R,

U. ()= 1.1
# () 0, elsewhere. 1
Here x,, £=1,2,3,... are the coordinates of the
other hadrons, and 47R*/3 denotes as before the
hadronic volume. In Fig. 3, we show a projection

infinite, becomes finite at sufficiently high tem- 0, ]x-x,,l s2R,
perature, because the increase in the density of U &)= { (1.2)
extended constituents restricts their range. ®, elsewhere

In the present paper, we want to look at this and is illustrated in Fig. 3(b) by the photographic
situation from the point of view of the quarks: negative of Fig. 3(a). InEq. (1.2), x,, £=1,2,3,..-

Instead of considering a system of free hadrons
with infinitely repulsive cores, we shall now treat
a system of free quark-antiquark pairs, confined
by an infinitely repulsive vacuum (see Fig. 1). We @
again expect a phase transition—but now the quark

mean mobility, which in the low-temperature had-
ronic phase is bounded by the bag size, diverges @
at higher temperature when the system becomes ‘
dense enough to provide a given quark with at least

"one antiquark in each coordinate-space cell of vol- (a) (b)
- ume V, (see Fig. 2). FIG. 1. Strongly interacting matter from a (a) hadronic
. 'Let us elaborate a little more on the physical and from a (b) quark point of view.
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(a) (b)

FIG. 2. Quark mobility at (a) low and at (b) high den-
sity.
now denotes the positions of the quarks (more pre-
cisely, of the unbonded quarks).

From a hadronic point of view, the quarks at
low density appear to be localized in a disconnec-
ted way by the hadronic vacuum and are called
“confined.” As seen by the quarks, using the
quark vacuum as reference (Ugy=0), the hadronic
vacuum becomes a physical medium,? infinitely
repulsive to individual quarks or antiquarks but
transparent to ¢-7 pairs. The hadronic vacuum is
characterized by the absence of on-shell matter;
the quark vacuum is characterized by the presence
of on-shell matter. “Confinement” become’s rela-
tive in a picture of hard-core hadrons on one hand,
a hard-core vacuum on the other: While quarks
are confined at low density by the hadronic vacu-
um, hadrons are confined at high density by the
quark vacuum, matter.

We recall here, as an illustration, a similar
situation in atomic physics—hydrogen atoms (as
hadron analogs) and their electrons (in place of
antiquarks). To a bound electron, the atomic vac-
uum is confining (though not infinitely) and thus
endowed with physical properties. To the (quasi-)
electrons in metallic hydrogen, the lattice becomes
a vacuum, although by an atom it is seen as “con-
fining” matter.

In Fig. 3 and in Eqs. (1.1) and (1.2), we have
denoted both vacuums as U(r) =0, although, as we

uy(x)
== B
wx) P R
(b)
— X
2R° ' ZRQ

FIG. 3. Projection of potential for (&) bard-»core had-
rons and (b) conflned quarks

just saw, that becomes wrong for the quark vacu-
um from a hadronic point of view and vice versa.
However, we here cannot and do not want to make
a choice of which is to be the basic vacuum. In
the hydrogen example, one considers as basic a
theory (QED) with a vacuum characterized by the
absence of on-shell matter. (We note in passing
that the presence of this complete theory has not
given us the means to calculate from first prinei-
ples the “less basic” intrametallic vacuum seen
by conduction electrons.) In the case of strong-
interaction physics quantum chromodynamics
(QCD), as the presently strongest candidate for

a theory, starts from an equation for interacting
quarks and gluons and thus, with a material
(“perturbative”) vacuum, attempts to derive the
matterless hadronic vacuum,

In our description, we have so far neglected two
important features-—the requirement that each
quark must be bonded with one and only one anti-
quark, and the possibility of overlap between the
regions occupied by ¢7 pairs. These features gen-
erally prevent a separation of the overall potential
into individual or pair contributions. To obtain a
more precise formulation, we require for the
overall potential of an N-pair system

O(xv xm 13 ° YN)-‘-O (1.3)

whenever there exists at least one ordering
(ky, ko, . . . ky) of the N antiquarks which makes

Ix,—fk‘ISZRDV i=1,2,-10,N’ (1.4)
otherwise,
Uq(xl,...,x,,;f"...,XN)=°°’. (1.5)

At low density, when the different 47 pairs are
widely separated, there will in general be only one
ordering satisfying Eq. (1.4). At high density, how-
ever, there will be many possible rearrangements,
since the overlap of the quark vacuums allows dif-
ferent q7 associations (see Fig. 4).

We note finally that if one does not attribute the
confinement to the infinitely repulsive hadronic
vacuum, as in Eq. (1.5), but instead to a ¢7 binding
potential, then at high density a screening® of long-
range forces or some type of bond-exchange mech-

(@) (b)

FIG. 4. Quark pemutaﬁom and mobtlity
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anism® (“flip-flop”) becomes necessary to obtain
quark mobility. Without such a mechanism, a
given antiquark would remain coupled to “its”
quark even when other quarks are closer to it. In
our formulation, Egs. (1.3)-(1.5), the rapidly
growing number of possible rearrangements makes
any specific g7 association unimportant at high
density: For any value of x,;, there is then an or-
dering such that Eq. (1.4) is satisfied; hence
Uqy=0 and the quarks are free.

II. QUARK-GAS LIMIT

At sufficiently high temperature (and hence high
density), our system becomes simply a gas of
quarks and antiquarks in free creation and anni-
hilation. The partition function is then given by

o~ V()
Z(8,V)=
) ,g.;mm

with
?o(B) =9y(8) = 2m)3 fdsp e-But"
= (m°2/2ﬂ23)K2(m03)._. (1/72%6%) (2.2)

m°—>0

0" By @), @.1)

for the quark (=antiquark) generating function.
Here 8= (8,8*)/2=1/kT is the inverse tempera-
ture, with B,> 0, B2=0; m is the quark mass,
which we shall generally take to be small. The
function V{N) denotes the “free” volume seen by
the quarks because of the presence of the anti-
quarks, and vice versa—i.e., that part of V which
does not contain any bubbles of the infinitely re-
pulsive hadronic vacuum of Eq. (1.5). In writing
Eq. (2.1), we have assumed that V(N) is large and
connected enough to treat all pairs in the plane-
wave limit; at sufficiently low densities, this will
no longer be valid. In Eq. (2.1), we have also ig-
nored the Fermi statistics of the quarks, and we
shall continue to do so. This is possible.in the
case of “mesonic” matter without conserved quan-
tum numbers; in nuclear matter, however, the
presence of baryon-number conservation certainly
requires the inclusion of Fermi statistics, since
such a system, in a wide range of densities, can
behave essentially as a cold Fermi gas.

In the high-density limit N/V -, there will be
no repulsive bubbles in V, so that we have

. V) =VRr, (2.3)
This yields

2(8,V)=1,(2V0o8)) ~ (41:V<pq)‘"=e"'o (2.4)
and hence .
| Poﬁﬂim[ﬂnz(ﬁ V)/aV]=z¢°(8) @)

Vs v S

- g,; nm[(fP@/ZV)ﬂan(ﬁ. V)/39) = cpq(ﬂ) (2. 6)«

for the pressure pq and the quark {or antiquark)
density ng of the system. Combining these rela-
tions, we have

pB=2ny 2.7)

as the equation of state of a gas of free quarks
and antiquarks in the limit of infinite density (or
temperature).

To obtain V(N) at finite density, we fill in the N
quarks into the volume V randomly. Let us then
consider one point X in V. The probability of find-
ing no quark within a region V, around X is
[(v-Vv,)/V]¥, so that

vovr (2.8)

is the probability for this region to contain at

least one quark and is therefore just the probability
that the point X is an allowed position for an anti-
quark. Integrating over all V with this weight

gives

(A1 -[(v - v)/vI" Y (2.9)

as the coordinate-space volume available to the
antxquarks Multiplying this by the quark volume
V¥, we have

V) = (V{1 =[(V - v,)/VI"})¥ (2.10)

as the finite-density coordinate-space volume. For
N/V==, we recover Eq. (2.3); in the low-density
limit N/V =0, Eq. (2.10) yields

VIN) = (VNP « N1 (VV, el 2.11)
and hence, from Eq. (2.1),
Z(@,V)~expl VV,ep2(8)] (2.12)

for the partition function. The low-density virial
equations thus become

PoB=eV,9o*@), (2.13)

ne=eVypo*@) (2.14)
and hence yield

poB=nq @.15)

as the equation of state. In the quark-gas limit,

the equation of state, as shown in Fig. 5, thus
variesfromp o8/nq=1atlow temperature top ,8/n
=2 at high temperature, This increase arises be-
cause at high temperature and hence high density,
quarks need no longer be associated with particular
antiquarks and hence gain new coordinate-space
freedom. On the other hand, this “uncoupling”
provides new momentum degrees of freedom and
therefore at -high temperaturea a slower growth

of density, as seen in Fig. 6.

- In Eq. (2.1), we have taken the chemical poten-
tial 4 as zero, z= exp(uﬁ)al, eerrespondinz to.
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Po(B)

FIG. 5. Equation of state in the quark-gas limit (solid
line), together with low- (L) and high- (H) temperature
approximations. -

unrestricted creation and annihilation of ¢7 pairs.
With decreasing density, the repulsive hadronic
vacuum does, however, provide a restriction to
the creation of g7 pairs widely separated in space.
This restriction can be expressed in terms of a
creation potential, just as the finite size of hadrons
could be described in this fashion.? Defining by

Z(ﬂ, V)zﬂz V(N) w(B) Z[ZV(P (ﬁ)]
N=0

Nint¥e NINT
(2.16)
the fugaeity z, we obtain through
z=e*8= lim[InZ 8, V)/2Ve ] .17

Vs

the quark (or antiquark) creation potential u,
which is here, as in the case of extended mesonic
hadrons, a given function of the temperature or
density, and not an independent variable. From
Eqgs. (2.4) and (2.12) we find

uB= {0’ ne= %

(2.18)

in the limits of high and low density. As expected,
we recover unrestricted creation and annihilation
at high density, while at low density the appear-
ance of hadronie vacuum bubbles provides an in-
creasing resistance to creation and hence a grow-
ing negative creation potential, as shown in Fig.

N7

FIG. 6. Quark (or antiquark) density in the quark-gas
limit (solid line), together with low- (L) and higb- @)
temperature approximations; |

uA

1/n

FIG. 7. Creation potential of the quark gas as function
of inverse density.

7. We note that the behavior of ug as a function
of 1/n here is rather similar to that shown by the
hadronic solid® as a function of n. The quark sys-
tem thus behaves with decreasing density similar
to the hard-core hadron system with increasing
density—a pattern not so surprising when we re-
call the reciprocal nature of the potentials Ug(x)
and Uylx).

1II. HADRON-GAS LIMIT

In Sec. II we have studied a classical gas of free
quarks and antiquarks, taking into account the pos-
sible volume restrictions which arise from the
presence of hadronic vacuum bubbles at lower
densities. We have not, however, considered the
quantum effects which occur when an isolated q7
pair is restricted to a small coordinate-space re-
gion V,. In this section we shall show that the
presence of such quantum effects at low tempera-
ture turns the behavior of our quark-antiquark
system into that of a hadron gas.

For the description of isolated ¢q7 pairs, center-
of-mass variables are more convenient than those
of the individual quarks and antiquarks. The cor-
responding transformation of phase space to the
variables

Pi=p,+B;, Ri=z(p,-P)
X, =30, +%,),

with barred (unbarred) quantities referring to an-
tiquarks (quarks) is carried out in the Appendix,
using the covariant constraint formulation.® As a-
result, we obtain instead of Eq. (2.1) the partition
function

Z(ﬂ’m=§((1\271{1);1 f Hd”P d*k,d°X d%r e H'm)
8.2)

Here the integrations over B, and X, are to be car-
Iied out in the overall c.m. system, those over

k, and F; in the c.m. system of the ith pair. The
energy of tlus pair is given by ,

g P¢o=[§ +4&‘ +ma’)+ U}l/' -; ‘:”’\‘.: (3'3)

_ } i=1,2,...,N (3.1
Yi=Xy—Xy
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where m, again denotes the quark mass, and the
potential U eontains all coordinate-space restric-
tions. As noted in the Introduction, U generally
spoils the apparent factorization of Eq. (3.2);
however, it is restored at sufficiently low density,
when the confinement volumes can be taken as non-
overlapping. We then obtain V¥ from the X; inte-
grations, while the T, integrations yield N!V¥. To
see the latter result, we first place randomly (but
without V, overlap) the N quarks in V, and then
add the antiquarks one by one. The first antiquark
can be placed onto N sites, the second onto N-1,
and so on. We thus find

26,V)= Nfoj 1 ((‘2"’)‘;) ( | d3Pd3ke'Bp°)N (3.4)

for the classical relativistic partition function at
)

low density, with
Po=[§2+4@2+mo)]‘/2. (3.5)

Quantum mechanically, the separation of adjacent
momentum levels for a particle in a box V is
21V"Y3, As we want to consider Eq. (3.4) in the
limit V-« at fixed >0, the level spacing goes

to zero and the classical limit provides a g_god ap-
proximation for the ¢.m. system momenta P of

the g7 pairs. With a fixed small confinement vol-
ume V,, this is not the case, however, forthe
relative momenta k, which are quantized according
to '

k(m)=20V,%m, m,=0,1,2,..., i=1,2,3.
(3.6)

Correspondingly, the partition function becomes

= N
Z(, V)‘_'Z“};_ <(21, fdsp Z -8(F%ark? (m)em ,21) /2> (3.7)

N=0

instead of Eq. (3.4). At low temperature {large 8),
the dominant contribut_ipn to the sum over m comes
from the lowest level m =0, giving us there with

2\ N
Z(B, V)= Z_NV_I ((Zn)-sfdspe-ﬁtp +(2mQ)2]1/2) (3.8)
N=0 *

the partition function of a free hadron gas with
my=2m, for the mass of the hadron. This domin-
ance of the lowest level in the relative momentum
spectrum of g7 pairs is seen partxcularly well in
the nonrelativistic limit (B2 <mg? k2« mg?), for
which summation and integration in Eq. (3.7)
factorize to give

Zyr(B, V) ZN! ((Zn) -3 f d®Pe-BemgF*/img) )

X (14+3e8@0/mgr /2 LW (3.9)
For temperatures

RT=Bt<smy 'V, ?/3, (3.10)

corrections from higher levels are clearly negli-
gible. At a given low temperature, we can include
higher-level corrections in quantitative considera-
tions by using Eq. (3.7) instead of (3.8).

The thermodynamics resulting from the parti-
tion function (3.8) is of course just that of a hadron
gas with free creation and annihilation. Thus we
have

puP=9B)=ny (3.11)
with .
04lB)=eny* [@peraPiang’?, (3.12)

r
for the hadron pressure p, and density ny.

We note that in comparison with the high-tem-
perature form (2.7) of the quark gas, both the low-
temperature hadron gas (3.1) and the low-tempera-
ture extrapolation of the quark gas (2.15) show a
reduction by a factor of 2 in the number of degrees
of freedom. The cause for the reduction is, how-
ever, quite different in the two cases. Inthe low-
temperature quark gas, it is the appearance of
hadronic vacuum bubbles and the ensuing modifica-
tion of the available coordinate space which pro-
vides the reduction. In the hadron-gas limit, the
quantum effect due to the small confinement vol-
ume modifies the available momentum space to
cause the reduction. There, a small energy input
at low temperature cannot excite the hadrons out
of their ground state and thus can only go into kine-
tic energy of the hadrons. As the temperature in-
creases, the appearance of overlapping confine-
ment volumes will eventually lead to larger quan-
tization volumes than that of Eq. (3.6). Conse-
quently, the level spacing decreases until finally
both excitation forms, relative and overall g7
pair motion, become equally likely—as they are in
a gas of free quarks and antiquarks giving Eq.
@.7).

IV. HADRON-QUARK TRANSITION

In this section we want to study which type of
thermodynamical behavior—quark gas or hadron
gas—our system of confined ¢7 pairs exhibits in a
given temperature range, and at what point the
transition takes place. The basic thermodynamic
function, the free-energy density A(g),



22 THERMODYNAMICS OF CONFINED QUARKS 485

ﬁA(B)=‘l'im[-81nZ(8, V)/8V],==pB, 4.1)
isobtainedfrom Eqs. (2.4) and (2.12) and Eq. (3.8),
corresponding to quark gas and hadron gas, re-
spectively. The hadron-gas form (3.8) is just the
leading low-temperature term, while the quark-
gas form with Eq. (2.10) includes the high-tem-
perature limit together with finite-temperature
corrections, down to the low-density form (2.12).
By not calculating high-temperature corrections
to the hadron-gas form we anticipate a hadron-
quark transition at rather low temperature and
density.

Let us begin by assuming that the quark mass
can be neglected (my=0), and that the quark-gas
behavior near the transition point is correctly
described by the low-density form (2.12); we shall
shortly remove both of these simplifying assump-
tions. In the quark limit we then have

AL (B) = —eVy/1'8°, @.2)
and in the hadron limit, -
BA 4 (B)~~1/7%° 4.3)

for the free energy. The two forms are shown in
Fig. 8: Below the temperature

kT, =1/B,=(@"/eV /3, (4.4)

the free energy is lowest for the hadron gas, above
T, for the quark gas. Since the system in equilib-
rium must always be in the state of lowest free
energy, we are thus led to a phase transition of
first order from hadron to quark matter at the
critical temperature T.. If we fix the confinement
volume

Vg =47|'/3m'3 (4.5)

by the mass m_ of the lightest hadron, then we ob-
tain

kT,=0.95m, (4.6)

as a value of the critical temperature. This value
agrees surprisingly well with that generally ob-

-R(A)

—kT=1/0

T

- ke

FIG. 8. Free epergy of confined g7 system (solid line),
together with quark-gas (Q) and hadron-gas (H) limits.

tained for the critical or ultimate temperature of
hadron physies.”

We now want to show that this result remains
essentially unchanged if we drop the simplifying
assumpfions made above. The partition function
[(2.1) and (2.10)] can be written as

Z (8, V)=§ZN(B, v, 4.7)
with
1nZ, (8, V) aN{z @ny%ﬁn) +ln[1 - (1 -1’3)"
4.8)

in the Stirling approximation. The largest term
in the sum (4.7) satisfies 8Z,/8N =0, which for
V-~ and withx =V ¢, yields

21 (1 - e™9%0) g Vo] +ngVo/(€770=1)=0  (4.9)

for the quark density nq as function of x and hence
of the temperature. Approximating the sum (4.7)
by its largest term Z3(8, V),

Inz(8, V)=1nZy (8, V), (4.10)
we find
BAQ(ﬁ) = "'nq[z "nQVo/(e"QVO - 1)] (4.11)

for the free energy. The corresponding form for
the hadron gas is by Eq. (3.8) simply

ﬂAy(B)':"‘pn(ﬁ)- (4.12)

The two functions Ay(8) and A, (8) cross, as can
be seen by numerical evaluation of (4.9), (4.11),

and (4.12), at

kT, ~1.1m (4.13)

when Vy=41/3m ® and m, =2mg; this confirms our
result of above. We note moreover that the direct
dependence of T, on quark or pion mass is essen-
tially negligible; the dependence in Eqs. (4.6) and
(4.13) comes from the coupling between T, and V.
Setting 2mg=m_ =0 in ¢4(8) and ¢ ,(8) produces only
a change of about 10% in T .

In Fig. 9 we show the density of our 47 system
as a function of temperature. At T, the density
drops, since the available kinetic energy in the
hadron phase is that of the hadrons (77 pairs in
the ground state) only, while in the quark phase
quarks and antiquarks also have relative kinetic
energy.

In Figs. 8 and 9 as well as in our above remarks
concerning the nature of T,, we have assumed that
the system does indeed show the discontinuous
behavior obtained from the crossover of the two .
approximations for A (8). This, in turn, leadstoa -
first-order phase transition. What justification
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n
Q Q /H
/
/
/
/
7
7
-1
= -k T=1/
kT, A

FIG, 9. Density of confined ¢qg pairs (solid line), to-
gether with quark-gas (Q) and hadron-gas (H) limits.

>

is there for this assumption?

We recall first the analogous situation in the
hard-core hadron gas.? There the phase transition
between gas and solid was also determined by the
crossover of the low-density (gas) and the high-
density (solid) approximation. In that case, how-
ever, there are computer simulations® and a rig-
orous proof for two-dimensional lattice gases®
to support the conjecture of a phase transition,

Here we have neither of these supports directly.
However, the complementary nature of the two
situations—extended hadrons and confined quarks—
from the point of constituent mobility appears to
us as very strong reason for a discontinuous change
of state also for the gas of confined quarks. The
crossover point T, is in both cases determined as
the point where the free energy changes from one
region of constituent mobility to another. As ex-
pected, we find a decrease in the density of the
qq system (Fig. 9) when the motion of quarks or
antiquarks becomes unbounded, just as we find an
increase in the gas of extended hadrons once the
motion of the hadrons becomes bounded (Fig. 10),

Nevertheless, we should strongly emphasize the
desirability of a computer simulation and/or a
rigorous study of simplified models retaining the
essential features also for the case of confined
qq pairs.

kT=1/3

._FIG, 10, Density of hard-sphere hadron syatem (solid
- ling), t:ogether wlth low- (L) and hlgh- (H) denslty
‘Iimlts 7

V. CONCLUSIONS

We have shown that a model of confined 7§ pairs
in free creation and annihilation provides at high
and at low temperature (and hence density) two
basically different forms of thermodynamic be-
havior. Minimizing the free energy then yields a
phase transition at the critical temperature
T,~m,, in good agreement with expectations from
hadron physics. In closing, we want to compare
these results with similar conclusions obtained for
a gas of extended hadrons® and from perturbative
QCD considerations. %!

The most striking difference between confined
quarks and extended hadrons lies in the value of

‘T, Using in both cases (as confinement volume

and as hadron size) the basic input V,=41/3m,°,
we obtain T2~m_ for confined ¢7 pairs, but
T#~350m, for hard-core hadrons. In neither
case was any further attractive or repulsive
mechanism considered beyond the basic vlume-—
no resonance excitation, mass-dependent hadron
size, or energy-dependent bag size. Inthe ab-
sence of such effects, a hadron gas would thus
change into a quark gas at temperatures much
lower than those needed for solidification, as-shown
in Fig. 11. What reasons are there for this?
Structurally, the transitions in the two cases are
quite different. In the confined-quark picture, the
two states of matter—free hadrons vs free quarks
and antiquarks—are basically different intheir
number of available degrees of freedom; this
number is twice as high for a gas with independent
quarks and antiquarks as it is for a gas of hadrons.
In the model of extended hadrons, we have two dif-
ferent states of matter for more quantitative rea-
sons. The region of space, Vg, blocked in the gas
phase by the presence of a hadron, and the space
region V still accessible to a hadron in the solid
phase, are not the same for two or more space

FIG, 11. Equation of state and phase transition for con-
fined quarks (7,9 and for extended hadrons (7,%), to

. gother with qnark«gas {Q), hadrcn—gas (G), and hadmn—

ic<solid (S) limits, -
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dimensions: Vz>V,. Both forms (gas and solid)
here lead to singular behavior when the density
approaches the inverse volume n— V™ or n =V,
but this happens sooner for the gas form than for
the densely packed solid. If V; and V, were iden-
tical, as is indeed the case for models in one
space dimension, then the two limits coincide and
give a one-phase world.

Some further insight can be gained by consider-
ing the critical densities in the two models; with
n.=n(8,) we find

n9~0.4/V,,

n~0.5/V,. 6.1)

Although the density for solidification is still high-
er than that giving the hadron-quark transition,
the two values are much closer than those of the
critical temperatures. This is due to the strong
resistance the hard-core gas offers to further
production at high temperature: A large tempera-
ture increases then produces a comparatively
small change in density (see Fig. 10). For a gas
of confined quarks, this effect does not arise; in
fact, the opposition to production decreases with
increasing temperature (see Fig. 7).

Finally, we return to a principal difference be-
tween a free quark gas and a free hadron gas,
which tends to modify the complementarity dis-
cussed in Sec. I. Although a system of hydrogen
atoms becomes a free atomic gas at low density
and a free electron gas at high density (in the met-
allic phase), the two “vacuums” associated with
this freedom differ. For metallic hydrogen, this
difference is included in the quasiparticle nature
of the conduction electrons, which are free only
above a mean field changing, e.g., the constituent
mass. Similar effects could (and probably will)
arise also in our approach, and hence a true com-
Plementarity between confined quarks and extended
hadrons might arise only when some interaction
effects (resonance excitation, mass-size relations)
are included.

In quantum chromodynamics as complete theory
of interacting quarks, it should in principle be
Possible to calculate the thermodynamic behavior
of a multiguark system at all temperatures, and
thus also to answer unambiguously if and where a
Phase transition between hadron and quark matter
Occurs. In practice, exact calculations are pre-
Sently possible only in the high-temperature or
high-density region, where asymptotic freedom
allows the application of perturbative methods.
Since in the transition region to hidrons perturba-
tion theory is likely to break down, one must also
here make conjectures about the nature of the tran-

sition and/or about the behavior of the system be-

(e.g., “plasmon” effects), which near T, are fou

p

FIG. 12. Pressure of a quark gas in perturbative QCD
for zeroth (dashed line) and first (solid line) order in

cue(T).

low the transition region. For our case of zero
chemical potential (mesonic matter), the problem
has been studied particularly by Kapusta'® and
also by Kalashnikov and Klimov.!* Let us briefly
sketch their approach and compare it with ours.

The pressure of a system of noninteracting
quarks has in the high-temperature limit the
form [see Eq. (2.5)]

PogcoTQ; (5.2)

where ¢, is a constant depending only on internal
quantum numbers. Including interaction in the
lowest-order approximation, one finds

plucoTﬂ:l “claeg{(T)], (5.3)

where the effective coupling constant a,,,(T)>0 is
by renormalization-group methods given as

Qo o(T) e, /[1+¢,I(T/T))], (5.4)

with the constants ¢, ¢,, and 7, again defermined
by the specific quantum=-number structure of the
problem. The normalization point T, for the
temperature is a basic parameter of the approach,
to be fixed empirically; it corresponds to our V,,.

The fundamental form (5.3) of the pressure is
shown in Fig. 12. It is seen that at T=T,, the
pressure becomes negative. This has been inter-
preted'®! as an indication that there the system
becomes unstable and a phase transition occurs.
Choosing To~300 MeV,'! and assuming T to be in
fact the critical temperature T, one finds

T,~2m,, (5.5)

in fair agreement with our result (4.13).

It remains quite open, however, to what extent
such an argumentation is possible. At the cross-
over temperature T,, one has a,,,(T)~3, so that
the applicability of perturbation theory is ques-
tionable. Such doubts are substantiated by the c'
culation of speciﬁc nonperturbative contributiong
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to be much larger than p,. Apart from providing
a general agreement in the determination of the
temperature region where “something is happen-
ing,” QCD does not at present seem to clarify the
question of phase transition beyond the argumen-
tation of our model. A more detailed comparison
between the high-temperature forms in perturba-
tive QCD and in our approach will be given else-
where.

APPENDIX

The partition function for N free relativistic
quarks and N corresponding antiquarks can be
written covariantly as

2,6, =0ear o [apeno )", @

where the phase-space measure dpu is given by
dp=d*p 8(po)5(p* - m*)d*p 6(H,)6(p* - m?)

% 8(x,e*)0{R* - (x,e")* - x°]}
d%% 6%, e")0{R? [ (¥, e*) -7} x A, (A2)
A=2(p,e*)x2(p,e"). (A3)

Here ¢* is a unit vector which is timelike in the
rest system of the box (V = 47R3/3) containing the
system

VE=e“ V. (A4)
The temperature is also defined in this system
B.=e,B. (A5)

For a quark-antiquark pair with the center-of-
mass variables defined in Eq. (3.1), instead of the
constraints

¢=(p*-m?)=0, ¢=(p*-m?=0, (a6)
X=(x,e*)=0, X=(x,e")=0, (A7)
of Eq. (A2), we now choose the new constraints
9,2 @ +9=3[P* - 4(m*+£%)]=0, (A8)
9.=¢ -9=2(P,#*)=0, (A9)
X,=X,e" =0, (A10)
X.=7,8* =0, (a11)

_Here ¢* is defined as before, while 2* isa unit

vector timelike in the ¢.m. system of the quark-
antiquark pair:

2 =P /(PP (a12)

For the overall volume we have again Eq. (A4),
while the confinement volume V,=47R}/3 satisfies

V=2 v,. (A13)

0

The transformed constraint determinant A be-
comes

A=2(P " )WVP? (A14)
and the 6 functions of energy positivity now read
8(PJO(P -4k, (A15)
We thus obtain
dp =d'P 9(P0)6(¢4)d4k B(Poz - 4k02)6(‘p-)
Xd*X 6(x,)0(R? ~ (X 2~ X, X"))
Xd% X JB(RZ - (X_ =7, 7*))XA  (A16)

as the phase-space measure. Carrying out the
time and the energy integrations, Eq. (Al6) gives
instead of (A1) in the rest frame of the box

— 1 fa 3 2 2 =8P
ZN(B,V)—W AP d3X dk k2dr r?e*Fo

(A17)
with
S ——
P=[(P,¢") - (P, P*)]2, (A18)
X=[(X, ") - (X, X*)1/2, (A19)
k=[(k, P* ¥/ (P, P*) - (R, k*)]V2, (A20)
r=[r,P* /(P P*) - (r,r*)]"? (a21)

for momentum and position of the pair in the rest
system of the box and for relative momentum and
position in the g rest system, respectively. For
the partition function, this yields Eq. (3.2).
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