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Abstract. We study the restoration of rotational 
symmetry of the heavy quark potential obtained 
from elongated planar and off-axis Wilson loops 
measured on a 164 lattice at/~ = 5.4 and 5.7. While 
the rotational symmetry is still distorted at /~ = 5.4 
the potential is consistent with rotational symmetry 
at /~ = 5.7. If we were in the asymptotic scaling 
region the linear slope would correspond at/3 = 5.7 
to a string tension AL/x/0" = 0.0074 + 0.0002. 

I. Introduction 

Early exploratory studies of S U(3) lattice gauge 
theories 1-1] indicated that continuum physics can 
be extracted from Monte Carlo simulations per- 
formed on rather small lattices at moderate values 
of the correlation length. These calculations were 
consistent with asymptotic scaling according to the 
one-loop fl function 

247t2 -2 51 48rc 2 _2t  
a A L = e x p ~ - - ~ - 9  + i ~  l n ~ - g  ~ (1) 

already for 1/92 > 0.9 (fl -- 6/92 > 5.4). However, 
recent more detailed investigations of the string 
tension 0"[2-4] and critical temperature T [5] on 
large lattices have shown that the approach to the 
continuum limit is more subtle than it was previously 
assumed. Significant deviations from asymptotic 
scaling have been observed in the regime of coupling 
constants, f l_  5.4-6. The question to what extent 
we observe continuum physics in present Monte 
Carlo studies of lattice QCD, even in the pure glue 
sector, certainly requires further investigations. 

One signal for the onset of continuum physics 
is the restoration of the rotational symmetry of 
the heavy quark potential 1-6] which, in the strong 
coupling regime, is distorted due to the discreteness 
of the Euclidean space-time lattice. In the case of 

l On leave of absence from Central Research Institute for Physics, 
Budapest, Hungary 

S U(2) lattice gauge theory the restoration of the 
rotational symmetry of the potential has been con- 
vincingly demonstrated [6]. For pure S U(3) gauge 
theory, the restoration of rotational symmetry has 
been analyzed in the context of glueball mass spec- 
troscopy in I-7] where a restoration of the symmetry 
for /~ > 5.5 has been observed. In this paper we 
present results for the S U(3) heavy quark potential 
at two values of fl(/? = 5.4 and 5.7) on a 164 lattice. 
We analyze the rotational invariance of the potential 
and determine the string tension from its asymptotic 
slope. The efficiency of a recently proposed method 
to suppress statistical fluctuations in the measurement 
of large Wilson loops I-3] ("multi-hit" method) 
is also investigated. The comparison of conventional 
and multi-hit measurements at /~= 5.7 and 8.0 
shows that the multi-hit method works well for 
large planar Wilson loops at moderate correlation 
lengths. This method allows us to determine the 
potential up to distance R = 5a at/~ = 5.7. 

2. Measurement of Wilson Loops 

In order to analyze the heavy quark potential we 
need the expectation values of Wilson loops 

W(C) = ( T r  I~c U~) (2) 

where U,~SU(3) are the usual link variables on the 
link i of a four-dimensional hypercubic lattice. The 

"spatial" parts of the loop C connect the quark- 
antiquark sources which lie off-axis in general. The 
"time-like" parts of ~2 are straight lines and the loop 
is elongated in the time direction (Fig. 1). 

The expectation values of Wilson loops have been 
calculated on configurations generated on a 164 
lattice according to the partition function 

Z(t~) = S H dU.,u e-psw) (3) 
l inks  
tl,/t 
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Fig. 1. The potential V o (R) is determined by measuring spatially 
elongated Wilson loops. For example, the potential V(R = (2, 1.0)) 
is obtained from the loops of this figure at different, large values 
of T 

where S(U) denotes the standard Wilson action 

s ( u )  = 
plaguenos 

"(1 - ~Re Tr U ~, U.,,+~, ~ U + , U + , .  , . + , ~ ,  . , ~ ,  (4)  
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We have analyzed 30 configurations at fl = 5.4 
and 40 configurations at B = 5.7. These configurations 
were taken out of a sample of 50 well-equi!ibriated 
configurations separated by 10 full sweeps which 
have been used previously for spectrum calculations 
[-8]. Our results for the Wilson loop expectation 
values are summarized in Tables 1 and 2. In order 
to obtain statistically significant results also for 
large loops at fl = 5.7 we have used the "multi-hit" 
method to measure planar loops with R, T > 3. 
This method has been used by Parisi et al. [3] to 
measure Polyakov line correlations at large distances. 
Also for an S U(2) gauge group the method leads 
to a significant reduction in the statistical error of 
large Wilson loops for couplings in the cross-over 
region [9]. For the multi-hit measurements, we 
replace (2) by 

Table 1. Measured values of planar and off-axis Wilson loops W(R, T) at fl = 5.4 on a 164 lattice. T denotes the extent of the loop in the fourth 
direction. The second column shows the path of length R in the three spatial directions 

T 

R Path 1 2 3 4 5 6 7 

1 "-~ 1.4149(26) 0 .6939(20)  0 .3430(11)  0 .1696(10)  0 .0843(6)  0.0416(6) 
1.41 ~ 0.7836(21) 0 .2482(15)  0 .0835(10)  0 . 0 2 8 8 ( 5 )  0 . 0 0 9 5 ( 3 )  0.0032(3) 

r 
1.73 ~ 0.4504(17) 0 .1007(10)  0 . 0 2 5 8 ( 3 )  0 . 0 0 6 6 ( 4 )  0 . 0 0 1 2 ( 4 )  0.0007(3) 
2 . . . . .  0.1810(9) 0 . 0 4 9 0 ( 7 )  0 . 0 1 3 4 ( 3 )  0 . 0 0 4 1 ( 3 )  0.0009(3) 

2.236 . . . .  ] 0.3949(17) 0 .0719(10)  0 . 0 1 4 4 ( 3 )  0 . 0 0 3 1 ( 4 )  0 . 0 0 0 7 ( 3 )  0.0006(3) 
3 . . . .  , - ~  0.0074(3) 0 . 0 0 1 0 ( 3 )  0.0005(3) - -  

0.0207(5) 
0.0007(3) 

0.0007(5) 

h 

Table 2. Same as Table 1 but at fl = 5.7. The star indicates loops measured with the multi-hit method of [3] 

T 

R Path 1 2 3 4 5 6 7 

1 ~ 1.6470(30) 0.9734(18)  0.5848(12) 0 .3528(7)  0 .2127(6)  0.1284(5) 

1.41 ,_~ ' 1,0804(19) 0.50i8(12) 0 .2487(6)  0 .1253(4)  0 .0630(3)  0.0323(5) 

t.73 ,-*; 0.7360(17) 0 .2890(9)  0 .1277(7)  0 .0586(4)  0.0272(5) 0.0123(4) 
2 . . . . .  0.3962(14) 0.1725(10) 0 .0763(6)  0 .0343(3)  0.0152(3) 

2.236 . . . .  ,~ 0.6609(17) 0.2293(11) 0 .0915(5)  0 .0379(4)  0 .0158(3)  0.0064(3) 

2.45 . . . .  f 0.4555(11) 0 .1380(3)  0.05t0(4) 0 .0195(4)  0 .0812(2)  0.0313(4) 

? 
2.83 , - ] -"  0.4226(101) 0.1158(48) 0.3953(18) 0 .0140(9)  0 .0051(4)  0.0022(3) 
3 . . . . . . . .  0.05824(38) 0.02078(25) 0.00746(13) 0.00273(7) 

3.16 . . . . . .  ~ 0.3998(10) 0 .1026(9)  0 .0327(3)  0 .0114(3)  0 .0036(4)  0.0012(3) 
4 . . . . . . . . . .  0.00609(17) 0.00182(8) 0.00055(3) 
5 . . . . . . . . . . .  0.00049(3) 0.00012(2) 

0.7743(4) 

0.0163(3) 

o.oo51(5) 
0.0067(3) 

0.0030(3) 

0.0139(3) 

0.0088(4) 
0.00098(4) 

0.0004(3) 
0.00016(3) 
0.00003(1) 
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where 0~ = U i for the first and last link on the two 
time-like sides of the Wilson loop and 

Oi=SdUiexp{~TrUiX:  + h.c.}. U,/ 

/ ,dV~exp{~TrV~X +, + h . c . }  (6) 

elsewhere. Here X~ + denotes the sum of the six 
ordered products of the three remaining links 
completing the plaquettes which contain the link 
variable U i. Contrary to the case of S U(2), where 
the integral, (6), can be done analytically [9], one 
has to evaluate 0 i numerically in the case of S U(3). 
We have analyzed 15 configurations at fl = 5.7 using 
the above multi-hit method. The one-link integral, 
(6), has been evaluated using the Cabibbo-Marinari  
heat bath algorithm [10] with three S U(2) subgroup 
updates and 15 hits for each of them. The results 
of these measurements are included in Table 2. 
To check the advantage of this method over conven- 
tional loop measurements we compare in Table 3 
the results obtained in both ways for large loops. 
The time requirement for the analysis of a given 
configuration using the multi-hit method (with 15 
hits) was about a factor 10 larger than for a con- 
ventional measurement. However, taking into account 
the c~eation time for one new independent con- 
figuration, this reduces to a factor ~ 3-4. One 
may thus conclude that the multi-hit method is 
preferable, whenever the statistical error obtained 
on a given set of configurations is smaller by a factor 
of ,-~ 2. At fl = 5.7 this is certainly the case for planar 
loops with R +  T > 8 .  We performed a similar 
comparison at fl = 8 where it was found that the 
multi-hit method did not reduce the statistical 
error significantly. This is understandable as at 
fl = 8 the correlation length is already so large 
that the averaging procedure involved in the multi-hit 
method, (6), is not necessary to smooth the distribution 
of link variables. 

Table 3. Comparison of large Wilson loops W(R, T) measured 
with the conventional method (a) on 40 configurations at fl = 5.7 
and using the multi-hit method of [3], (b) on 15 configurations 

R T W(R, T) (a) W(R, T) (b) 

3 4 0.02109(31) 0.02078(25) 
5 0,00746(35) 0.00746(13) 
6 0.00273(24) 0.00273(7) 
7 0.00076(31) 0.00098(4) 

4 0.00616(26) 0.00609(17) 
5 0,00178(3i) 0.00182(8) 
6 0.00059(38) 0.00055(3) 

0.00016(3) 

5 0.00049(3) 
6 0.00012(2) 
7 0.00003(1) 
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3. The Heavy Quark Potential 

The ground state energy of a pair of heavy quarks 
and antiquarks separated by a distance R can be 
expressed in terms of the expectation values of the 
Wilson loops of Fig. 1 as 

Vo(R ) = lim ln[W(R,  T -  1)/W(R, T)]. (7) 
T - ~ c o  

Vo(R ) is the dimensionless lattice potential which 
still contains an additive (divergent, non-physical) 
self-energy contribution. This additive constant should 
be removed when the scaling properties of the 
potential are investigated [11]. The slope of the 
linear part of the potential is, of course, not influenced 
by this constant. 

In practice, the limit T ~ ~ cannot be taken and 
only finite T approximants to (7) can be calculated 
on finite lattices. For finite T the Wilson loop ex- 
pectation values are built up by a superposition 
of excited states in addition to the ground state 
contribution V o (R) 

W(R, T) = Co e-v~ + c 1 e -v'~R)r + ... (8) 

with non-negative coefficients c .  This ensures that 
for any T the approximants 

VT(R ) = ln[W(R, T -  1)/W(R, T)] (9) 

are an upper bound for the potential V o at distance 
R. In fact, in practice, VT(R ) describes the asymptotic 
behaviour well as soon as T ~ > I R I + I  [12]. This 
can be seen in Fig. 2, where the approximants VT(R ) 
are plotted as a function of T for different values 
of R. 
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Fig. 2. Logarithms of Wilson-loop ratios Vr(R ) =ln[W(R,  
T -  1)/W(R, T)]. The Wilson loops have been measured on a 
164 lattice at fl = 5.7 
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Fig. 3. The heavy quark potential V o (R) versus R ~- ]R] measured 
off a 164 lattice at /~ = 5.7. Vo(R ) is determined from the average 
of the approximants Vr(R), T = 4, 5, 6 for R < 3.16; T = 5, 6, 7 for 
R = 4  and Vo(R ) = V r ( R ) , T = 6  for R = 5 .  The solid line is a 
least square fit to the data: Vo(R ) = 0.42 + 0.20R 
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Fig, 4. Same as Fig. 3 but at 1~ = 5.4. Vo(R ) is determined from 
the average of the approximants Vr(R), T = 4, 5, 6 for R N 1.5; 
T = 4, 5 for R = 2 and Vo(R) = Vr(R), T = 4 for R = 1.73, 2.236 and 
3. The solid line is a least square fit to the data: Vo(R ) = 0.24 + 0.56 R 

If rotational symmetry is restored, V o (R) = V o ([ R I), 
and Vo(R ) plotted against ]R] is a smooth, single 
valued function of [R[. This is really the case at 
fl = 5.7 (Fig. 3). Within the statistical errors, the 
points are consistent with rotational symmetry 
at this coupling. Additionally, there is an early 
onset of linear behaviour: for I RI 1.5 the potential 
is well described by the form 

Vo(R ) = a + blRI, IRI->- 1.5, = 5.7. (10a) 
A least square fit gives 

a = 0.43 + 0.01 ;b = 0.195 + 0.01. (10b) 

A. Hasenfratz et al. : Rotational Symmetry of  the SU(3) Potential 

From the slope b of the potential we can determine 
the string tension a in units of A L. Using (I) this 
yields 

AL/x/~(fl = 5.7) = 0.0074 _ 0.0002 (11) 

in accordance with earlier determinations of AL/x/a at 
this value of fl [2]. Clearly, the situation is different 
at fl = 5.4 (Fig. 4). Here the rotational symmetry 
of the potential is still distorted due to lattice artifacts. 
The points are not consistent with a smooth curve. 
A linear fit to the potential gives Vo(R)= 0.24 
+ 0.56[R l, but the points scatter widely around this 
curve. 

4. Conc lus ions  

We have analyzed the rotational invariance pro- 
perties of the S U(3) heavy quark potential. While 
the rotational symmetry is still distorted at /~ = 5.4 
we find a rotationally invariant potential at/~ = 5.7. 
This observation raises the possibility that for 
~ > 5 . 7  continuum behaviour might already be 
present. In th is  case the physical quantities should 
scale; although not necessarily according to the 
asymptotic form of (1), but governed by the full 
1% function. 
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