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We investigate numerically the three-dimensional three-state Potts models with nearest-neighbor (NN)
ferromagnetic coupling and next-nearest-neighbor (NNN) antiferromagnetic coupling of relative
strength ¥ on L3 lattices with L =12, 16, 20, 32, and 40. For all the y values that we studied,
0.0=y =0.8, we find indications of a first-order phase transition between the ordered and disordered
phases. In the neighborhood of y =0.25, the latent heat becomes rather small, making it necessary to use
still larger lattices to rule out a higher-order phase transition at y =0.25. We also studied the boundary
regimes of the three different ordered phases and find no criticality along them, thus suggesting a lack of

criticality in these extended Potts models.

I. INTRODUCTION

The investigation of spin models has proved to be a
fruitful area of research for both condensed-matter and
particle physics. Recently, the old issue of the nature of
phase transitions in various Z (3) spin models in three di-
mensions' has again come into the limelight because of
some surprising results of Bacielieri et al.? on the order
of the deconfinement phase transition in SU(3) gauge
theory. While early numerical simulations® indicated a
first-order phase transition, the results of Bacielieri et al.
suggested* a second-order deconfinement phase transi-
tion. This led to a thorough reexamination of some basic
assumptions underlying the universality arguments,’
which predict that the phase transition in SU(3) gauge
theory a finite temperature should be first order.

An essential ingredient of such an argument is the as-
sumption of a lack of Z(3) criticality. The numerical
simulations of three-dimensional Z(3)-symmetric spin
models therefore witnessed a natural rekindling of in-
terest. Of particular importance in this context is the
question of the order of the phase transition between or-
dered and disordered phases of a model with nearest
neighbor (NN) ferromagnetic and arbitrary next-to-
nearest neighbor (NNN) interactions. If a continuous
transition were to be found for such a model, then it will
be of tremendous interest for both the condensed-matter
and particle physics to understand its origin. It will fur-
ther suggest a possibility that the results obtained for the
SU(3) gauge theory so far may change even qualitatively
on larger lattices which are necessary to remove eventual-
ly the space-time lattice and obtain a continuum field
theory.

The NN ferromagnetic Potts model with antiferromag-
netic NNN interactions of relative strength y is also in-
teresting as a simple model for spin glasses. In three di-
mensions the model is expected to have degenerate
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ground states for ¥ >0.25. In fact, the model exhibits a
rich phase structure and has two additional ordered
phases. These have® ferromagnetic ordering only in
planes and lines and thus break translational invariance
in one and two directions, respectively. The different an-
tiferromagnetic orderings of the planes and lines give rise
to the degeneracy of the ground states in these phases.
Nothing seems to be known about the nature of the phase
transition separating the different ordered phases. Previ-
ous simulations® have explored the phase diagram and
found deviations from naive expectations, but the model
deserves a more detailed numerical exploration.

The model has been recently investigated in high-
statistics simulations for 0<y <0.2.”% These studies
showed no evidence for critical behavior; in all cases, a
first-order phase transition has been found. In this paper
we extend our earlier work on the three-dimensional
three-state Potts model”® with ¥ =0.0 and 0.2 and inves-
tigate in detail the order-disorder phase transition in the
entire positive-y regime. In the next section, we define
the model and observables we study along with the de-
tails of our methods. Section III contains our results on
the phase diagram of the model, and in the final section
we present our conclusions.

II. MODEL

The Hamiltonian for the three-dimensional three-state
Potts model with a relative strength of the antiferromag-
netic NNN coupling v is given by

H==[ 3 8 o7 3 8 o] (1)
NN pairs NNN pairs
(k) Gk

where 0,0, =0,1,2 define the spin on a site j or k of a
three-dimensional lattice L 3:
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P;=exp(2mio;/3) . (2)
The corresponding partition function is given by!°

Z='3 exp(—BH) . (3)

{”j}

The antiferromagnetic coupling ¥ (¥ >0) introduces
competing interactions and hence frustrations, since it
favors nonalignment of next-to-nearest neighbor spins.
Of course, for very small ¥, one still expects the system to
show ferromagnetic ordering. As y increases, however,
other orderings become energetically more favorable.
Noting that in three dimensions one has two nearest
neighbors but eight next-to-nearest neighbors out of a
plane, one sees that, for 2—8y <0 or 'y>%, one will
achieve lower energy by having stacks of ferromagneti-
cally ordered planes, but with neighboring planes residing
in different Z (3) states: 0,70, Vi=j=*1, where i and j
denote planes orthogonal to a given direction. As y in-
creases, a further loss of ferromagnetic ordering becomes
energetically favorable: Replacing each alternate column
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FIG. 1. Examples of typical configurations on a 123 lattice in
the (a) disordered, (b) ferromagnetic, (c) type-I and (d) type-II
superantiferromagnetic phases. The couplings used in these
specific runs are (B,7)= (a) (1.805,0.255), (b) (1.645,0.24), (c)
(1.807,0.255), and (d) (1.7,0.57).

of spins by o in a ferromagnetically ordered plane with
spins o ;70 causes an energy change 2—4y, which be-
comes negative for y > 1. It is clear from the above argu-
ments that entropy of the ground state becomes propor-
tional to (i) L in the type-I superantiferromagnetic (SAF
I) phase, corresponding to + <y <1, and (i) L? in the
type-1I superantiferromagnetic (SAF II) phase, corre-
sponding to y>J. In Fig. 1 we show typical
configurations from runs in the four different phases of
the model, which have been taken from simulations of
123 lattices. The progressive loss of ferromagnetic order-
ing is clearly visible in them.

Based on the classical considerations of the minimiza-
tion of energy discussed above, one obtains the horizontal
lines at ¥ =0.25 and 0.5 in the phase diagram of the mod-
el, shown in Fig. 2. The vertical lines in the phase dia-
gram correspond to expected disorder-order phase boun-
daries. For y <0.25 a standard leading-order mean-field
approximation leads to the following prediction for the
disorder-order phase transition: B,=0.4621/(1—2y).
For larger values of y, the anticipated lack of full transla-
tional invariance of the ground state complicates the
mean-field analysis. Intuitively, some crude guesses can
be made by considering two simple extremes, which are
shown in Fig. 2 by a dashed and a solid vertical line.
Noting that the ferromagnetic ordering persists in planes
in the SAF I phase and in lines in SAF II phase, respec-
tively, one can exploit the mean-field predictions for two-
and one-dimensional models with ferromagnetic NN cou-
pling and antiferromagnetic NNN coupling. They are,
respectively, B,=0.6932/(1—y) and B.=1.3863. One
may use them as first guesses for the full three-

SAF I1

i dis. /
/ SAF 1

FIG. 2. Expected phase diagram of the NNN Potts model
with antiferromagnetic coupling in the (B,7) plane. The hor-
izontal lines are from classical minimum-energy considerations,
while the other lines are explained in the text.
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dimensional model for 0.25 <y <0.5 and for y >0.5, re-
spectively. The dashed line in Fig. 2 represents these pre-
dictions. Alternatively, one can treat the model in these
two regions as effective antiferromagnetic models.® The
assembly of ferromagnetically ordered planes in the re-
gion 0.25<y <0.5 can be thought of as a one-
dimensional system of spins with antiferromagnetic NN
coupling. Similarly, considering the ferromagnetically
ordered lines for ¥ > 0.5 as individual spins, one arrives
at a two-dimensional antiferromagnetic spin model. The
solid line for ¥ > 0.25 in Fig. 2 shows the predictions.

Note, however, that both sets of predictions should be
regarded as elementary guesses in view of the drastic ap-
proximations involved in arriving at them. The aim of
this paper is to explore the phase diagram numerically to
find out where the phase boundaries lies and what their
nature is.

The observables which we investigated are the energy
density (&), given by

(e)=(H/V)
=3[Cnn—27Cnnn] - )

Here Cyn=(3L*) " H{Sunds. o, ) denotes the nearest-
0k

neighbor link expectation value and Cyyn accordingly

gives the next-nearest-neighbor link expectation value.

The order parameter {.S ) is defined by

S=2imax(n0,n1,n2)—— (5)

L3 2’
where n, denotes the number of spins having value
a=0,1,2. Note that S =0 for a random or disordered
state and S =1 for a ferromagnetically ordered state.
Further, both the superantiferromagnetic phases also
have vanishingly small S. In order to distinguish the su-
perantiferromagnetic phases from the disordered one, we
also considered additional observables which were
designed to probe for the violation of translational invari-
ance. For a given direction fi of the lattice, u=1,2,3, we
define S, as the spin order parameter on a plane perpen-
dicular to i and average it over all such planes for a
given configuration:

N =i§ imax(n{;,n{,né)—l , (6)
#OLZ 202 2
where n7, are the same as n, above, but for the jth plane
perpendicular to fi. From the discussion of various
phases above, it is easy to deduce that S| =S, =S5, =S for
a ferromagnetically ordered and a disordered state. The
value of S distinguishes between the two. The observ-
ables S, are useful in distinguishing the superantifer-
romagnetic  states. For the SAF I phase,
(S,)>(S,>=(S;), while for the SAF II phase,
(8;2=(8,)>(S;). Of course, S, will have large
finite-size effects, being typically O(1/L?), and hence
verifications of the above relations may need large lat-
tices. On smaller lattices and/or couplings close to the
order-disorder line, there will also be flips causing a
change of direction in which translational invariance is
broken. A sufficient number of such flips may wash out

some asymmetries. This behavior is very similar to the
elementary spin order parameter Sg.n szi,Pi /L3,
with P; defined in Eq. (2). As is well known, S, is zero
even at high temperatures in a finite volume because of its
equal probability in the three Z(3) vacua and tunnelings
in a finite volume. Motivated by the usual modification
of S.em to overcome this problem, given in Eq. (5), one
can also modify the S,’s appropriately:

S, =max(S,S,,5;),
S, =max(min(S,,S,),min(S;,S3)) , (7

§,=min(S,,S,,S;) .

Thermal expectation values of S x’s over a chain of
configurations can now be used to check for the relations
for S,’s above. Alternatively, one can study the time his-
tories of S, to disentangle the flips.

In our Monte Carlo (MC) simulations, we used a stan-
dard Metropolis algorithm to simulate the model on
periodic cubic lattices of linear sizes L =12, 16, 20, 24,
32, 40, and 48. As we explain below, for some pairs of
(B,7) only, a subset of these was used. The observables
were measured every tenth iteration to reduce autocorre-
lations. Standard methods were used to attempt a further
reduction of the autocorrelations. At each pair of (3,7)
and on each lattice size, typically 500000 to a few times
10° iterations were performed. In the next section, re-
sults of our explorations of the phase diagram are
presented in detail.

III. RESULTS

A. Ferromagnetic phase: 0=y <0.25

As can be seen from Fig. 2, this region of the coupling
space is expected to be a straightforward extension of the
familiar NN Potts model, with a transition line separat-
ing the disordered and ferromagnetic phases. One hopes
to confirm this with the help of numerical simulations.
In particular, one wants (i) to find out the nature of the
phase transition along the order-disorder line and (ii) to
explore the nature of the phase boundary between the fer-
romagnetic and superantiferromagnetic phases. We have
already presented our results for ¥ =0.0 and 0.2 in Refs.
7 and 9, respectively. We will therefore present here only
our additional results, after recalling briefly our main
findings from Refs. 7 and 9 in order to justify our metho-
dology, which we continue to employ here also. There
have also been other numerical simulations® for ¥ =0.0,
0.1, and 0.2. We will compare our results with them
whenever possible.

Figure 3 displays our results for (S ) as a function of 8
for y =0.0 and lattices of sizes L =12, 20, 24, 30, 36, and
48. The increase of the sharpness of the crossover be-
tween the ordered and disordered phases with increasing
volume is suggestive of a discontinuity in (S) in the
infinite volume. Another qualitative indication of the
first-order nature of the transition comes from an inspec-
tion of the Monte Carlo time evolution of the order pa-
rameter, shown in a typical example in Fig. 4 for the 36°
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FIG. 3. Spin order parameter {(S) as a function of B at
¥=0.0 on L3 lattices for L =12, 20, 24, 30, 36, and 48.

lattice in its critical region: The system shows a clear
flip-flop between two well-separated states. Of course,
one needs to exercise caution in drawing conclusions
from such a behavior, as demonstrated by some dramatic
examples in Ref. 11. Indeed, one needs to supplement the
above evidences by a finite-size scaling analysis to be
more confident about the findings, especially if the
discontinuity in the order parameter is rather small. Fig-
ure 5 shows the probability distributions of the order pa-
rameter S for 30°, 36, and 48? lattices in the critical re-
gion. Again, the qualitative features here are suggestive
of a first-order phase transition: One has a well-separated
two-peak structure in which the overlap of the peaks de-
creases, and they move away from each other, if at all, as
the volume increases. One can exploit the information
contained in such histograms to obtain a precise value of
B.p and o, where B, ; denotes inverse critical tempera-
ture for a lattice of size L and o is the width of the cor-
responding critical region. This was done in Ref. 9, and

0.75

S (0.55085, 0.0)

0.50

0.00 L L L 1 1 1
0 500

1000
T/500
FIG. 4. Time evolution of the average spin S on a 36° lattice
at (B,7)=(0.5505,0.0).

1 -
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S
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FIG. 5. Probability distributions of the order parameter S in
the critical region of 30°, 36°, and 48 lattices at
(B,7)=1(0.5505,0.0).

one found that both B, ; and o, exhibited a ¥~ scaling
behavior in accord with the expectations from a finite-
size scaling behavior of a (discontinuity-fixed point-
governed) first-order phase transition. It has been further
shown by Fukugita et al.® that the widths of the critical
region extracted from the specific heat and magnetic sus-
ceptibility also scale as ¥ ~ ! and the corresponding maxi-
ma scale as volume. For y=0.0 they obtained
B., .. =0.55055(5), while Ref. 9 obtained
B. . =0.55062(3).

Because of the work of Ref. 2, the subject of correla-
tion lengths in a model with a first-order phase transition
acquired a lot of interest and was investigated in consid-
erable detail for the ¥ =0.0 case in Refs. 8 and 9. The
main results, which motivated us not to consider correla-
tion length as a tool to find out the nature of the transi-
tion, are summarized below. The tunneling correlation
length, which owes its presence to degenerate vacua,
makes the extraction of the physical correlation length
both complex and ambiguous in the critical region. This,
in turn, renders a determination of the corresponding
critical index untrustworthy. While a variety of prescrip-
tions can be formulated to eliminate the tunneling corre-
lation length, they result in a systematic error of un-
known size for the physical correlation length. This
makes it difficult to be sure whether the latter has a
discontinuity or a cusp in the infinite-volume limit, al-
though &~ 10 is indicated for ¥ =0.0. We refer the
interested reader to Refs. 8 and 9 for further details. It
may be remarked here that attempts have been made in
the literature to use the raw data on correlation length
(i.e., containing the tunneling correlation length) to ob-
tain information on the order of the phase transition. We
feel, however, that even these were based on subjective
and rather imprecise criteria.

Figure 6 exhibits (S) as a function of 8 for ¥y =0.2 on
cubic lattices of size L =20, 24, 32, 40, and 48. These re-
sults are essentially the same as those presented in Ref. 7
except for the 323 lattice. Our new results are shifted in 8
by ~0.001 and thus suggest a lot smoother behavior of
B. 1 as a function of L. The only difference between the
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FIG. 6. Spin order parameter (S) as a function of § at
¥=0.2 on L3 lattices for L =20, 24, 32, 40, and 48.

two sets of results is in the random numbers.'? Instead of
drawing 2L* random numbers per iteration, as done in
Ref. 7, we generated p random numbers for every itera-
tion, where p is the smallest prime number which is
greater than 2L3, and discarded the last p —2L3. While

there are reasons to believe that spurious correlations
with a period 2", n large, may exist in the usual random-
number generators (in our case, RANF on a Cray super-
computer), making L =32 a special case,'® these results
are also a reminder that one needs to check the depen-
dence of the physical results on the random numbers by
varying the random-number generators. Indeed, we em-
ployed yet another random-number generator which even
uses a subtractive algorithm,'* unlike the multiplicative
one in RANF, and confirmed that it too yielded the same
B.. Fortunately, no qualitative and very little quantita-
tive change seems to occur as a result of the spurious
correlations in RANF. In particular, finite-size scaling ap-
pears to set still for L =32, as compared with L =20 for
¥=0.0, and the first-order nature of the transition
remains unaltered, as extensive finite-size scaling stud-
ies”® of various physical observables have shown. Re-
sults for the critical couplings are, however, now in much
better agreement with results of Billoire et al.!3
Comparing Figs. 3 and 6, one sees that despite a large
change in ¥, from 0.0 to 0.2, the size of discontinuity in S
has hardly changed, which is rather surprising. There is,
however, a reduction in the latent heat by a factor of
about 2.5, as one can see from Table I, where the corre-
sponding value for ¥ =0.1, from Brown,® is also given.
The decrease in { Ae) is more due to the cancellations be-
tween ACyy and ACynn than due to individual de-
creases of either. In fact, this situation persists also at

TABLE 1. Critical couplings for the phase boundaries in the three-dimensional three-state Potts
model with antiferromagnetic next-nearest-neighbor coupling y determined on a lattice of size L>.
Also given are the discontinuities in the nearest-neighbor (ACyy) and the next-nearest-neighbor
(ACxNN) spin-spin expectation values, as well as the discontinuity in the average Hamiltonian per link,
(Ae)=3A(Cnyn—27Cnnn). The first half of the table is for the order-disorder transitions, while the
second half is for the order-order transition line between the two ordered phases with broken transla-
tion invariance. For the order-order transition line between the ferromagnetic and antiferromagnetic
phases, we do not see any significant deviation from the classical prediction ¥, =0.25. Rows with aster-
isks indicate that the order of the transition could not be resolved.

B Y L ACNN ACNNN < Ag )
0.55062(3) 0.0 o 0.0533(23) 0.1599(69)
0.7417(3) 0.1 64 0.0494(23) 0.0650(31) 0.1092(87)
1.1901(1) 0.2 48 0.047(1) 0.066(1) 0.0618(42)
1.645(1) 0.24 32 0.054(1) 0.080(2) 0.0153(10)
1.822(2) 0.253 12 0.0063(11) —0.1151(55) 0.1938(7)
1.806(1) 0.255 12 —0.0036(3) —0.1509(15) 0.2202(6)
1.775(5) 0.26 12 0.0172(1) —0.1260(6) 0.2481(15)
1.655(5) 0.3 12 0.0437(3) —0.0454(2) 0.2127(12)
1.565(5) 0.35 20 0.0259(1) —0.0254(1) 0.1311(3)
1.4805(5) 0.4 20 0.0142(4) —0.0141(3) 0.0765(21)
1.410(5) 0.45 32 0.0106(1) —0.0090(1) 0.0561(3)
1.317(3) 0.52 32 0.0049(1) —0.0045(1) 0.0288(3)
1.222(3) 0.6 40 * * *
1.165(5) 0.65 40 * * *
1.0225(25) 0.8 40 * * *
1.185(5) 0.65 40 * * *
1.30 0.612(2) 20 —0.0009(3) —0.0045(3) 0.0192(3)
1.40 0.593(2) 20 —0.0030(13) —0.0077(13) 0.0186(6)
1.70 0.56(1) 12 —0.0102(10) —0.0173(19) 0.0273(3)
2.00 0.543(1) 12 —0.0249(23) —0.0304(32) 0.0243(6)
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v =0.24, where we had to simulate the model on lattices
with L >32 in order to obtain an estimate of (Ae). A
simulation in the critical regions =1.644 and 1.6450on a
40° lattice clearly shows flips between two metastable
states. Moreover, the size of the discontinuity in the or-
der parameter S has remained unchanged compared with
the smaller-y values. Comparing with Fig. 4, one sees a
significant increase in the fluctuations. However, apart
from this quantitative difference, which is due to a de-
crease in { At ), one sees no qualitative change. In partic-
ular, Cyn, Cnnns and other physical observables exhibit
the same correlations in the flip-flop behavior. The disor-
dered phase seems to be more probable at S=1.644,
while the ordered one is so at S=1.645, suggesting that
B. lies in this interval.

In Table I we present the (83,7 ) values of all transition
points we investigated along with our estimates of corre-
sponding discontinuities ACyy, ACynn, and (Ae). The
results for the latent heat are presented also in Fig. 7,
which shows that ( Ae) decreases approximately linearly
as y—the strength of the NNN antiferromagnetic
coupling—increases in the interval 0=y <0.24. A linear
extrapolation of the data to zero latent heat would sug-
gest that this line of first-order phase transitions would
terminate around ¥ =0.3. Thus the classical estimate of
¥.=0.25 can be realized only if a strong nonlinear be-
havior sets in in the interval [0.24,0.25]. In order to de-
cide whether {Ae) vanishes in the vicinity of y.~0.25
or stays finite requires a detailed study of the ¥ range be-
tween 0.24 and 0.25. Because of the increasing correla-
tion length, related to the decrease in { Ae), increasingly
larger lattices will be needed in this region. A careful
finite-size scaling analysis is thus called for. The possibil-
ity of nonvanishing { Ae) gets further support from the
analysis of the individual behavior of ACyy and ACynn-
In order for {(Ae) to be zero, either both ACyn and
ACynn should vanish or both should have the same sign,
with the former being 2y times the latter. Linear extra-

0.3
A
ww
<
v
0.2+
0.1+
G.oLL 1 1
0.00 0.25 0.50

T

FIG. 7. Latent heat (Ae) as a function of ¥. The respective
B. and lattice sizes can be found in Table I.

polations using data for ¥ <0.24 are suggestive of neither
taking place near ¥y =0.25. Of course, it is possible that
7. is greater than the classical expectation of 0.25. How-
ever, as our subsequent discussions of runs near y ~0.25
will show, this cannot be the case.

In view of the expected phase diagram given in Fig. 2,
we made several runs at ¥ =0.25 and f=1.83, 1.85, 1.86,
and 1.9 on 123 lattices and in some cases on 163, 20%, and
40° lattices. Figure 8 shows time evolutions of S for these
runs on the 123 lattice. No structure is visible in the or-
der parameter at $=1.9, while at S=1.83 one obtains
large fluctuations; note that the scales are identical for all
B values. A careful inspection reveals that S, >S,=S,
for the entire run at §=1.9; i.e., the system is already in
the SAF I phase. On the other hand, (S, )-(S, ) is rath-
er small, being ~0.2, which indicates that only a few
pairs of planes have acquired antiferromagnetic ordering.
As [B decreases from 1.9 to 1.86, already one finds a
different behavior in the corresponding S evolution. In-
spection of the .S_:y’s in this case reveals that for this entire
run also S,=S;, as shown in Fig. 9. The major
difference, however, is the rich structure in Fig. 9, which
was absent at $=1.9. It is even plausible that for a short
time the lattice did go into the ferromagnetic phase in
this run, where §, =S, =3S,.

The intricate details of the structure are probably a
reflection of the varying antiferromagnetic ordering pat-
tern of the stack of the ferromagnetically ordered planes.
Recall that the ground state in the SAF I phase has a de-
generacy proportional to L, corresponding to possible an-
tiferromagnetic orderings of the stack of ferromagnetic
planes in one direction of the lattice. For sufficiently
small lattices, one may expect the finite-size effects to per-
mit the presence of some ferromagnetic ordering in the
stack of the planes. Depending upon their amount, these
impurities will cause the S ,’s to change discontinuously.
In fact, the different plateaus of S, visible in Fig. 9 differ
roughly by 0.125. Recalling the definition of S, and S in
Egs. (6) and (7), it is easy to see that both will change by
3/2L°L if one of the planes in the antiferromagnetically
ordered stack of planes changes its internal ferromagnetic
ordering [see also Fig. 1(c)]. On a 123 lattice, this works
out to be 0.125. This discontinuity thus directly reflects
the finite lattice extent and will probably shrink like 1/L
in the infinite-volume limit. In addition to these runs, we
performed simulations by changing ¥ from 0.248 to 0.252
and found a continuous increase in the number of planes
ordered antiferromagnetically. The jumps between vari-
ous orderings again appeared rather abrupt in §# but
smooth in bulk thermodynamic quantities such as €.

Our study thus seems to suggest an absence of a sharp
phase boundary between the ferromagnetic and SAF I
phases, although a more detailed investigation on lattices
of various sizes is perhaps necessary to clarify the nature
of the phase boundary between the two ordered phases.
It could, of course, be that one is dealing here with oc-
currences of metastable states corresponding to first-
order phase transitions. But the lack of any associated
structure in (&) makes this rather improbable. As a con-
crete upshot of these runs, it seems one can rule out a y,



950 R. V. GAVAI AND F. KARSCH 46

(1.83,0.29)

1000

7/500

1500

(1.86,0.25)

/500

1.00

ST (b)

0.75

(1.85,0.29)

1000 1500

7/500

(1.90, 0.25)

OOO 1 - L 1 I 1 1 1 1 l 1 1 1 L
1000

7/500

1500

FIG. 8. Time evolution of the average spin S on a 12 lattice at (B,7)= (a) (1.83,0.25), (b) (1.85,0.25), (c¢) (1.86,0.25), and (d)

(1.9,0.25).

larger than 0.25 since the SAF I phase appears to be
present predominantly in all of them.

Any further detailed analysis of the nature of this tri-
critical point will require a special effort, including a de-

FIG. 9. Time evolution of §,, for u=1,2, on a 12° lattice at
(B,7)=(1.86,0.25). For the entire run, S, =5,.

tailed finite-size scaling analysis.!> Recently, Lee and

Kosterlitz have suggested a numerical method to distin-
guish a first-order phase transition from a second-order
one which is useful for weak first-order phase transitions
and has the potential of bringing out the tricritical na-
ture.'® However, it needs much more numerical work
than we have been able to do since they use the
Ferrenberg-Swendsen!” method to extrapolate their MC
data on various lattice sizes, but its use for two-coupling
Hamiltonians such as ours in untested so far. One sees,
nevertheless, that the nature of (1.86,0.25) can only be
clarified by such techniques coupled with finite-size scal-
ing analysis.

B. Superantiferromagnetic phase: y >0.25

Figure 10 shows the time evolution of § at
(B,7)=(1.564,0.35) on a 16° lattice. A very clean flip-
flop behavior between the ordered and disordered states
is evident. In the ordered phase in this run, one finds
(§,)~0.55, whereas (§,)=~(S;)~0.11. The latter
values are indicative of an almost pure antiferromagnetic
ordering of a stack of ferromagnetic planes. In the disor-
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FIG. 10. Time evolution of the average spin S on a 16 lattice
at (B,7)=(1.564,0.35).

dered phase, we found (S§;)=(S,)~(S;)~0.1. A de-
tailed inspection of the time evolution of Cyy and Cynn
also reveals a behavior suggestive of jumps between two
coexisting states. The interesting point, however, is that
the Cynn evolution is anticorrelated to that of Cyy, €, or
S. This gives rise to a negative contribution to the latent
heat, unlike in the disorder—ferromagnetic-order transi-
tions for ¥ <0.25. Qualitatively, this is easily understood
from the structure of the respective ground states. For
B—0 the disordered state should have both Cyn— 4 and
Cnynn—+» while for B— o« the ferromagnetically or-
dered state should have Cyy—1 and Cyyn— 1, and the
SAF I ordering should result in Cyy—2 and Cyyn— 13-
Of course, near . one expects the B—0 and B— o be-
havior to be lower and upper bounds, respectively, which
imply ACyn 20, ACynn 20 for the
disorder—ferromagnetic-order phase transition, but
ACyn 20, ACynn =0 for the disorder—superantifer-
romagnetic-order transition. A more quantitative under-
standing of these gaps will naturally need high- and low-
temperature expansions which will also be ¥ dependent.
That the functional dependences on 8 and ¥ in these ex-
pansions are nontrivial can already be discerned from our
Monte Carlo data.

Figures 11 and 12 show {S) and (&) as a function of
B for y=0.35 on 123, 16%, and 20° lattices. Once again,
characteristic finite-size scaling features of a discontinu-
ous transition are evident in these figures. Furthermore,
B. shifts to smaller values as the volume increases, and
the shift is consistent with a ¥ ~! behavior. Using the
double-peak probability distributions, the data sample
can be split into 2 and the estimates of ACyyn, ACNNN>
and (Ae) so obtained from our largest lattice are given
in Table I and Fig. 7. Note that individual values of
ACyn and ACyyy in this case are a lot smaller than the
corresponding values for y <0.25, yet the negative sign
of ACynn gives rise to a sizeable latent heat.

We have made similar analyses at several values of
v >0.25. For the sake of brevity, we present the results

0.10
/> 12
Wt ]
L]

N 16 A

0 m
0.05F
0.00 1 1 1 1 l 1 1 1 1

1.50 1.55

FIG. 11. Spin order parameter {S) as a function of B at
v =0.35 on L lattices for L =12, 16, and 20.

only in a tabular form in Table I and Fig. 7, since these
simulations display qualitatively the same features as
those at ¥ =0.35 One sees some nontrivial and unexpect-
ed features in them. It seems that (Ae) peaks at
¥ =0.26 and has a value which is ~1.5 times that at
¥=0.0. Its major contribution comes from the ACynn
term. Both ACynny and ACyy seem to reach their
respective minimum around 0.255, where even the latter
is negative. Again, a linear extrapolation of {Ae) be-
tween 0.26 and 0.253, where it decreases, would reach
zero at ¥ ~0.23. Of course, the data are much steeper
here, and consequently such an extrapolation is more un-
reliable than the corresponding one for the data below
v =0.25. In particular, one notes a sharper decrease be-

16 a

0.25 L 1 1 L | 1 - L L
1.50 1.55 B 1.60

FIG. 12. Same as Fig. 11, but for the energy density {e).
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tween 0.255 and 0.253, suggesting that an even sharper
decrease between ¥ =0.253 and 0.25, leading to (Ae) =0
at y =0.25, cannot be ruled out. Taking our estimates at
face value, the trends in ACyy and ACyny are, however,
also not suggestive of (Ae) vanishing at ¥ =0.25, since
for that to happen either both should simultaneously van-
ish there or ACyn =ACynN72. In conclusion, our simu-
lations do not provide any evidence to suggest that
(Ae)=0 at y~0.25, although it clearly does have a
minimum in that neighborhood. Furthermore, ACynn
seems to have different signs on the two sides of the
minimum; this coupled with the different behavior of the
spin order parameter (S, ) on these sides suggests that
the transition region from ferromagnetic ordering to su-
perantiferromagnetic ordering is, indeed, around
Y =0.25, as classical minimum-energy criteria suggested.
The precise location of the critical point in the y interval
[0.24,0.26] and investigations of its nature deserve a fur-
ther more extensive investigation.

Considering now the region of ¥ > 0.26, one finds from
Table I and Fig. 7 a monotonic decrease in { Ae) as y in-
creases. It is noteworthy that ACyy=—ACynn for
0.3 =<y =0.52, which is the largest ¥y up to which we
could resolve a two-peak structure. The slow decrease in
these observables taken together with the above approxi-
mate relation suggests that a vanishing { Ae) will be ob-
tained only at very large values of y, i.e., for y— .
Clearly, with { Ae) decreasing, one needs more and more
statistics on larger and larger lattices to resolve a double-
peak structure. Apart from this difference, however,
one sees no qualitative change compared with the
results at y=0.35. For example, one always finds
(§,)~(8;)<(S,) for the ordered phase, with
(§8,3)~0.1. (§,) decreases, however, continuously
from ~0.9 at y=0.253-0.255 to ~0.4 at y =0.4, thus
suggesting that the planes in the antiferromagnetically
ordered stack are themselves dominantly ferromagnetic
only for smaller y values; for large y, the NNN term dis-
torts this ferromagnetic ordering significantly. This trend
continues as Yy increases, with a slight decrease in
(§,)=(S,), beyond y=0.5. Recall that the classical
considerations suggest the disorder-order phase transi-
tion to be between disordered and SAF II phase for
y>0.5, and the latter should yield (S,)~(S,) with
(S,) smaller. At y=0.52 we have, however, clear evi-
dence that for =1.32 and 1.33, which are just above our
estimated B,=1.317(3), (§,)>(S5,)~(S,), and the
phase transition appears to be discontinuous. For
0.52 <y <0.63, the discontinuity, if present, is reduced
to so low a value that we have been unable to estimate it
properly even on a 40° lattice. However, the analysis of
(§,), u=1,2,3, still suggests the ordered phase just
above the disorder-order phase transition to be SAF I.
For the multiphase point where the three phases SAF I,
SAF II, and the disordered meet, we find

y.~=0.63(2), B,=1.18(2). (8)

C. Superantiferromagnetic II phase: y =0.65

As mentioned above, the SAF II phase can be
identified by looking for the following behavior in the
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FIG. 13. <.§#>, u=1,2,3, as a function of B at y=0.8 on a
40° lattice.

S,s: (8,)=(8,)>(S;). Physically, the phase is
characterized by a spontaneous breakdown of transla-
tional invariance in two directions: Ferromagnetic order-
ing persists only on lines parallel to the remaining direc-
tion, say, the z direction. It is easy to see then that planes
perpendicular to the z direction will have an almost equal
distribution of spins of each type, leading to
(§;)=0(1/L?*. On the other hand, both xz and yz
planes will have an almost equal distribution of lines of
ferromagnetically ordered spins, and hence (S;)
~(8§,)=0(1/L). Figures 13 and 14 demonstrate how
these relations can be used to identify the boundaries be-
tween disordered, SAF I, and SAF II phases. Both ex-
hibit §“, 1£=1,2,3. Figure 13 shows them as a function

0.8— — — :
N, 5,
1 ) .
Y S, A '
0.6 |
[ S5m
[,
0.4
!
L
0.2+
0.0t — b
0.52 0.54 0.56

1

FIG. 14. (§8,), p=1,2,3, as a function of ¥ at f=2.0 on a
123 lattice.
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of B at ¥ =0.8 on a 40’ lattice, while Fig. 14 shows S, as
a function of y at 8=2.0 on a 123 lattice. One sees that
up to f=1.022 all §”’s are equal and small, while for
B=1.03, (§,)=(8,)>(S8,), suggesting that a transi-
tion from the disordered phase to the SAF II phase takes
place at a 8 value in between. The corresponding energy
density (&), however, does not show any signs of a
discontinuity. In view of our results for ¥ <0.65, it is
likely that the discontinuity, if present, is even smaller
and therefore even more difficult to estimate than what
was encountered there. The average spin {(S), on the
other hand, shows very little variation, which is to be ex-
pected since even in the ordered phase the population of
each type of spin is roughly the same. We have repeated
these simulations at y=0.65 as well. Qualitatively,
essentially the same picture emerges out of them, though
identifying the critical region is complicated because of
the proximity of the multiphase point where the three
phase boundaries meet. Table I contains our estimates
for B, for these two cases. No definite statement about
the order of the phase transition emerged out of our
simulations. A study on larger lattices, coupled with
finite-size scaling analysis, will be necessary to obtain a
definitive result. It appears likely though that, as ¥ in-
creases, { Ae ) —0 asymptotically, as suggested by Fig. 7.
Turning to the phase boundary between the SAF I and
SAF II phases, one sees from Fig. 14 that it is rather
sharply defined for =2.0. For ¥ =0.542 one has
(§,)>(S,)=(S,), ie., the SAF I phase, while for
v 20.543, the data suggest the SAF II phase. The energy
density (&) shows almost no variation in this range of v,
but {S) changes rather rapidly. This is in accord with
the expectations since (S )~O(L ~2) for SAF II, but it
should be between O (1/L) and 0.25 for the SAF I phase,
depending on how the antiferromagnetic ordering occurs.

1.00
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b °
0-75j . SAF I1
®
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| .DO 0of
0.50 L2 5
. dis. °
. SAF 1
r I J
0.25+ -
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| ° F
0.00 - ' —L
0 1 2 3

B

FIG. 15. Same as Fig. 2, but with our results on Monte Carlo
simulations (circles) and those of Ref. 6 (squares).

Repeating this exercise at various 8 values, we obtained
the phase boundary shown in Fig. 15. Along the entire
phase boundary, we find, again qualitatively, the same be-
havior except that the boundary becomes less sharp as 8
decreases. Investigating the time histories of € at the
points on the boundary, one detects a small flip-flop
structure, from which one can estimate the size of the
discontinuity in (&) along the boundary. Table I gives a
summary of our results, which are separated from those
corresponding to order-disorder phase transitions.
Remembering the discussion in Sec. IIIC about the
finite-size-induced changes in the energy density € for de-
generate vacua, it may be reemphasized that such effects
may be present in this case too. In that case, though,
(Ae) will decrease as the lattice size increases. One can
thus, in principle, check how genuine these discontinui-
ties are.

IV. DISCUSSION AND CONCLUSIONS

The observed linear rise of the correlation length at T
with the size of the lattice in the simulations of SU(3)
gauge theory at finite temperatures, coupled with the
universality arguments linking its critical behavior with
that of three-dimensional spin models with Z(3) global
symmetry, rekindled interest in the issue of Z (3) critical-
ity or a lack thereof. In order to look for possible Z(3)
critical points, we simulated the three-dimensional three-
state Potts model with nearest-neighbor (NN) ferromag-
netic and next-nearest-neighbor (NNN) antiferromagnet-
ic interaction on L? lattices for L ranging from 12 to 48.
Using finite-size scaling techniques, as well as the appear-
ance of qualitative signals such as characteristic flip-flop
behavior, we obtained a phase diagram for this model
shown in Fig. 15, where both the early numerical results®
and a set of the theoretical expectations from Fig. 2 are
also shown. In addition to the usual observables such as
the average spin, we employed additional variables §“,
defined in Eq. (7), to identify the physical nature of vari-
ous phases. As one sees from Fig. 15, the classical and
mean-field considerations yield a qualitatively correct
phase diagram, but one also clearly sees their quantitative
inadequacies, especially as y increases. As discussed in
Sec. II, the disorder-order phase transition lines for
Y >0.25 are guesses based on effective models. It would
be interesting to compare a proper mean-field prediction
for the full model with our data. We note that our re-
sults, obtained with better precision, are in broad agree-
ment with those of Ref. 6, although near the triple-phase
points we do have some differences.

Based on finite-size scaling analysis of global observ-
ables, we find a first-order phase transition along the
order-disorder line for 0=y <0.24 and for y >0.253.
From Fig. 7 one sees that the latent heat { Ae) decreases
almost linearly in the range 0 <y <0.24, although ACyy
and (AS) do not decrease in any substantial manner in
this range. Any straightforward attempt at extrapola-
tions, either direct or via ACyy and ACyyy, Suggests a
nonvanishing (Ae) at y=0.25. For y >0.253, (Aeg)
first increases as ACynN acquires a negative sign. After
peaking around y=~0.26, (Ae) decreases continuously
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with y, with ACyn=—ACynN for 0.3<y <0.52. This
suggests that ( Ae) vanishes only for asymptotically large
v. While the decreasing latent heat necessitates larger
lattices with greater statistics to establish a discontinuity,
our analysis suggests that, except in the range
0.24 <y <0.253, the order-disorder transition is first or-
der, irrespective of the nature of the ordered phase. Even
in the above y range, a first-order phase transition is sug-
gested, but the rapid changes of (Ae) in that range
render such a suggestion not so reliable. A more detailed
finite-size study of this ¥ range is therefore called for.

For both the phase boundaries separating different or-

dered phases, our simulations suggest either a weak first-
order line or no phase transition at all. Close to the
boundaries, the lattice exhibits a mixture of the two or-
derings characteristic of the two phases separated by the
boundary. Since changes in the energy density due to
such mixtures are typically surface effects, one again
needs to study ( Ae) along these boundaries as a function
of lattice size in order to identify any genuine discontinui-
ty that may exist. Perhaps, in the thermodynamic limit,
a continuous range of different mixtures will be seen with
no change in {e), signaling that the boundary does not
correspond to any sharp phase transition.
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