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We study the acceptance probability in the hybrid Monte Carlo method applied to lattice QCD with dynamical fermions. We 
investigate in detail its dependence upon the step-size and the parameters r, mq and V, and suggest a simple phenomenological 
formula for this dependence. 

1. Introduction 

The recently developed hybrid Monte Carlo 
(HMC) method [ 1 ] has become an important tool 
for numerical investigations of  lattice QCD. While in 
principle equally applicable to pure gauge theories, 
its most significant role is in simulations of  the full 
theory. As in earlier fermion algorithms which have 
been widely used, the key to its success is that it re- 
quires only O(1 ) (incomplete) fermion matrix in- 
versions per update of  the entire lattice. The addi- 
tional attractive feature of  the HMC method is that, 
in contrast to these earlier methods, it is free from 
systematic finite-step-size errors. Among existing 
"exact" algorithms it also appears to be superior in 
efficiency. While the computer time T required to 
generate independent configurations grows quadrat- 
ically with increasing system size V for other "exact" 
algorithms, it has been argued that T ~  V 5/4 for the 
HMC method [2,3]. In addition to an overall vol- 
ume factor, this estimate takes into account the fact 
that the step-size AT used in the discretized equations 
of motion has to be reduced as the volume is in- 
creased in order to maintain a reasonable acceptance 
probability in the global Metropolis step. One ex- 
pects that A~" g ~ V - 1 / 4  [ 2,3 ], where A'C g denotes the 
step-size needed to achieve a given acceptance. 

Crucial for the performance of QCD algorithms is 
also the scaling of the computer time requirement 
with decreasing quark mass m q .  An increasing num- 

ber of  iterations for fermion matrix manipulations, 
by today's methods, gives rise to a factor mff 1. In ad- 
dition, one is confronted with the problem of critical 
slowing down, associated with a diverging correla- 
tion length ~ = m ;  1 . From random walk arguments 
one would expect the autocorrelation time to grow 
like ~2, i.e. like mq  I a s  mq---r0 at fixed coupling. 
Quantitative verifications of  this are, however, still 
missing. Note that both these estimates are for the 
phase with broken chiral symmetry. As we will dis- 
cuss below, in the symmetric phase, the dependence 
on mq is expected to be much weaker. Further slow- 
ing down of the HMC algorithm arises from the re- 
duction of step-size needed for constant acceptance. 
At fixed gauge coupling it has been proposed that 
A ~  A ~ m 3/2 [4] In recent simulations at small quark . . . q  

masses on lattices of sizes up to 8 × 16 3 we observed, 
however, a less severe dependence on mq [5-7] .  In 
particular, we found a very weak dependence in the 
chirally symmetric phase, which, as we argue below, 
might be expected due to the lower density of small 
eigenvalues of the Dirac operator. Besides the effects 
of  critical slowing down, it thus seems that the accep- 
tance problem still is a major uncertainty in evaluat- 
ing the performance of the HMC algorithm. 

In this note we give a detailed discussion of our 
observations on the acceptance probability and its 
dependence upon V, mq and ft. Parts of these results 
were presented in refs. [ 5,6 ]. Extending the analysis 
in ref. [ 2 ], we show that in the large volume limit the 
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acceptance probability is a simple function of the av- 
erage energy violation ( A H ) ;  

(P.~c) = erfc ( ( A H )  t/2/2) , 

where erfc is the complementary error function. This 
allows us to deduce ATA from the scaling behaviour 
of ( A H ) .  Our analysis confirms the volume depen- 
dence suggested in refs. [2,3 ], whereas the quark mass 
dependence is shown to be weaker than proposed in 
ref. [4]. Finally, we give phenomenological results 
for the fl dependence, which has not been investi- 
gated before and which turns out to be strong. Put- 
ting our findings together, we arrive at an approxi- 
mate expression for the acceptance probability which 
is found to apply to a wide range of bare parameters. 

2. The algorithm 

In our numerical work we apply the hybrid Monte 
Carlo method to QCD with four flavours of  staggered 
fermions. We briefly describe the algorithm for this 
case. The partition function can be written in terms 
of the usual gluonic link matrices U and pseudo-fer- 
mion fields 0e, defined on even sites only. It takes the 
well-known form 

Z =  ~ [dUdOedCP*~] e x p [ - S ( U ,  Oe, 0e~)] , 

S ( U ,  Oe, Ote)=SG(U)+~te(Q't(U)Q(U))~elOe. (1) 

Here, and often later, we suppress site, link and col- 
our indices for readability. Subscripts e are used for 
restrictions to even sites. Sc (U)  denotes the stan- 
dard Wilson action for the gauge fields and 
Q(U) = D ( U )  + mq is the staggered fermion matrix, 
in which 

D( U)xy = ½ ~, ax.u( Ux,udx,y_u - U*~_,,uSx,y+u), (2) 
,u 

with phase factors ax, u = ( - 1 )~' +''' + x~_ ,. 
The update of the 0, fields for fixed gauge fields U 

can be performed by a computationally simple heat 
bath procedure [ 8 ]. From a vector R of independent 
complex random numbers drawn from a distribution 
P (R) ~ exp ( - R *R ), pseudo-fermion fields weighted 
according to eq. (1) are obtained as 0~= (Q*R)e. A 
tentative U update is generated by using molecular 

dynamics at fixed 0e's. Starting from new momenta 
zcj distributed according to P (~j) ~ exp ( - zc~ / 2 ), the 
leapfrog discretized equations of motion 

U' =exp{i [Az~zj - ½A'~ 2 OrS (U) ] Tj} U, 

~}=~j -½Az[OjS(U)+OjS(U '  )] (3) 

are iterated N~D times. This constitutes one so-called 
trajectory whose length we denote by z=NMi)×Az. 
The Tj, j =  1, ..., 8, are SU (3) generators and 0j is a 
derivative on the group manifold [8]. Explicit 
expressions for OrS (U) can for instance be found in 
ref. [ 3 ]. The new feature of the HMC algorithm is 
that the final U configuration is subject to a global 
Metropolis update, where this configuration is ac- 
cepted with probability 

Pace =ra in(  1, exp( -- AH) ) ,  

H=½ X ~ ] j + S ( U )  . (4) 
n,j 

This final Metropolis step removes errors due to the 
discretisation of the equations of motion. 

3. The acceptance probability 

Non-vanishing reject probabilities in the Metrop- 
olis step arise because of discretisation errors in the 
equations of motion. In one leapfrog step, defined by 
eq. [3], energy conservation is violated at order 
O(AT3): 

AH= AT 3 X ( ¼ rri0jS0i0jS- 1~,  ~j~k O,OrOkS) 

- ~ O ( A T  4 ) . ( 5 )  

As the volume is increased the step-size has to be de- 
creased in order to keep the extensive quantity AH, 
and thereby the acceptance rate, at a reasonable level. 
To estimate the required reduction of step-size we use 
the identity ( e x p ( - A H ) ) =  1 [2], which follows 
from the area-preserving property of eq. (3). This 
equality can conveniently be expanded into 
cumulants 

( A H )  = ½ ( ( A H -  ( a / 4 ) )  2 ) 

+ higher cumulants.  (6) 

At volumes large compared to the relevant correla- 
tion length ~, i.e. V ~/4 >> ~, the cumulants grow line- 
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arly with V or slower. The step-size dependence, on 
the other hand, is different: higher cumulants are o f  
higher order in At. To achieve a finite <AH> in the 
infinite volume limit, it is thus evident from eq. (6) 
that Az should be varied so as to keep the variance 
fixed, o-(Az)2_ = < ( A H -  <AH> )2> = a 2  =constant .  
Higher cumulants will then vanish and the limiting 
AH distribution will be a gaussian with mean and 
width related through 

<AH> = ½ < ( A H -  <AH> )2>, 

V--*oe, a(  Az  )2=a2o . (7) 

Using this distribution we can evaluate the average 
acceptance rate at large volumes 

1; 
<Pace > = X//~ ao ra in( l ,  e x p ( - - x ) )  

- - c c  

× e x p (  ( x - < A H >  2ag )2) dx 

=erfc(½ < M-/> '/2) . (8) 

To test the convergence towards this result we have 
analyzed a system of  N coupled oscillators. Results 
for the acceptance rate as a function o f  <AH> are 
shown in fig. la. The line in this figure corresponds 
to the result in eq. (8).  As can be seen, the large vol- 
ume ( ~ large number  o f  degrees of  freedom) result 
is rapidly approached for fixed <AH> and increasing 
number  o f  oscillators. In fig. lb  we show some results 
from our QCD simulations on a 4 > 6 3 lattice. Appar- 
ently the agreement with eq. (8) is excellent also in 
this case, showing that already on a 4 × 6 3 lattice the 
number  o f  degrees o f  freedom is large enough for the 
infinite volume result to apply. In order to determine 
the step-size required for constant acceptance, ArA, it 
is thus sufficient to study the scaling o f  (AH>.  

Combining eqs. (5) and (7), we find immediately 
for one molecular dynamics step (NMD= 1) that 
<AH> ~ Ar 6. When iterating the equations o f  mo- 
tion NMD times, we expect AH to increase linearly up 
to some point N M D  x Ar=2c,  beyond which there is 
no systematic increase in AH ~l. Such a behaviour is 
consistent with the observations made in ref. [ 9 ]. For 

#~ This happens provided Az is not too large. On the other hand, 
if Ar exceeds a certain limit then AH will generically grow 
exponentially. 
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Fig. 1. Acceptance probability as a function of <AH>. In (a) we 
show data for a chain of N coupled oscillators, N= 8, 32 and 128. 
The action is S(~) = _~ ½ [~z _ Oi(Oi÷ 1 -2~i + ~i-i) ] and we use 
periodic boundary conditions. In (b) data for QCD on a 4X6 3 

lattice are given. The lines show the large volume result given in 
eq. (8). 

trajectories longer than this characteristic length 2¢, 
or for trajectories o f  fixed length z, this means that 
A H ~  A'r 2 rather than ~ Az 3. From eq. (7), which like 
eq. (8) is valid also for NMD > 1, we therefore expect 
that 

< A H >  ~ V A t  4 . ( 9 )  

This behaviour is verified by our data, as discussed 
in connection with fig. 2 below, and leads to the re- 
lation A% ~ V -  t/4. 

We finally note that our result for the volume 
dependence o f  the average acceptance, <Pace> 
erfc (cAr 2 V ~/2 ), is valid for arbitrary values of  ( AH > 
as long as the volume is large enough. Approximate 
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expressions have previously been obtained for large 
[2,3] and small [ 10] values of (~ff-/), 

(P.cc) ~exp(  --  cA't '4V) , ( A H )  large, 

,-~exp(-cAz2V 1/2) , ( A n )  small.  (10) 

These expressions are easily obtained from eq. (8) if 
the appropriate limits of the error function are taken. 

4. mq dependence 

Apart from the volume and step-size dependence 
of AH, it is also important to analyse its dependence 
on the quark mass mq. While H itself has a non-sin- 
gular mq dependence, its derivatives, which contrib- 
ute to AH, behave differently. As discussed in the 
previous section, we obtain the mass dependence of 
( A H )  in the large volume limit from the square of 
the leading term in eq. (5). Let us consider one ge- 
neric contribution, namely 

(AH)2oc AT6X ( O i O j O k S r O i O j O k S  F dr" . . . )  

+ higher orders in At ,  ( 11 ) 

where SF=(/)t(-D2-.Fm2q)-I(9 and where we have 
averaged over the momenta n, To give an explicit ex- 
ample, we consider the gauge group U ( 1 ), for which 
the derivatives have a simple structure. In this ease 
one has 

0~0j0~S~ O, OjOk S~ 

oc E (D+rnq)i-+~,:(O*+mq)ji+:,,-i 
ijkabcd 

× (D+mq)~jk(Dt+mq)~r, j  

* --1 2 2 --1 ×Oa(D+mq)ai ( - D  q-mq)k+fxkb~b 
* 2 2 --1 t --1 XOc( -D +mq)ck+~k(D + m q ) i d O d  

+ similar terms.  ( 12 ) 

Averaging over the pseudo-fermion fields we get 

o,OjO, SF o, ojoks~ 

oc ~., ( -D2+rn2)Ti l ( -D2" m2~-I q Ij+12jj+fij  
ij 

× (D+mq)[-+~j(D*+ -1 m q ) j i + f t i  

+.. . ,  (13) 

where only the most singular part has been kept. By 
counting powers of the inverse Dirac operator, it was 
argued in ref. [4] that (AH) 2 diverges as  m q  6. HOW- 
ever, it is clear from the structure ofeq. (12) that this 
eigenvalue singularity will be significantly weakened 
after integration (summation) over the full eigen- 
value spectrum. This is most easily seen in the free 
case, U= 1, in which the factors ( -D2+mq2)~ l  = 
~/rnq are translationally invariant. The summations 
are then trivial and one gets (AH)2oc V()o(./mq) 3. 
Since ].Z vanishes linearly with mq, this, in fact, sug- 
gests that (AH) 2 is constant as mq-+0. We therefore 
expect a very weak mass dependence in the chirally 
symmetric phase, where the eigenvalue spectrum is 
expected to be similar to that of the free case ( U= 1 ). 
To the extent that the first two factors in eq. (12) 
effectively remain translationally invariant, we would 
further get the estimate ( A H )  2 ~  m q  3 for the broken 
phase. We have verified this result at strong coupling, 
fl= 0. Using the techniques of ref. [ 11 ], we have cal- 
culated the expression in eq. (13) in a 1/d expan- 
sion. To leading order it becomes the product of three 
free pion propagators at momentum zero. Thus it di- 
verges as rn; 6, which indeed corresponds to m q 3. For 
QCD at f l=0 in d = 4  we have also verified this be- 
haviour numerically. 

To study the fl dependence of the mass exponent 
and its variation across the chiral phase transition, 
we have performed additional simulations with var- 
ious quark masses at fl=4.5, 4.9 and 5.4 on a 4X63 
lattice. In order to check also the step-size depen- 
dence, we studied three different values of At varying 
by 50% at several fixed values of (fl, m q ) .  The step- 
sizes used by us led to acceptance rates between 0.5 
and 0.8. Since the trajectory length was kept constant 
( z=  1 ), we expect from the discussion in section 3 
that ( A / 4 ) ~  AT 4 at fixed (fl, mq) independent of 
whether we are in the chirally symmetric or broken 
phase. This behaviour is confirmed by the data shown 
in fig. 2. The dependence on the quark mass, how- 
ever, is found to be markedly different in the two dif- 
ferent phases. At fixed coupling, it is seen to be con- 
sistent with ( A H )  oc A Z 4 m q  a . Fitting the data to this 
form, we find exponents a = 3 . 0 + 0 . 1  at fl=4.5 and 
4.9 and 0.3 + 0. l a t f l=  5.4. Note that for our smallest 
quark mass, mq = 0 .025 ,  the transition takes place at 
flc=4.95_+ 0.03 [12]. 

The data thus clearly demonstrates the effect of the 
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Fig. 2. The mass dependence of (AH) on a 4X63 lattice at the 
couplings fl=4.5 (diamonds), 4.9 (circles) and 5.4 (triangles). 
Points with the same fl and mq are for different step-sizes At. The 
lines are fits for fixed flto (AH) =cAr4m -5  The step-sizes vary 
between 0,0125 and 0.085. 

integration over the distribution ofeigenvalues. In the 
symmetric phase the eigenvalue singularity is almost 
completely cancelled and in the broken phase it is also 
significantly weakened, i.e. we find a ~  3 instead of  
a = 6 as one would have expected from a naive power 
counting argument. 

In the chirally broken phase of  QCD we thus find 
excellent agreement with the analytical strong cou- 
pling calculation, while ( A H )  seems to be approxi- 
mately independent of  mq in the chirally symmetric 
phase. The above analysis suggests that this differ- 
ence between the two phases arises because o f  the dif- 
ferent eigenvalue spectra for the Dirac operator. An 
operator which reflects changes in the eigenvalue 
spectrum and which is easily obtained in lattice sim- 
ulations is the chiral order parameter 

1 D , ~ = p T r ( + m q )  -~ (14) 

In general we would expect ( A H )  to depend on the 
eigenvalue spectrum in a more complicated way than 
just through ( ~ ( ) .  Our discussion of  the free case and 
its extension to U(  1 ) suggests, however, that the de- 
pendence o f  ( A H )  on mq is to a large extent de- 
scribed by the mass dependence o f  (iT.Z). In fact, we 
see that our results for the dependence o f  ( A H )  on 
mq at different couplings are well described by the 
relation 

(zXH) ~((~)~ 3 
\ m q  / 

(15) 

5. fl dependence 

The discussion in the previous sections has shown 
that the volume, step-size and quark mass depen- 
dence o f  AH is well under control. We are therefore 
left with an analysis of  the fl dependence of  AH. We 
parametrize this by an unknown function c (fl), %)3 
( A H ) = c ( f l )  ( ~ )  VAz 4. (16) 

We note that the fl dependence ofzM~/is partly hidden 
in theft dependence of  (;?Z)- Note also that the phase 
of  the system can change as the lattice size is varied 
at fixed ft. This can lead to deviations from the sim- 
ple form used in the above ansatz. Such deviations 
are, in fact, likely to occur close to a phase transition. 
In that region AH, which is a sum of  O(V)  correlated 
terms, should grow large because of  a long correlation 
length ~. Naively, one would expect ( A H )  oc ~4. 

In fig. 3 we plot the coefficient c(fl) for data ob- 

I 
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.1 
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i 

4 . 5  5 .O  5 . 5  

Fig. 3. The coefficient c(fl) defined in eq. (16). Data from the 
8X 123 [5] and 8X 163 [7] lattices are for mq=0.025 and 0.01, 
respectively. On the 4 × 63 lattice the different masses studied (see 
section 4) give consistent values for c(fl). The points shown are 
for the smallest mass at each ft. The data for the 24X123 
(mq=0.025) and 24X163 (mq=0.01 and 0.025) lattices are 
taken from ref. [ 13 ]. 
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rained on different lattices and in both phases (val- 
ues for mq, (Z~) and Vgiven here and below are in 
lattice units). On the 8X 163 lattice (mq=0 .01) ,  we 
see a clear peak at the phase transition, which is at 
fie = 5.15 + 0.05 [ 7 ]. Also there is an indication o f  a 
peak at the transit ion/crossover coupling tic= 
5.25+0.025 [5] on the 8X 123 lattice (mq=0.025) .  
The presence of  these peaks makes a systematic study 
of  c(fl) using the present data set difficult. Outside 
these regions, we see, however, that data from differ- 
ent lattices agree reasonably well. It is furthermore 
important  to note that the increase of  c(fl) with fl is 
fairly moderate. In fact, the variation in c(fl) should 
be compared with that in X =- <AH>m3qAz-4V -~, 
which reflects the full fl dependence of  ( A H )  and 
which we plot in fig. 4 against ()?;(). The much larger 
variation in the latter quantity shows that ( A H )  has 
a strong fl dependence and that a major part o f  this 
dependence is absorbed into (Z;()3. The line drawn 
in fig. 4 corresponds to X =  ff<,~.Z) 3 with e=0.2.  As 

can be seen from fig. 3, using a constant value erather 
than the function c(fl), over-estimates the value of  
c(fl) at small ft. This leads to the deviations seen at 
large values of  (ZZ) in fig. 4. 

We want to stress again that the strong fl depen- 
dence of  ( A H )  does not only show up across the 
transition and that it is to a large extent described by 
the fl dependence o f  (ZZ). To show this explicitly let 
us compare the behaviour of  ( A H )  at two couplings 

10-1 

10-2  

X 

10--3 

10-4  

.1 . 2  . 5  1 2 

Fig. 4. X= (AH) (m~ -3 At'aV) - I  plotted against (ZZ). The line 
corresponds to X=C(7~)3 with C=0.2. 
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V .o 4x63 
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24xi63 

1 2 
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Fig. 5. The acceptance rate as a function of z, defined in eq. ( 17 ), 
for data in the interval 5.1 ~< fl~< 5.6. The curve shows the result 
ineq. (18). 

in the broken phase: Between fl=5.1 and 5.35 for 
mq=0.025, the average(Zz) drops from 0.66 to 0.22, 
i.e. ( ~ ) 3  drops by a factor 27. In the same interval 
( A H )  decreases by a factor 13. The coefficient c(fl) 
takes care o f  the mismatch between these different fl 
dependences, which is relatively small, i.e. c(fl) 
changes only by a factor of  2. 

By reformulating eq. (16) in terms of  the accep- 
tance rate, we can get a useful guide for the choice of  
step-size in actual simulations. Restricting ourselves 
to the interval 5. I ~< fl~< 5.6, over which the change in 
c(fl) is negligible, we plot in fig. 5 the acceptance rate 
as a function of  
Z ((,~) ~3/4 

~ - \ - ~ q  /I VI/4AT~" (17) 

According to eqs. (8) and (16),  the acceptance rate 
should be entirely determined by 

(P ,  cc > =e r f c (c  'z2) • (18) 

Using c ' = ~  c ~ c ~ 0 . 2 2 ,  we get an excellent de- 
scription of  the acceptance rate in this range offl val- 
ues. We further note that an acceptance rate of  ap- 
proximately 75% is achieved for z ~  1. 

a. Summary and discussion 

Our results show that the acceptance probability 
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exhibits very different  mass dependences  in the two 
different phases of  QCD.  Numer ica l  da ta  at different 
couplings in the chiral ly broken phase are in favour  
o f  a scaling law AZA ~ m 3/4, which, fur thermore,  is 
the behaviour  we find in a 1 /d  expansion at strong 
coupling. F rom this result, together with the volume 
dependence,  ArA~ V-1/4, we can es t imate  the com- 
puter  t ime requirement  in the l imit  of  small  quark 
mass, assuming a fixed coupling and a fixed rat io ~ /  
V 1/4. Taking into account critical slowing down and 
an increased t ime for fermion matr ix  inversions,  as 
discussed in the in t roduct ion,  we find that  the totai  
computer  t ime, T, grows like T~/~/q 21/4. Here the 
requirement  of  constant  acceptance rate with chang- 
ing quark mass and lat t ice volume has cont r ibuted  
with a factor m q  5/4. In the symmetr ic  phase, the be- 
haviour  at small quark mass is different,  due to the 
different spectrum of  the Dirac operator.  We find that 
the acceptance rate is approximate ly  mq indepen-  
dent.  Fur thermore ,  the t ime needed for fermion ma-  
trix inversions should grow only slowly as mq--,0, as 
also observed in our  simulations.  Finally,  i f  the low- 
est mode  is massive, as indica ted  in ref. [14] ,  then 
the increase in autocorre la t ion t ime should also be 
only weakly dependent  on mq. We thus expect that  
the explicit  dependence  of  T on mq in the chirally 
symmetr ic  phase is ra ther  weak. 

Finally,  we would like to discuss the impl ica t ions  
o f  our  phenomenologica l  results for the fl depen-  
dence. While  a change o f  mq and V in the direct ions 
of  physical  interest  leads to smaller  acceptance prob- 
abilities, our  results show that  the opposi te  is true for 
changes in ft. To i l lustrate the consequences o f  this, 
we consider  decreasing the latt ice spacing a, while 
keeping at the same t ime physical  parameters  
constant .  We then get the relat ion ArA~  
( ~ )  -314m3/4 V - 1 / 4  a-1/2.  Here we have ignored 

the var ia t ion  o f  c(fl) with fl, which probably  shifts 
the exponent  of  a to a larger value. Our  da ta  indicate,  
however,  that  this shift is moderate ,  possibly leading 
to an exponent  zero. This means that  the effects o f  
smaller  mq and larger V (in lat t ice uni ts)  are to large 
extent compensa ted  for by the fl dependence  in this 
limit.  This suggests that  the extra cost for making the 
algori thm exact is not  very sensit ive to changes of  the 
latt ice spacing at fixed quark mass and latt ice volume 
in physical  units. 
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