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We investigate the order of the phase transition in the three dimensional, three-state Potts model with anti-ferromagnetic next- 
to-nearest neighbour (NNN) coupling in a high statistics, finite size scaling study. On L 3 lattices with L ranging from 20 to 48 
with the relative strength of the NNN coupling, 7, fixed to -0.2, we find a first order phase transition. The onset of the finite size 
scaling behaviour seems to occur later compared to the 7=0.0 case. The discontinuity in the order parameter is of the same 
magnitude in both cases, while the latent heat decreases by a factor of two. 

Recent  discussions about  the order  of  the decon- 
f inement  phase t ransi t ion in SU (3)  gauge theories in 
three spatial  d imensions  [ 1 ] brought  the issue of  the 
order  of  the t ransi t ions  in corresponding spin sys- 
tems into a sharp focus [ 2 - 5 ] .  It is generally ex- 
pected that  the crit ical behaviour  of  the former  is 
governed by an effective three d imensional  theory of  
the order  parameter ,  i.e. SU (3)  spins, which, in turn, 
is expected to be related to a corresponding Z ( 3 ) -  
symmetr ic  theory with identical  structure of  cou- 
plings [ 6 ]. It  is clear that  the order  of  the t ransi t ion 
will crucially depend  on the type of  effective cou- 
plings generated. In fact, it has been argued that  for 
the case of  SU (3)  a l ready a small  cont r ibut ion  from 
an an t i4er romagnet ic  next- to-nearest  neighbour  
( N N N )  coupling in addi t ion  to the leading ferro- 
magnetic  nearest  neighbour  ( N N )  coupling could in- 
duce a second order  deconf inement  phase transi t ion.  
In part icular ,  the case o f  a three d imens iona l  three- 
state Potts  model  with ant i - ferromagnet ic  N N N  cou- 
pling was cited as an example for the above scenario. 
Early numerica l  s imulat ions  o f  this model  on rela- 
tively small lattices and with modest  statistics seemed 
to suggest a second order  phase t ransi t ion for 
Y-- - 0 . 2 ,  where 7 is the rat io of  the N N N  and NN 
couplings [7] .  Later  investigations o f  correlat ion 
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lengths for this model  suppor ted  this conclusion [ 8 ]. 
However,  a recent s tudy of  the the rmodynamics  of  
this model  on 323 and 643 lattices c la imed a first or- 
der  phase t ransi t ion [ 4].  Unfor tunately ,  this conclu- 
sion is based on a rather low statistics s tudy of  the 
flip-flop behaviour  of  the system in the critical region 
which is known for its t raps [ 5 ]. 

In view of  all this, we under took a detai led high 
statistics analysis of  the three d imensional  three state 
Potts  model  with 7 = - 0.2 on L 3 lattices, with L = 20, 
24, 32, 40 and 48. F rom our previous analysis of  the 
ferromagnetic  case ( 7 = 0 . 0 )  [2] ,  we know that  a fi- 
nite size analysis o f  various the rmodynamic  quan- 
tit ies is the best way to decide about  the order  of  the 
transi t ion.  We also found there that  it is difficult to 
decide about  the order  of  the t ransi t ion on the basis 
of  correlat ion lengths alone, especially since the scal- 
ing behaviour  o f  this quant i ty  near  a first order  phase 
t ransi t ion is only poorly understood.  

The hami l ton ian  for the Potts  model  with N N N  
coupling is given by 

NN pairs NNN pairs 
(j ,k ) ( j ,k ) 

= E c~N+7 E c~N~, (1) 
NN pairs NNN pairs 

(j ,k ) ( j ,k ) 

where ajt~ o = 0, 1 or  2. The par t i t ion  function of  the 
system on an L 3 cubic latt ice is given by 
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Z= Z exp(fllt). (2) 
{aj} 

For 7=0 .0  the model has been studied in detail 
[2,9] and a first order phase transition has been es- 
tablished. Here we will consider the case o f  nonzero 
N N N  coupling. In particular we will concentrate on 
the case y=  - 0 . 2 ,  which has been considered previ- 
ously [4,8] and which is controversial as we have 
pointed out above. In the following we will study the 
volume dependence o f  global observables like the en- 
ergy density E - - V  -1 ( H )  and the order  parameter 
( S ) ,  with S defined by 

S=~  max(no, nl, n2) - ½ • (3) 

Here ( X )  denotes the thermal expectation value of  
the observable Xwi th  respect to Z, V=L 3 is the vol- 
ume of  the box and n~ is defined by 

1 
n~,= ~ ~j.,~, a = 0 ,  1, 2 .  (4) 

In addition we study the corresponding thermal and 
magnetic response functions, i.e. the specific heat 

1 Cv= ~ ( ( H 2 ) - ( H )  2) , (5) 

and the susceptibility 

Z=  V( ( S  2) - (S)  2) . (6) 

We used the standard Metropolis algorithm to sim- 
ulate the model on periodic cubic lattices of  sizes 
L = 20, 24, 30, 32, 40 and 48. Typically we performed 
5 X 105-2 × 106 iterations at each fl value. Expecta- 
tion values were computed every 10th iteration. To 
eliminate the remaining time correlations errors have 
been calculated by dividing the data sample into 
blocks o f  various lengths and taking the expectation 
values on a given block as independent measure- 
ments. Fig. 1 shows our results for the order param- 
eter S. It is very suggestive o f  a discontinuity in it in 
the thermodynamic  limit. Looking at fig. 1, one gets 
the impression that on smaller lattices the critical re- 
gion is shifted in an irregular way as a function o f  
lattice size. For instance, the critical coupling for 
L = 2 4  seems to be larger than that for L = 2 0 ,  while 
that for L = 3 2  seems to be smaller than that for 
L = 24. This irregularity is confirmed by the more de- 
tailed analysis discussed below. As a consequence o f  
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Fig. 1. The order parameter (S) versus fl on lattices of size L 3 

with L= 20, 24, 32, 40 and 48. The curves shown are obtained by 
using the method proposed in ref. [ 10 ]. The fl value choosen for 
the extrapolations is the one closest to the location of the peak in 
the magnetic susceptibility given in table 1. 

this irregularity, one expects any leading order finite 
size scaling analysis to be inadequate on these lat- 
tices. Comparing with the results for S obtained in 
the ferromagnetic case [ 2 ], it seems that much bigger 
lattices (L>~ 32) are necessary to utilize the tools of  
finite size scaling theory in this case. 

We have studied the time histories o f  various ob- 
servables on all the lattice sizes and they display the 
expected flip-flop behaviour over long runs, as shown 
for a typical case in fig. 2 where we show the evolu- 
tion of  the order parameter for the 483 lattice in the 
critical region for about 2 million iterations. As elab- 
orated upon in ref. [ 2 ], one can exploit the wealth o f  
information hidden in these time histories by analys- 
ing the finite size dependence of  the probability dis- 
tributions, P(S). Without repeating the details of  the 
analysis here, we note that we find essentially the same 
qualitative features: (i) a double peaked probability 
distribution in the critical region is observed, and (ii) 
the peaks stay apart and are separated by a deeper 
valley as the lattice size increases. We, therefore, con- 
clude that even for 7= - 0 . 2  the model has a first or- 
der phase transition, in agreement with ref. [ 4 ]. For 
the gap in S and E we extract from our data on the 
483 lattice 
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Fig. 2. Time history of the order parameter S as a function of 
Monte Carlo time on the L = 48 at fl= 1.1901. 
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AS= 0.348 + 0.007,  

AE=0.061 +_ 0.001 , 

ACNN =0.047 __ 0.001,  

A C N N  N = 0.066 + 0.001 . (7) 

We note that the gap in the order parameter and the 
NN term in the hamil tonian  is similar in magnitude 
to that observed in the case of y=  0.0, being 0.345 (5) 
and 0.053 (3) ,  respectively ,1. The fact that the mag- 
nitude of the discontinuit ies in these quanti t ies is es- 
sentially independent  of y is rather surprising, espe- 
cially since in the critical region the N N  term is only 
three times as big as the NNN term. Of course, the 
competing interaction from the NNN term makes the 

latent heat, AE=  3ACNN-- 67ACNNN, much smaller in 
this case, compared to 0.159 (9) for y = 0. Moreover, 
its influence is also evident  in the large shift of tic; as 
y changes from 0.0 to - 0 . 2 ,  fie changes from ~ 0.55 

to ~ 1.19. 
Fig. 3 exhibits the susceptibility in units of 1 / V as 

a function of fl on all our lattices. Again one sees a 
behaviour characteristic of first order phase transi- 
tions. The values of critical couplings obtained from 
the positions of the peaks are given in table 1; they 
quantify the irregular behaviour we anticipated from 
fig. 1. The height of these peaks in susceptibility seems 

the discontinuities on a 48 lattice for both the ~1 We quote here 3 
cases. Results for y= 0 change only little when extrapolated to 
infinite volume [ 2 ]. 

Fig. 3. Same as fig. l but forthemagneticsusceptibilityxin units 
o f l / ~  

Table 1 
Critical couplings determined on lattices of size L 3 from the peak 
in the magnetic susceptibility (a), specific heat (b) and the 
cumulant function Ve (c). 

L (a) (b) (c) 

20 1.1894(3) 1.1903(3) 1.1900(l) 
24 1.1897(2) 1.1901(2) 1.1900(l) 
32 1.1885(2) 1.1887(2) 1.1886(1) 
40 1.1899(2) 1.1900(2) 1.1900(2) 
48 1.1901(1) 1.1901(1) 1.1901(1) 

Table 2 
Peak values for the magnetic susceptibility (a), specific heat (b) 
and the cumulant function Ve (c) on lattices of size L 3. 

L (a) (b) (c) 

20 0.031(1) 0.0022(1) 0.00492(6) 
24 0.030(4) 0.0017(3) 0.00399(60) 
32 0.028(2) 0.0012(1) 0.00285(9) 
40 0.029(5) 0.0010(2) 0.00249(57) 
48 0.032(6) 0.0011(3) 0.00252(60) 

to scale as V: We have used the probabili ty distribu- 
tions of the hamil tonian to extrapolate to nearby fl 
values [ 10 ] in order to extract the height and the po- 
sition of the peak on the various lattices. The results 
for the extrema in the susceptibility are given in table 
2. The error estimates have been obtained by using 
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the extrapolations from several nearby fl values in the 
critical region. Also given in these tables are similar 
estimates from the specific heat which too exhibits a 
peak that scales with volume. However, in this case 
the scaling behaviour clearly sets in only for L~> 32. 

A characteristic feature o f  a first order phase tran- 
sition is the multiple valued nature of  thermody- 
namic quantities at fie. This feature can be exploited 
by looking at cumulants o f  these variables [ 11,12 ]. 
A simple observable is, for instance, constructed from 
cumulants of  the hamiltonian 

( H  4 > 
v E ( f l )  = < H 2 >  ~ - 1. (8) 

This observable has the property o f  approaching zero 
for any single valued distribution, which in the infi- 
nite volume limit is well approximated by a gaussian 
distribution. For a first order transition, on the other 
hand, one expects 

E 2 E 2 
- -  + 

lim VE(fl¢) = 1 - 4  (9) 
w ~  ( E2_ + E2+ ) : ' 

where E+ and E_ are the limiting value of the energy 
density in the infinite volume limit when tic is ap- 
proached from above and below, respectively. A first 
order transition thus would be signaled by a peak in 
the cumulant VE(fl) at tic, which persists in the infi- 
nite volume limit. Of  course, the usefulness of  this 
observable strongly depends on the size of  the latent 
heat, AE = E+ - E_, as can be seen from eq. (9).  Our 
results for VE(/?) are given in fig. 4. One sees a clear 
peak, which shifts on the different lattices in a way 
consistent with the irregularities in tic found from 
other thermodynamic  observables. The values for tic 
obtained from the location of  the peak as well as the 
value, V~ ax, at the maximum are also given in the 
tables 1 and 2, respectively. We note that on the larger 
lattices, L>~ 32, V~ ax seems to saturate at a non-zero 
value. In fact, for L - 4 8  we obtain V~"x=0.0025 
+ 0.0006, which is in good agreement with the value 
0.0022 + 0.0002 we obtain from eq. (9)  using our  re- 
sults for E+ = 1.331 ( 1 ) and E_ = 1.270( I ) and also 
with a straightforward 1 /V extrapolation of  our fi- 
nite volume results to the infinite volume limit. 

Finally, we would like to discuss our results on cor- 
relation lengths in this model. For the case of  a fer- 
romagnetic Potts model, i.e. 7=0.0,  we have pre- 
sented an extensive analysis o f  the correlation 
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Fig. 4. Same as fig. 1 but for the ratio ofcumulants liE, defined 
ineq. (8). 

functions. We will, therefore, be brief here, concen- 
trating on the important  features relevant to the 
y=  - 0 . 2  case. The correlation functions F(r) which 
we measured are defined by 

F(r) = - ~  i , 

Here g , = L - Z  ~ exp (2rtia) is the average spin on the 
plane i, and r =  l i - j l  denotes the distance between 
the planes i and j along one of  the principal axes of  
the lattice. Forming ratios 

F(r) 
R ( r ) _  F(r+ 1~ ' (11) 

and using an ansatz inspired by the behaviour of  F 
on an infinite lattice that takes into account the peri- 
odicity of  the L 3 lattice, 

F ( r ) = A { e x p ( - m r ) + e x p [ - r n ( L - r ) ] } ,  (12) 

we extract a distance-dependent mass m (r) for each 
fl and L. At large r, these masses develop a plateau 
from which one easily obtains the correlation length 
~= 1/m. Fig. 5 shows our results for the asymptotic 
values of  m as a function of  ft. For lattices o f  size 
L >/32, one observes the characteristic crossing pat- 
tern which separates regions o f  different finite size 
behaviour for this observable. While such a pattern 
is suggestive o f  a first order phase transition, one is 
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Fig. 5. Same as fig. 1 but for the inverse correlation length m= 
1/~. 

clearly unable to establish it quant i ta t ively,  as found 
in s imilar  studies o f  correlat ion length for the 7 = 0.0 
case also. In part icular,  no finite size scaling study of  
fl~,L or any de te rmina t ion  of  the critical exponent  
seems to be feasible for the data  in fig. 5. Indeed, if  
the phase t ransi t ion were to be first order, as we have 
shown here to be the case, it is not even clear what  
the corresponding critical exponent  should be. 

We also a t t empted  to extract the physical  mass gap 
me at the critical point.  We d iv ided  the data  sample 
on our larger lattices into two separate samples for 
the symmetr ic  and broken phase, respectively. Using 
connected correlat ion functions in the broken phase 
we found consistent  results for rnc in both phases. For  
lattices with L>~32 we find that  the mass gap stays 
finite, i.e. shows only small  size dependence  and the 
correlat ion length ~= 1 /m is much smaller than the 
size of  the lattice. We find ~(flc) -~ 14. 

In conclusion, we s imulated the three d imensional  
three-state Potts model  with a relative N N N  cou- 
pling of  - 0 . 2  on L 3 lattices with L up to 48. Our  in- 
vestigations of  the rmodynamic  observables led us to 
the conclusion of  a first order  phase t ransi t ion on ba- 
sis of  finite size scaling analysis. In particular,  we find 
a rise in susceptibi l i ty and the specific heat  at the crit- 
ical point  which is consistent with a l inear  growth in 
Vand the cumulant ,  def ined in eq. (8) ,  shows a peak 
which seems to persist  in the infinite volume limit.  

We are, however, unable to check quant i ta t ively  
whether  tic has the expected finite size scaling behav- 
iour  corresponding to a first order  phase transi t ion.  
The difficulties are evident  from table 1. The esti- 
mated  discont inui ty  in the order  parameter  is sur- 
prisingly the same as for the case of  7 = 0.0, although 
the latent heat  does go down significantly. Also the 
onset of  finite size scaling behaviour  seems to be 
somewhat  later which may presumably  tie in with the 
larger physical  correlat ion length we found in this 
case. 

Clearly it would be interesting to investigate 
whether the phase t ransi t ion remains  first order  for 
smaller values of  7. For  7~< - 0 . 2 5  the model  has a 
rich phase structure with a spontaneous breaking of  
rotat ional  symmetry  [ 13 ]. Work in this direct ion is 
in progress. 

Note added. After  complet ion  of  this work we 
learned about  concurrent  studies of  the three d imen-  
sional three-state Potts  model  with anti-ferromag- 
netic N N N  coupling [14,15].  The conclusions o f  
these groups agree with ours. In par t icular  the need 
for very large latt ice to reach a regime where finite 
size scaling can be applied for the model  with 7= - 0.2 
is evident  from the renormal iza t ion  group analysis 
presented in ref. [ 14 ]. 
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