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Hadronic systems are characterized by unrestricted conversion of energy into particles and by the spatial
extension of the particles. Investigating a system of hard-core particles with free creation and annihilation,
we show that with increasing energy density this leads to a phase transition from a state of abundant
production and high mobility (“hadron gas”) to a state in which both creation and mobility are strongly
restricted (“hadronic solid”). Such hadronic solids could thus be considered in terms of weakly coupled

quark matter.

I. INTRODUCTION

The essential feature of strongly interacting
multiparticle systems is the presence of dominant
particle production: it is the copious conversion
of energy into additional particle degrees of free-
dom that distinguishes hadron physics from weak
or electromagnetic interactions (at least at
present energies). Onthe other hand, hadronic
interactions also exhibit a basic dimensional
scale, interpretable in a variety of ways: as
universal Regge slope, through universal trans-
verse-momentum spectra for secondaries, as the
finite range of strong interactions, or perhaps
simplest as the finite extent or “size” of hadrons
in coordinate space. This aspect led Pomeran-
chuk,* already quite some time ago, to demand a
minimum size for multihadron systems. More
recently, and triggered by the advent of the quark
infrastructure of hadrons, it led to the bag pic-
ture? of hadrons, suggesting the existence of
hadronic matter up to a certain density, and
quark matter beyond.?

In the present paper, we want to study in very
simple terms the thermodynamic competition of
the two basic hadronic features, abundant particle
production and finite particle size.

The simplest model for hadronic matter is an
ideal gas with free creation and annihilation,*
similar to a photon gas. The nonvanishing rest
mass of the lightest hadron assures, however,
that the grand microcanonical density of states,
o(P?), contains at fixed overall four-momentum
P only a finite number of terms. For a given
system of pions in a box V we thus have
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with C(P?)= [»/'?’/m] where m is the rest mass
of the pion: p*=m®. For finite-sized hadrons,
Eq. (1) remains a approximation valid at low
density, since for any given hadron the reduction
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of available coordinate space by the presence of
all other hadrons is neglected. If we hold V
fixed for large P%, we have as high-density limit
of o(P?),

C(V)
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where V(N) is the coordinate-space integral for

N hadrons of extent V, each. Now C(V)=[V/V,]
terminates the summation when “the box is full.”
In other words, hadronic matter exhibits two
limiting forms: at low-energy density it is the
rest mass of the pion that provides a bound on

the number of particles possible and at high energy
it is the size of the pion that does so.

Our aim will be to obtain the thermodynamic
description of these two regimes (equations of
state, temperature dependence of energy and

_particle density, etc.) as well as of their connec-
tion; in particular we shall show that the increase
of energy density or temperature in general leads
to a phase transition from a state of high mobility
and copious production to one of low mobility and
strongly suppressed production.

II. THE RELATIVISTIC HARD-CORE GAS

A. The general formalism

We consider here the density of states for a
system of hard-sphere pions, each of intrinsic
volume V, contained in a box of volume V,

o(P2, V)= 5(P)

Z (Zfr)’”N !
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The first term corresponds to the vacuum, while
V(N) denotes the coordinate-space volume avail-
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able to N pions. The highest possible value of
the number of pions is determined either by the
finite overall energy of the system or by the
finite overall volume, as discussed above.

The corresponding partition function Z(8, V) is
given by

28, )= | P e o(er, ), ()
where g=(8,8*)*/?, with 82>0, 8,>0, denotes

the inverse temperature §=1/kT. From Eq. (3)
this yields '

C
26,7= 3 o A O (5)
(po(B)EfdsPe-B“’“ :H—En—-z—Kz(mﬁ), (6)

with V(0)=1, and again C=[V/V,]. The coordi-
nate-space volume® for N hard spheres is given by

= f Tatgen] -8 3 00-0),
(M

)0, >R,
U(r)—{w, y<F, (®)
where V,=47R,?/3.

We note that in contrast to nonrelativistic sys-
tems, where one has the particle number or
chemical potential as an additional external param-
eter, both o(P?, V) and Z(8, V) are functions of two
variables only. This feature is characteristic
for closed relativistic systems without conserved
quantum numbers, since here the interaction dy-
namics fixes the particle number density for a
given internal energy. For such systems—the
photon gas is a well-known example—all thermo-
dynamic quantities become, with ¥V — «, functions
of energy density or temperature only. In par-
ticular, from the Helmholtz free energy

BA(B9 V)=—1nZ(ﬁ, V), (9)
the pressure is obtained as
Pp=1im(-B(2A/3V),]

=1lim[d InZ (8, V)/2V],, (10)
Vo
while the particle number density is given by
1 (aan(ﬁ,V)) ]
n—lvl;IE[V"o" 09, Jyd° an

Equations (10) and (11) take the place of the non-
relativistic virial equations. Although there is
no room now for a chemical potential as an inde-
pendent variable, we may nevertheless introduce an
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analogous creation-annihilation potential u to
describe the resistance or affinity of the system
towards particle production. The general parti-
tion function ‘

26,71= 3 RV, BT (12)

with R, (V, B) determined by the interaction, is
written as

u8
26,7)= (L)', (13)

in order to define u in

s 1 (21)°InZ(, V)
¢ -—lvl"tg quo(ﬁ)

as a creation potential. From Eq. (14) one im-
mediately obtains p=0 for a photon gas (R, = V¥),
as expected for a system with “free” creation and
annihilation. Finally we observe that the require-
ment of equal free energy densities as an equilib-
rium condition implies automatically, by Eqs. (9)
and (14), also the equality of creation potentials.
Let us now return to the hard-sphere partition
function (5). The evaluation of the configuration-
space integral (7) is in general a highly nontrivial
mathematical problem.® A closed-form solution
exists in fact only for systems in one space di-
mension”; however, such systems cannot undergo
phase transitions® and therefore do not provide
even a qualitative approximation in the vicinity of
the critical density. Alternative approaches are
computer simulations,® mean-field models,® and
considerations of high- and low-density limits
together with equilibrium conditions.’* We want
to concentrate mainly on the latter; but to illus-
trate the concepts and methods involved, we shall
start with some over-simplified soluble models,
including also the one-dimensional case.

(14)

B. The truncated ideal gas

We shall first look at the simplified form of the
partition function (5) resulting from the ansatz

N(V)=V¥, (15)

maintaining, however, C=[V/V,] as the upper
limit of the summation in Eq. (5). This amounts
to neglecting the effect of hadronic size on the
coordinate-space volume everywhere except in the
cutoff when the box is full. Using Eq. (15), we
can rewrite the partition function as

' _ %~ (Cx)!

2@,V)= 2 "5 =2(%,0), (16)
v, | |
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The thermodynamic description of the system is
then obtained through Egs. (10) and (11). To
evaluate Z(x, C), we note that it is always bounded
by exp{Cx}. In the summation (16), two different
cases are now possible: {Cx} can be such that the
largest term in the expansion of exp{Cx} occurs
for some N <C, or {Cx} is such that N>C. In the
first case, we expect exp{Cx} to approximate
Z(x,C); in the second we do not. - To determine
the largest term in the expansion of exp{Cx}, we
write

(Cx) /N1~ (eCX/NY /V2rN =%ﬁe’“ Uafecr}=ial)

(18)

~ Differentiating with respect to N, we obtain
In(eCx/N)=1+1/2N (19)

as a condition for the maximum, which thus
occurs when .

Cx=Ne'/>, (20)
or, with N — e, approximately for
Cx=N, (21)

Hence, if x <1, the maximum term inthe expan-
sion exp{Cx} is included in the summation (16);
if x> 1 it is not.

For x <1, we have, therefore,

(Cx)Cx N er

Cx > > ~
€2 2(x,0) Ct  (2nCx)t/2?

(22)

using the largest term in the sum as lower bound.
It follows that

x a-é;an(x, C)zx- -é—ln(ZTer)l s (23)

so that in the thermodynamical limit we have

L1
g.rr:EInZ(x, C)=x. (24)

For x>1, the largest term in Eq. (16) occurs at
N=C, and hence

(Cx Cx)

€+ 2, 00> &8

(25)
Using again the Stirling approximation, this gives
1 :
}:Ln:-élnz(x, C)=1+Inx (26)

as the thermodynamic limit,

For the pressure, we then have from Eqs. (10),
(24), and (26)

%, x<1
pﬂV°={1+lnx, 521 @)

while Egs. (11), (24), and (26) give
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FIG. 1. The particle density for the truncated ideal
gas.

x, x<1

nV(,:{l’ %=1 (28)
for the particle density. The density of the sys-
tem thus increases up to the critical value n,
=1/V, of one hadron per cell of hardonic size
(“full box”) and then remains constant, as shown
in Fig. 1. From Egs. (27) and (28) it becomes
clear that

Vi@o(B)

x, =—-W =1 (29)
defines a critical temperature associated with a
phase transition; since (6A/2T?);~dn/dx is dis-
continuous at B,, while (dA/9T), ~n is continuous
there, the transition is of second order.

The energy density of the system,

1x,  13InZ(x,C)
V. WARTT T ar (30)
becomes similarly
1ax f1, <1
== =x{ ! 1
‘ V, 98 {l/x, x>1 5y
and thus leads to a specific heat
2%x
\ -a—B—z, x<1
VoCr=FX12x 1 faxy (52)
——_= >
% 8 xz(aﬁ)’ 1

with a finite discontinuity at x =1, as expected of
a second-order phase transition. In the ultra-
relativistic limit (m —0),

@o(8)=8r/p° (33)
and hence at the critical temperature

kT ,=q2/3y /3 (34)
the jump in the specific heat becomes

ACy=Cy(T%) - Cy{T)=-9, (35)

with T}(T?) denoting the approach to T, from above
(below), respectively.

Finally, we note that the creation potential (14)
is given by
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0, x=<1

pg= ln(l +x1nx>, x=1 (36)

as shown in Fig. 2.

The nature of the two phases involved is by now
quite clear: below T, we have essentially black-
body radiation, with =0 and [from Egs. (31)
and (33)] the Stefan-Boltzmann relation

e=(3/m®)RT)* (37)

between energy density and temperature. At T
=T, the creation of further hadrons is stopped
because of the finite size of the hadrons [hence
T, is, in Eq. (29) or (34), determined by V,].
Beyond T, we have a relativistic gas with a fixed
number of constituents and hence an energy
density

e=3n kT, ' (38)

as obtained from Eqs. (28) and (31). Itis thus
the size of the hadrons which assures that the
limit of high energy density does not lead to a
photon gas. Turning to the specific heat, we note
in the low-density phase, an energy input is con-
verted both into additional particles and internal
motion, while in the high-density phase, it is all
put into internal motion. Hence more energy is
needed below T, than above to increase the tem-
perature, and so C3,>C%.

In closing this section, we observe that the
equation of state

1, x<1
pﬁ/n:{1+lnx, x>1 (39)

has the form shown in Fig. 3.

C. The one-dimensional case

In Sec. II B, we considered the hard-sphere
repulsion between hadrons only through the upper
bound N <C of the partition function. We shall
now include to some degree the reduction of the
coordinate-space volume V(N) as well, replacing
Eq. (15) by

V(N)=(V =NV,); (40)

this approximation becomes exact for hard-core

~C

FIG. 2. The creation potential for‘ the truncated ideal
gas. : \ ,

‘nﬁ‘
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FIG. 3. The equation of state for the truncated ideal
gas (solid line) and for the one-dimensional hard-core
gas (dashed line).

systems in one space dimension,’
Using the same notation as before, we find for
the partition function (5)
[+

[}
26,0= 3 G (-2 = X a0 @

N=0

In contrast to Eq. (16) we no longer have two
cases: the largest term of the sum always occurs
for N< C, which—as we shall see—prevents the
appearance of a phase transition. Denoting the
largest term in the sum (41) by gg(x, C), we have

gilx,C) s Z(x,C) <Cgz(x, C), (42)
and hence

1 1 1 1
¢ lngg <glnZ <zlngg +=InC. (43)

In the limit of C — =, this implies

.1 1
lunEInZ(x, C)=}:i_{galng;(x,C), (44)

Cm oo

and similarly for the derivatives with respect to
V or x; we thus need to determine only gz(x, C).
Using the Stirling approximation

1
, C) o mmmee oV 1410510 (N /C)y+lu(1=N /C)} , 4
gN(x )g m ( 5)
we find that gy(x, C) attains its maximum as a
function of N at fixed x for N=N, with N~V and

N
C-¥

From Eq. (45) follows

Inx = +-C-%slnb(x)+b(x) . (46)

L ingz(x, ©)=b(x), (4)
so that Eqs. (44) and (47) give
lim 2 1nZ(x, €)=b(s) (48)
[2hadl
with b(x) defined by Eq. (46) as satisfying
x=be, C(49)
Consequently we obtain -
P8V, =b(x) - s
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for the pressure,

nV,=b(x)/[1+b(x)] (51)
for the particle density, and
up=1n[b(x)/x] (52)

as the creation potential. Combining Eqgs. (50)
and (51), we recover with

PB/m=1/(1 =nV,)=1+b(x) (53)

the equation of state of a one-dimensional hard-
core gas.”

Both Eq. (53) and the arbitrary differentiability
of b(x) show that no phase transition can occur.
The low-temperature limit (x <1),

PBVy>x,
nVy~x, (54)
up=0,
as well as the high-temperature limit (x> 1),
PRV, =Inx,
nVy=1, (55)
ug =~ In[b(x)/x],

agree with the results of the truncated ideal gas,
but here the transition between the two limits is
without any discontinuity. The functional form of
the equation of state (53) is shown in Fig. 3.

We note that the absence of a phase transition is
in accord with Van Hove’s theorem,® which ex-
cludes phase transitions for one-dimensional sys-
tems with finite-range potentials. Although our
Eq. (5) describes three-dimensional systems, the
approximation (40) becomes exact only in the one-
dimensional case and hence must lead to the cor-
responding result. We shall return to the physics
of this situation a little later.

D. Gas-solid phase transitions

Let us now come back to the full three-dimen-

sional coordinate-space integral [Eqs. (7) and (8)].

In spite of many attempts, it has so far not been
possible to obtain a general analytic evaluation
for it, nor for the corresponding two-dimensional
case; the available results are either high- or
low-density limiting forms, or numerical (Monte
Carlo) simulations, Neither allows to show, in

a mathematical sense, the existence of a phase
transition.'* Nevertheless, the computer experi-
‘ments are quite generally taken as convincing
evidence that such a transition does indeed occur.
A further discussion of this problem is clearly
beyond the scope of the present paper; see, e.g.,
Ref. 9 for an assessment of the case. Here we

shall instead concentrate on the limiting forms

and on the physical nature of the two phases, as
well as to the relation of the full problem to the
simplified examples considered above,

For a sufficiently dilute hard-sphere gas, a
given constituent can, in principle, reachalmost
any region of the available coordinate space—pro-
vided enough time and collisions, With increasing
density, this mobility is more and more restrained
by the extension of the other constituents, At
some critical density #,, clearly less than that of
the full box (“close packing”), individual particle
mobility over arbitrary distances ceases: the
particle becomes essentially imprisoned by its
neighbors (Fig. 4). Although motion as such is
still possible, it resembles more an oscillation
about a fixed lattice site, rather than Brownian
motion throughout the system. Thus, thetwo
phases on a qualitative level emerge quite natur-
ally: a gas phase, in which an individual consti-
tuent can get around its fellow constituents by
collisions and hence move over arbitrary dis-
tances in the system, and a solid phase, in which
a given constituent can no longer get past his
partners and hence becomes localized.

It is already clear at this point why ideal one-
dimensional hard-core systems cannot exhibit
phase transitions: the constituents can never get
past each other and hence the system is always,
even at low density, in a solidlike phase. We
shall soon see this more quantitatively.

On the other hand, by neglectingthe constituents’
size, except in the upper limit of the summation
(5), we always allow complete mobility, restrict-
ing by N <C only the number of possible constit-
uents. Hence the system of Sec. IIB is always a
gas; the transition observed is from unlimited to
limited particle number.

Thus neither of our simplified models provides
an adequate description of the phase transition
exhibited by a system of three-dimensional ex-
tended hadrons. Such a system passes, with in-
creasing density, from a state of free mobility
and creation/annihilation to one of bounded mobil-
ity and strongly damped production. In other
words: particle creation, when combined with the
spatial extension of the created objects, leads

~. O 0880@
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FIG. 4. Particle mobility in a dilute (2) and in a dense
() system.
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with increasing energy density to the occurrence
of solidification (bounded mobility) as well as to
the eventual suppression of further particle pro-
duction.

We should emphasize here that the phase transi-
tion gas/solid arises without any attractive po-
tential®; it is solely the difference in mobility,
due to the constituents’ extension, which defines
the phases and provides the transition. The in-
troduction of an additional potential can modify
the critical temperature or lead to further transi-
tions (such as gas/liquid), but it cannot remove
the basic transition from mobility to imprison-
ment. As this transition corresponds to a funda-
mental change in the order of the system, we
expect the transition to be of higher order.

Let us now consider the low- and high-density
limits of the hard-sphere gas. If the free energy
densities (or equivalently, the pressures) of
these two limiting forms cross at some tempera-
ture T,, then the system, which at equilibrium
must always be in the state of lowest free energy,
will experience its phase transition approximately
at T=T,. Clearly, the more precise a limiting
form we obtain for each phase, the more precise
will such a determination of 7', be. We expect,
of course, the free energy to be lower for the gas
phase when T < T, and lower for the solid when
T>T,.

At low density, we obtain the leading behavior
by considering, as in the one-dimensional case,
the reduction of the coordinate-space volume due
to the presence of the constituents. For a repul-
sive hard-core potential, the presence of one
particle removes from accessibility to the center
of a second particle a region of the size

Va(d)=3(2V,), (56)

where d denotes the spatial dimension of the sys-
tem; the factor { distributes the excluded volume
equally amongthe two particles. If we neglect the
effect of higher-particle-number interferences,
we get

VN~ (V = NV = v”(1 -%'VE)" (57)

for the low-density coordinate-space volume,
Proceeding as in Sec. IC, this results in expres-
sions analogous to Egs.(50), (51), (52), and (53),
with V; replaced by V.

The high-density limit can be obtained by use
of the “free volume” approach.® At sufficiently
high density, a given constituent is essentially
constrained to a cell of volume V/N; inside this
cell, the motion of the constituent’s center of .
mass is further restrained by the extension of the
constituent. Adopting for simplicity cubic cells,
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we see that the center of mass can move freely
within a volume

[(V/N)lld_ f}EUd]d, (58)

where V denotes the volume occupied by the con-
stituent in the limit of dense packing, and 4 again
the space dimension, This gives

V()= NI[(V/NP /e - 7t apn (59)
as the coordinate-space volume at high density;
the N! accounts for the possible permutations
[or, equivalently, removes the 1/N{ in Eq. (3),
introduced there to avoid double counting]. Equa-
tions (5) and (59) lead to the partition function

Z@, V)= é::ﬂ _[‘Igﬂg;fgl/;;]" [I _ (% VEYM]M 60

which can again be treated by the methods used
in Sec. IIC. The result is

PBVg=b4/(1+b )", (61)
nVy=[b/(1+b)), (62)
pﬁ/n: 1/{1 —[nvg(d)]”d}: 1+ bs ’ (63)

for pressure, density, and equation of state.
Here

b 4x,) Psis) — X, = ‘71:'%( p)/e (64)

determines b, as a function of the temperature.
In the three-dimensional case,® Vz=6V,/vV2r
~1,35 V,, yielding with Eq. (57),

Y1 -4V, gas (65)
o6/ "_{ [1-(1-3%nV0)”3]", solid (66)

for the equations of state (see Fig. 5). When con-
sidered as a function of the temperature, the two
limits of the pressure exhibit the behavior shown
in Fig. 6: the pressure of the gas is largest at
low temperature, that of the solid at high temper-
ature; for the corresponding free energies, the
inverse is true, Consequently, we can approxi-
mate the behavior of the system by the gas curve
for T< T, the solid curve for T >T,, with the
phase transition at T =T, The corresponding
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FIG. 5. The equation of state of the hard-sphere sys- -
tem (solid line) and its low- (G) and high- (S) density .
limits. Oy
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FIG. 6. Pressure vs temperature for the hard-sphere
gystem (solid line), with low-(G) and high- (S) density
limits.

equation of state is shown in Fig. 5: at the crit-
ical pressure p,, as determined by the tempera-
ture T,, the system undergoes the phase transi-
tion from gas to solid. The density exhibits the
behavior shown in Fig. 7: approaching from be-
low T, the free energy becomes at T lower for
the solid than for the gas, and so the density

jumps from the lower gas to the higher solid value.

* We note that the limiting values of the pressure
become, from Egs. (61), (64), and from the re-
sults of Eq. (57),

gas solid

Vo#o > Vop,/e, x«<1 67)

PBV,=¢ InV,0, < InVo0,
—< x>»1, 68
VE/ VO VE/ Vo, ( )

The last inequality, i.e., the higher pressure for
the solid as compared to that of the gas, follows
whenever Vg > Vg, which is true except for the
one-dimensional case, where Vy=V,="V,, ex-
cluding the crossover in the pressure and hence,
as already mentioned, the phase transition.

The phase transition we have obtained by using
the crossover in free energies (or pressures) is,
as seen from Figs. 5 and 17, of first order:
(9a/dn), is discontinuous at T,, with a=lim,.
A(T,V)/V denoting the free energy density. It
should be emphasized, however, that this result
is a consequence of our approach to finding the

phase transition through limiting forms and cross-

over; it says nothing about the actual order of the
phase transition, and hence cannot be used, e.g.,
to determine meaningful critical exponents.

n
1
'lﬁe /‘S
1 /"‘:
zvﬂ 3 I’ —== G
I/,
G
T gt

FIG. 7. The particle density for the hard-sphere

" system (solid line), with low- (G) and high- (S) density
limits.

Finally, some remarks on the numerical value
of the critical temperature. As already indicated,
the precision in the determination of T depends
sensitively on the quality of the approximation
provided by the two limiting forms. The forms
we have used here, Eqs. (57) and (59), correspond
to one order beyond the asymptotic form [Eqgs.
(53) and (57) give the correct second-order virial
coefficients]. Comparing our Fig. 5 withthe re-
sult of computer simulations,® we find rather good
agreement for the solid phase, but a considerable
overestimate for the gas. As evident from Fig. 6,
this result is an overestimate for T,. Toillus-
trate, using the simplest limiting form, Eq. (57),
we obtain

dr .
T,~1X10%m, Vy=—m™, (69)
while the use of a more precise gas approxima-
tion'® gives

T,~350m, V[,=-‘-1-g-m'3 (70)
instead, showing the strong dependence of the
value of the critical temperature on geometrical
details in the vicinity of dense packing. The value
(70) is still considerably higher than expected
from either the results of Sec. IIB or from pre-
vious considerations of critical hadron tempera-
tures.'®™ It is not clear whether this is due to
the method of determining T, used here, or
whether it calls for the introduction of anaddi-
tional attractive potential, which would at the
same time lower T and include the effect of
hadronic resonances.

. CONCLUSIONS

We have shown that hadron physics, because of
the presence of a dimensional scale, the size of
the hadron, contains an intrinsic “self-bounding”
mechanism: the size of the constituents prevents,
with increasing energy density, an ever increas-
ing number of produced hadrons. In Fig. 7 we
saw that the particle density approaches, as a
function of the temperature, a limiting value of
dense packing. If we want to interpret this in
terms of interaction strength, then we must con-
clude that with increasing energy density the
coupling between hadrons becomes weaker—in
accord with the idea of asymptotic freedom.

In closing, we note some further points of
interest,

(1) The behavior of the tempefature asa func-
tion of the energy density is shown in Fig. 8. At
low-energy density, the system is in the gas
phase; it continues to remain there even beyond
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Tcs ________

FIG. 8. Temperature vs energy density for the hard-
sphere system (solid line), with low- (G) and high-(S)
density limits.

¢’, although this leads to a more rapid tempera-
ture rise than the solid phase would cause. The
reason is evident from Fig. 9, showing the crea-
tion potential; the system remains always in the
phase of lowest resistance towards production,
since more particles provide, roughly speaking,
more states and hence a higher entropy. Up to
the critical temperature T, this is best achieved
in the gas phase; only beyond T, does the order-
ing of the solid become more efficient.

(2) The results obtained here remain valid also
for sufficiently singular soft-core potentials of the
type U(r)~7™", n=> 4, instead of Eq. (8).'® Such
a change could, however, greatly affect the nu-
merical value of T,.

(3) The critical behavior found here is due to
the finite size of the hadrons. On the other hand,
critical behavior is also obtained for pointlike
hadrons with suitable interaction.}?"'%!® This sug-
gests that these different ways to a similar con-
clusion are but two ways of stating the same thing,

FIG. 9. The creation potential for the hard-sphere
system (solid line), with low- (G) and high- (S) density
limits.

the presence of a dimensional hadronic scale.
The equivalence®’ of the Pomeranchuk model!
and the statistical bootstrap model,*? as far as
the density of states is concerned, supports this
supposition. However, a picture of pointlike
constituents in interaction does not, without addi-
tional (and apparently so far unaccountable)
assumptions, provide the limited density, which
arises naturally for extended hadrons.

We have, in the present paper, considered hard
spheres in a vacuum—looking at hadrons from
the outside, so to speak. As a complementary
study, one may start from a world of confined
quark-antiquark pairs of potential zero within a
volume V,, infinity outside of it. ‘This look at
hadrons from the inside will be taken up in a sub-
sequent paper.
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