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We present a high statistics Monte Carlo investigation of three-dimensional Z 3 symmetric 
models, which are related to SU(3) pure gauge theory at finite temperature. From the finite size 
scaling behaviour of bulk properties and the existence of metastable states, we conclude that these 
models exhibit a first-order phase transition. We have also performed detailed correlation length 
measurements in a cylindrical geometry with periodic boundary conditions as well as with a cold 
wall in the longitudinal direction. The correlation length, which appears to be independent of the 
boundary" conditions, becomes very large near the critical point. Nonetheless, our data suggest that 
the correlation length develops a discontinuity at the critical point in the infinite volume limit. 

1. Introduction 

Many numerical investigations of the phase structure of SU(3) gauge theory at 
finite temperature have been performed. Early studies, focusing on thermodynamic 
functions, gave seemingly clear evidence for the existence of a first-order phase 
transition (see, e.g., ref. [1]), signalled by large discontinuities in the order parameter 
as well as in bulk quantities like the energy density, e, and entropy density, s. 
During the last year large-scale computations have been performed to re-examine 
this picture on large lattices. A detailed analysis of the entropy density, close to the 
critical temperature T~, showed that the gap in the entropy density is considerably 
smaller than previously thought [2]. However, since the gap became more pro- 
nounced with increasing spatial lattice size, the first-order nature of the SU(3) 
deconfinement transition was confirmed in the same study [2]. A concurrent study 
of the correlation length ~, on the other hand, yielded a linear scaling of the 
correlation length at T c with the (transverse) size L of the lattice, i.e. ~ (T~) -  L 
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[3, 4]. This suggests that ~(Tc) diverges in the infinite volume limit, which has been 
taken as an indication for a possible second-order phase transition. 

A second-order deconfinement transition in the SU(3) gauge theory would require 
a new look at the universality arguments given by Svetitsky and Yaffe [5], which led 
to the prediction that the phase transition in SU(3) gauge theory is first-order. They 
argue that the effective theory for the (3 + 1)-dimensional finite temperature SU(N)  
gauge theory is a 3-d Z N symmetric spin model with short range interactions, 
dominated by a ferromagnetic nearest neighbour coupling. Their prediction for 
SU(3) is based on the fact that no fixed points are known for such models with 
global Z 3 symmetry. Their arguments can be verified in the strong coupling limit for 
SU(N)  gauge theories [6,7] and more recently have been checked in a detailed 
Monte Carlo renormalization group analysis [8] for the SU(2) gauge theory. 

In the case of Z 3 symmetric models it is known that anti-ferromagnetic interac- 
tions can give rise to second-order phase transitions [9]. Recently a model with a 
mixture of ferromagnetic and anti-ferromagnetic couplings has been studied [10] to 
look for explanations of the possible failure of the universality arguments for the 
SU(3) gauge theory. However, before considering such alternatives, one should 
perhaps reconsider first in greater detail the behaviour of the correlation length and 
other thermodynamic observables near a first-order phase transition. The general 
folklore about first-order transitions is that quantities like the correlation length 
or the specific heat, Cv, stay finite at T~. This assumes that the critical temperature 
T c is approached on an infinite lattice. However, the order of the limiting procedure 
is crucial here. It is known that even if the transition is of first-order, thermody- 
namic quantities measured on finite lattices at To, can diverge when the infinite 
volume limit is taken [11,12]. In order to distinguish a first-order from a second-order 
transition a detailed finite size analysis, yielding various critical exponents, is 
required. It thus seems important to understand the thermodynamics of Z 3 symmet- 
ric models with ferromagnetic nearest neighbour coupling and compare with the 
behaviour found in the SU(3) theory. Models relevant to the SU(3) theory are the 
3-d three-state Potts model and the 3-d Polyakov loop model. The former has been 
studied in detail in a recent Monte Carlo simulation [13] in a cubic geometry. The 
Polyakov loop model is an effective 3-d spin model for the SU(3) theory that one 
obtains in the strong coupling limit by systematically integrating out all spatial 
degrees of freedom [6,7], and thus is, in a sense, intermediate between the Potts 
model and the SU(3) gauge theory. 

We have analyzed the thermodynamic properties on cubic lattices with periodic 
boundary conditions and have performed a high statistics numerical analysis of the 
correlation lengths in these models on lattices with cylindrical geometry. The 
thermodynamic behaviour of the Polyakov loop model is found to be very similar to 
that of the Z 3 Potts model in three dimensions [13]. We find that the phase 
transition is first-order, in agreement with expectations based on universality [5] and 
mean field calculations [7]. In the critical region, run-time histories for the order 
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parameter Re(tr W) show clear metastabilities, and the associated probability distri- 
butions exhibit well-separated peaks corresponding to ordered and disordered 
states. The analysis of the finite size scaling behaviour of peaks in response 
functions, as well as critical coupling /3~£, agrees well with the behaviour expected 
for first-order phase transitions. Another main aim of this paper is to study in detail 
the behaviour of the correlation length on asymmetric lattices with and without a 
cold wall. The study is intended to be very similar to the one made for SU(3) [3, 4]. 
On an asymmetric lattice of size L ~ × L z with L z >> L, we measure the correlations 
of spin operators averaged over transverse planes. We have worked with three 
different lattice sizes, 42 × 33, 62 x 49 and 82 x 65 for the Polyakov loop model and 
242x  96 for the Potts model. In each case we extracted the largest correlation 
length. We find that in the region of metastability the correlation length rises with 
increasing lattice size and shows approximate scaling with L. Outside that critical 
region we observe that ~ decreases for/7 </3c, while it rises faster than L for/3 >/3c- 
This behavior is consistent with that expected for a first-order phase transition in 
models with global discrete symmetries. 

The paper is organized as follows. In sect. 2 we present our results for thermody- 
namic quantities. Correlation length measurements are presented and discussed in 
sect. 3. A summary is given in sect. 4. 

2. The models and their thermodynamics 

2.1. THE MODELS 

As already mentioned, interest in the 3-d three-state Potts model and the 
Polyakov loop model arises from the fact that they have the same global symmetry 
as the (3 + 1)-dimensional SU(3) gauge theory at finite temperature. In the strong 
coupling expansion [6, 7] of the lattice formulation of the latter, one can derive the 
Polyakov loop model by neglecting all the spacelike plaquettes in the gauge action. 
Then the remaining links can be integrated along the time direction at each spatial 
site of the lattice. This yields an expansion in characters of SU(3) which can be 
organized in strong coupling to give the partition function 

Z~'f=f'I~dW"exp[2/3~Re(trW"tr~t)] ' /  ~ii) ¢2.1) 

where p in this model can be related to the coupling g-2 of the SU(3) gauge theory 
[7]. The product is over sites of the three-dimensional lattice and the summation 
over pairs of nearest neighbours. The SU(3) matrix W i appearing in the action is the 
Polyakov loop in the original gauge action and the measure is, as usual, the Haar 
measure on SU(3). Note that the Z 3 invariance of the original SU(3) gauge theory 
action has been preserved, and that the interaction is short-ranged and ferromag- 
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netic (/3 > 0). Within this approximation it is also possible to include next-nearest 
neighbour interactions etc.; they all turn out to lead to ferromagnetic couplings. 

Since the field W, appears in the action only in the form tr IV,,., we have the 
freedom of an independent gauge transformation at each lattice site 

tr W i ~ tr( giWig ~), 

where gi is any element of SU(3). Through such transformations, we can always 
restrict tr W~ to the maximal abelian subgroup (U(1) X U(1)) of SU(3) 

tr W, = (e i°,, + e i°,2 + e ̀°,,) (0,3 = --Oil -- el2 ) . (2.2) 

The integral over the rest of the group can then be performed analytically, leaving 
the measure 

sin2(Ol O2)s,n2(Oi2 0,3)sin2(Oi3 0,x 
2 2 ) deildei2dei3~(eil 

The partition function can then be written in the form 

where 

Zerf= f{17Ii dOl'dO2i)exp[2/3 ~ T'v+ 2~Vi] <0> 

+ 0,2 + 0,3 ) . (2.3) 

(2.4) 

~, = [ ( c o s  e 1, + c o s  o2i + c o s  03, ) ( c o s  01, + c o s  o2j + c o s  o,, ) 

+ (sin el, + sin e2i + sine3,)(sine, i + s ine  w + sin 03j)],  

V' = [l°g(sin( el/-2 02i)) q- l°g(sin( e2i-e3i2 ))+ l°g(sin( e3i-eli2 )] 

with 03 = - ( 0 1 +  02). 

The index i varies over lattice sites, and (g )  indicates pairs of nearest neighbours. 
The two angles at each site vary between zero and 2~r. This is the form of the action 
we use in our Monte Carlo. 

The 3-d three-state Potts model can be thought of as a result of further thinning 
out of degrees of freedom from eq. (2.1) which are irrelevant to the global Z 3 
symmetry. Its partition function can be written as 

Ze=Y"exp[a/3~Re(s'sT)] ' { s , }  (~) (2.5) 
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where s / =  exp(2~rik/3) (k = 0 ,1 ,2 )  are the spin variables. The above model has 
been studied in detail in ref. [13] on cubic lattices. Here we will extend those 
investigations to the cylindrical geometry with different boundary conditions. 

2.2. THERMODYNAMIC QUANTITIES 

For the Polyakov loop model we have extracted thermodynamic quantities from 
43, 63, 83, and 103 lattices for B between 0.136 and 0.139, while for Potts model we 

employed a 242 × 96 lattice and studied the range 0.365 ~< ,8 ~ 0.368. In the latter 

case we compared the thermodynamics on cylindrical lattices with different bound- 
ary conditions with earlier results obtained on cubic lattices. In both cases we used a 
Metropolis algorithm. In the critical region we performed several million iterations 
for each size of the lattice. We present here our analyses for the order parameters 
and the energy densities of the models, the observation of co-existing phases near 
the pseudocritical coupling B~, and the response functions C v (specific heat) and X 
(susceptibility). 

2.2.1. The Polyakov loop model. We can identify the phase of the system under 
study from scatter plots of tr W or histograms of Re(tr W), where W denotes the 
average of W, over the whole lattice, 

W =  ( l / V )  Y'~ W i . (2 .6 )  
i 

At small fi, tr W clusters around zero, and the histogram peaks there. We identify 
this as the disordered phase. At large values of fi these distributions are peaked 
sharply away from zero. Values of tr W cluster around the three Z 3 symmetric 
points W0eiO~ where ~1 = 0, d? 2 = 27r/3 and ~3 = 4 v / 3 .  The distribution of Re(tr W), 

as a consequence, has two peaks at - Wo/2 and W0, with W 0 -- 1.3. The phase with 
this characteristic is identified as the ordered phase. At fl close to 0.137, we see 
strong evidence of metastability between the ordered and the disordered phases, 

showing up as a distinct three-peak structure in the histograms. This behaviour is 
shown in fig. 1. The middle peak corresponds to the disordered phase, and the two 
peaks to its left and right correspond to the ordered phase, with W taking values in 
the different Z 3 vacua. At a given value of fi, near Be, the system can exist with more 
or less equal probability in either phase. These peaks do not tend to merge, or 
disappear, on the larger lattices; on the contrary, they tend to become sharper and 

more pronounced. We thus do not see any tendency for the potential barrier to 
disappear in the large volume limit, which is indicative of a first-order transition. 

In fig. 2, we show how the system flips between the ordered and disordered 
phases through a Monte Carlo run on a 103 lattice near the critical point. The 
(Monte Carlo) time during which the system stays in one of the two phases is seen 
to be much larger than time spent in transition. Also, we note that almost all flips 
occur between ordered and disordered phases, and very few flips are observed 
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Fig. 1. Histogram of Re(tr W) for cubic lattices. Note that with increasing lattice size the peaks become 
narrower and better separated. The middle peak corresponds to the disordered phase. Shown are 
his tograms for the 43 lattice /3 = 0.1369, for 63 at j~ = 0.13705, for 83 at fl = 0.1371, and for 103 at 

j~ = 0.13715. 
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Fig. 2. The run time history for the quantity Re(tr W) on a 103 lattice at/~ = 0.1372. 

between the different Z 3 vacua of the disordered phase. The barrier between the 
three minima of the broken phase is thus higher than the barrier which separates 
them from the disordered phase. The frequency of flips between ordered and 
disordered phases decreases rapidly with increasing lattice volume. On the 83 lattice, 
there are about  150 flips per 10 6 Monte Carlo sweeps at /3 = 0.1371. At the same/~, 
on a 103 lattice, the rate falls to 20 per 10  6 sweeps. 

Let us now discuss the behaviour of some thermodynamic observables. We have 
studied the energy density 
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Fig. 3. (a) The order parameter P, and (b) the energy density c as function of/~ on 43 (lower triangles), 
63 (circles), 83 (diamonds) and 103 (upper triangles) lattices. 

and the order parameter 

P = (Abs(tr W ) ) .  (2.8) 

Note that P is not strictly an order parameter because the global Z 3 symmetry of 
the action does not constrain it to a zero value in the symmetric phase. Nevertheless, 
we observe that in the absence of an external Z 3 field, it averages statistically to a 
small value that is expected to scale inversely with the lattice volume. 

The behaviour of P as a function of p on different lattices is shown in fig. 3. As 
can be seen, the sharpness of the transition increases as the lattice size is increased. 
Note that the asymptotic values of the order parameter are reached smoothly on all 
the different lattices. The lattice size dependence seems to be larger for fl < tic than 
for j~ > B,,. In fig. 3, we also show the energy density which exhibits a similar 
behaviour. 

The more rapid change of P and E in the transition region is reflected in the 
increasing peaks of the corresponding response functions at /9 7 . We extract the 
specific heat 

, t 2 9 1  

and the susceptibility 

X= V((Abs(tr  W)2) - <Abs(tr W) )2) - (2.10) 

These are shown in figs. 4 and 5. It can be seen that on successively larger lattices 
the peak grows higher and narrows rapidly. We would like to stress again that also 
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Fig. 4. Specific heat as a funct ion  of fl 
on 4 3 (lower triangles), 6 ~ (circles), 8 3 (di- 
a m o n d s )  and  10 3 (upper  triangles) lattices. 
The  full l ines show the gauss ian  fitted to the 
da ta  and  are extended over the range of 

the fits. 

for a first-order phase transition the peaks in response functions are expected to 
diverge. In fact, for a first-order transition the divergence is expected to be fastest, 
i.e. proport ional  to V, while in a second-order transition the peak scales with a 
characteristic critical exponent L -~', with y ~< d. A finite size scaling analysis of this 

phenomenon should thus allow us to distinguish between a first- and second-order 
phase transition [11,12]. 

We have checked this scaling behaviour in detail by fitting the region near the 
peak of each of these curves by a gaussian. The maxima of the curves are obtained 
from the fits. The fitted curves are displayed in figs. 4 and 5 as the full lines. The 
values at the peak for both C v and X are found to scale linearly with V. This is 
shown in fig. 6, where we also display the expectations for the peak values based on 
the relations 

2 1 CPveak//V- •c ( 2 A { )  2,  x P C a k / v  = (½AP) 2 . ( 2 . 1 1 )  

Here Ae and A p denote the discontinuity in the energy density and the order 
parameter,  respectively. From the histograms for E and P we obtain for the gap in 
these quantities at tic- 

Ac/c .... = 0.182 _+ 0.009, A p  = 1.25 _+ 0.07. (2.12) 

It is interesting to note that the gap in the order parameter agrees well with that 
found in the 3-d Potts model [13]. Also in that case we have checked that the peaks 
in C v and X scale according to the relations given in eq. (2.11). 

Let us finally discuss the scaling of the critical coupling tic with lattice size. On a 
finite lattice the definition of the pseudocritical coupling is not unique. We explore 

three different definitions of fl~ by using the peaks in the response functions Cv, X 



0 . 7  

0 . 2  

0 . 6  

0 . 2  

. . . .  I . . . .  I 

~ l l l l l l l l l l  

i I i i I i i i i I 

0 5 0 0  i OO0 
V 

Fig. 6. The maxima of (a) Cv/V ,  
and (b) x / V ,  as obtained from the 
fits shown in figs. 4 and 5, plotted 
as a function of the lattice volume. 
The bands give upper and lower 
limits as obtained from eqs. (2.11) 

and (2.12). 

S. Gupta et al. / Z 3 symmetric models 271 

TABLE 1 
Pseudocritical coupling fl/" on L 3 lattices 

as obtained from the three 
methods indicated 

c/-  

L histogram peak of X peak of C v 

6 0.1368 (1) 0.13685(2) 0.13703(3) 
8 0.1371 (1) 0.13708(2) 0.13711(2) 

10 0.13715(5) 0.13714(1) 0.13715(1) 

oo 0.13721(5) 0.13722(2) 0.13718(2) 

as well as the relative populations in the different phases seen in the critical region 
[13]. In all the cases /3]  ~ can be extracted from a gaussian fit to the data. The results 
of  our analysis for flJ~ are given in table 1 . /3~  is obtained by assuming that the shift 
on a finite lattice scales inversely with volume V = L3: 

fi~ = fl~ + a / V .  (2.13) 

We find that the bulk transition takes place at fl = 0.13720 _+ 0.00003. A posteri- 
ori the agreement of various estimates for/3Y in table 1 also implies that the shift 
exponent for the critical coupling is consistent with 3, the dimensionality of the 
lattice. This, together with the evidence presented above, supports the first-order 
nature of the transition in the Polyakov loop model. We note that our results are in 
good agreement with the mean field results for this model, which predict a 
first-order phase transition at /3  c = 0.134 [7]. 

2.2.2. The Potts model. The thermodynamics of the Potts model on cubic lattices 
with periodic boundary conditions has been studied in detail in ref. [13]. Here we 
concentrate on the differences arising from the change of geometry and boundary 
conditions.  In fig. 7 we show the energy density, e, and the order parameter, S, on a 
2 4 2 ×  96 lattice with and without a cold wall*. For comparison we also display 
corresponding results on the 363 lattice from ref. [13]. This lattice has approximately 
the same volume as the 242 x 96 lattice. We note that the results obtained with the 
periodic boundary conditions seem to be independent of  the geometry whereas the 
cold wall boundary conditions lead to large finite size effects in both shape and 

* We use the same definitions for ~ and S as in ref. [13]. 
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Fig. 7. (a) The energy density c, and (b) the order parameter S, as a function of/3 for the 3-d three-state 
Potts model. Shown are results from simulations on 363 (open circles) and 242 × 96 (upper triangles) 
lattices with periodic boundary conditions and from a 242 × 96 lattice with a cold wall (lower triangles). 

magnitude.  These effects are expected to vanish as the longitudinal size of the lattice 

goes to infinity. However, our results show that a lattice with longitudinal size only 

a factor  of  4 bigger than the transverse size is still far away from this ideal case. 

3. Correlation length measurements 

As is well known, on an infinite lattice the correlation length diverges at a 

second-order  phase transition but remains finite at a first-order transition, thus 

providing a clear signal for the order of  the transition. In terms of the mass iz(fi), 
defined by the correlation function of a nonsinglet operator  O(z) ,  

< O ( z ) O ( O ) )  ~ e -~(z¢)~ , z ~ ~ ,  (3.1) 

a first-order transition corresponds to a discontinuity at tic. The mass t~(fi) is finite 

for fl < tic and zero for fl > tic. If  the phase transition is of second order, there is no 
discont inui ty  at tic but /~(fi) decreases to zero continuously as fi ~ tic-. Note  that 
/~(fl) corresponds to the physical mass gap only for fl < tic- Above tic, it merely 
reflects the non-vanishing expectation value of  the operator  O(z)O(O),  as z ~ ~ ,  

i.e. the appearance of a spontaneously broken phase. To extract the physical 

correlat ion length in the broken phase, where /~( f i )=  0, one has to study the 
connected  correlation function ( O ( z ) O ( O ) )  - (O(0))  2. 

On  a finite lattice, on the other hand, the distinction between first- and second- 
order  behaviour  is less clear-cut. For  definiteness, let us consider correlations 
between ze ro -momentum operators O ( z )  on a lattice length L z in the z direction 
and of  transverse size L 2, with L z >> L. In terms of the masses /% </~1 < -.- on the 
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L 2 × ~ lattice, which are determined by the eigenvalues of the transfer matrix in the 

z direction, one can write 

( O (  z ) O ( O )  ) = Y'~Ai( L ,  fl)(exp[-iti(L,/3)z] + e x p [ - t t i ( L ,  fl )(  L z - z)]) 
i 

(3.2) 

for a lattice periodic in the z direction. From the discussion above, one expects that 
the mass gap tto( L,/3) tends to a finite value (zero value) as L ~ ~ for fixed/3 </3c 
(fi > tic)- For  a large but finite value of L, /~0 will therefore drop sharply but 
continuously close to/3c, irrespective of the order of the transition. 

Knowledge of fro(L, fl) will in the L ~ oe limit provide us with the physical 

correlation length ~ for 13 < tic. In order to determine ~ in the broken phase, one can 
exploit the fact that for sufficiently high fl, tt0L: << 1 and the first term in eq. (3.2) 
becomes effectively a constant, corresponding to a non-vanishing term that needs to 
be subtracted to obtain the connected correlation function. Effectively, one can then 
estimate ( from the large distance approximation 

I L m (O(z)O(O))=Acosh(~ 1 ( ~  z Z ) )  -[- B ,  O ( < z < < g .  ( 3 . 3 )  

In the critical region, where we expect t % L , -  O(1), this is, however, not a good 
approximation to eq. (3.2). Since this is the region we are interested in, we prefer to 
discuss correlations in terms of the tL of eq. (3.2). The order of the transition is then 
signalled by the L ~ ~c behaviour of these masses, as discussed above. 

A widely used method for correlation length measurements is the source method, 

which is expected to give a better signal to noise ratio than ordinary correlation 
function measurements. Following ref. [3], we use this method with a cold wall as a 
source. We fix all the field variables at z = 0 and z = L: to identify and measure the 
response function 

Cw(z ) = Re W ( z ) ,  (3.4) 

m 
with W(z) defined as the average of Polyakov loops in a transverse plane at distance 
z from the source: 

m 

W(z) = ( 1 / L  2) E tr W(x,  y, z) .  (3.5) 
x,  v 

From these measurements we extract local masses tt(z), defined by 

(Cw(Z))  cosh[~(z)(Lz/2 - z)] 

(Cw(z + 1))  c o s h [ t t ( z ) ( L z / 2 - z - 1 ) ]  " 
(3.6) 
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Fig. 8. Local masses tL(z), obtained with the source method, as a function of z at different/3 values for 
lattice sizes (a) 42 × 33, (b) 62 N 49 and (c) 82 x 65. 

At intermediate distances/z(z) is an effective mass that gets contributions from all 
masses ffi. At sufficiently large distances, however, it will be dominated by the 
lowest excitation fro. In order to check a possible sensitivity of our results to the 
choice of boundary conditions, we have also measured the correlation function 

Cpb(Z ) = Re(W(z )W~(O) ) .  (3.v) 

This we have done on periodic lattices of the same sizes at a number of different/3 
values. For the analysis we follow the same procedures as above. A similar analysis 
has also been performed for the Potts model on a 242 × 96 lattice. In this case 
defined in eq. (3.5) has to be replaced by an appropriate spin average as defined in 
ref. [13]. 

3.1. THE POLYAKOV LOOP MODEL 

In figs. 8 and 9 we show /~(z) at several /3 values for the three lattice sizes 
4 2 ×  33, 6 2 x  49 and 82× 65 obtained from Cw(Z ) and Cpb(Z), respectively. The 
errors have been estimated by extracting if(z) from four or eight subsamples (or 
blocks) of the data. The number of iterations used to determine Cw(z ) at each/3 is 
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Fig. 9. Same as fig. 8 but with ,u(z) obtained from the correlation function function Cpb. The lattice 
sizes are (a) 42 × 32, (b) 62 × 48 and (c) 82 × 64. 

TABLE 2 
Inverse correlation length ~ as obtained from the source method on a 82 x 65 lattice. Data for 

(\ ,  ( : )  (eq. 3.4), d,,,i,, ~< z 4 dn,~, have been fitted to the expression eq. (3.8). 

]? blocks iterations dmin d ..... /x X 2 DOF 

0.1360 40 0.5 × l06 11 16 0.4620(391) 5.40 4 
0.1365 40 0.5 × 106 11 22 0.4027(167) 11.24 10 
0.1367 75 3.0 × 106 15 24 0.3246(109) 10.42 8 
0.1368 40 0.5 × 106 15 24 0.2772(154) 8.62 8 
0.1369 75 3.2 × 10 ~ 17 30 0.2148(97) 12.10 12 
0.1370 75 4.0 × 106 21 30 0.1314(108) 5.18 8 
0.13705 50 3.0 × 106 21 30 0.0718(67) 11.67 8 
0.1371 30 1.0 × 10 (' 21 30 0.0528(73) 8.13 8 
0.1372 75 4.0 × 106 21 32 0.0192(20) 18.06 10 
0.1373 100 3.0 × 106 21 32 0.0080(18) 14.65 10 
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TABLE 3 
Same as table 2 for the 62 × 49 lattice 

/3 blocks iterations dmindrnax /1, X 2 DOF 

0.1360 40 0.5 x 106 9 18 0.3589(155) 4.33 8 
0.1365 40 0.5 X 106 11 18 0.2664(122) 5.57 6 
0.1367 40 1.5 × 106 11 24 0.1860(61) 7.34 12 
0.1368 40 0.5 X 106 11 24 0.1448(70) 9.28 12 
0.1369 60 2.3 X 106 16 24 0.1171(34) 7.19 7 
0.1370 40 1.0 x 106 16 24 0.0942(48) 3.86 7 
0.13705 40 1.0 X 106 16 24 0.0826(58) 5.54 7 
0.1371 40 1.5 x 106 16 24 0.0770(42) 3.23 7 
0.1372 40 1.0 × 106 16 24 0.0481(39) 6.10 7 
0.1374 40 1.0 x 106 16 24 0.0294(28) 2.41 7 
0.1376 40 0.5 X 106 16 24 0.0132(44) 8.10 7 

TABLE 4 
Same as table 2 for the 42 x 33 lattice 

/3 blocks iterations dmin d m a  x p, X 2 DOF 

0.1360 80 2.0 X 106 7 16 0.2681(54) 4.00 8 
0.1365 40 0.5 x 106 7 16 0.2108(67) 10.72 8 
0.1367 40 0.5 X 106 7 16 0.1931(60) 5.98 8 
0.1368 40 0.5 x 106 7 16 0.1686(56) 16.11 8 
0.1369 40 0.5 x 106 7 16 0.1605(64) 9.07 8 
0.1370 80 2.0 X 106 9 16 0.1571(30) 7.87 6 
0.13705 40 1.0 x 106 9 16 0.1513(37) 2.34 6 
0.1371 40 1.0 )< 106 9 16 0.1404(38) 1.70 6 
0.1372 40 0.5 x 106 9 16 0.1308(58) 4.11 6 
0.1374 40 0.5 x 106 9 16 0.1060(52) 2.36 6 
0.1378 40 1.0 X 106 9 16 0.0764(32) 6.37 6 
0.1382 40 1.5 X 106 9 16 0.0629(15) 9.12 6 

at least 0.5 x 1 0  6 and up to 4.0 x 1 0  6 n e a r  the critical point on the largest lattice. 
Corresponding numbers for Cpb(Z ) are in general higher (see tables 2 5). 

A constant value of if(z) signals that the first term dominates in eq. (3.2) in that 
range of z. In figs. 8 and 9 this behaviour is observed in most of the cases and the 
mass gap can therefore be read off directly. Comparing these figures, we see that at 
small distances, the distance-dependent masses /~ (z )  are different in the two cases. 
This is to be expected since the corresponding coefficients A i in eq. (3.2) are 
different. Due to the positivity of all A i in the case of  lattices with periodic 
boundary conditions, the large distance limit for the local masses is approached 
from above, whereas at least for/3 </3c it seems to approach the asymptotic value 
from below in the presence of a source. More importantly, we find that at large 
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TABLE 5 

Inverse correlation length ,a as obtained from a fit of the data for the correlation function 
Cpb(Z) (eq. (3.7)), dmin ~< z ~< d . . . .  to the expression eq. (3.8). 
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Size 13 blocks iterations d,~in dma x p, X 2 DOF 

64 × 82 0.1367 75 4.0 X 106 6 10 0.4398(203) 1.85 3 
0.1369 75 2.9 X 106 9 18 0.2615(312) 3.60 8 
0.13705 75 10.0 X 106 18 28 0.0904(248) 9.51 9 
0.1372 75 6.0 X 106 20 30 0.0184(16) 14.82 9 
0.1373 75 3.0 X 106 20 30 0.0089(7) 11.75 9 

48 × 62 0.1367 50 1.6 X 106 10 16 0.2047(104) 7.88 5 
0.1369 50 1.6 x 106 12 20 0.1286(84) 5.82 7 

32 × 42 0.1360 50 2.0 x 106 4 16 0.2774(41) 2.97 11 
0.1367 50 1.0 x 106 8 16 0.1859(64) 5.81 7 
0.1369 50 1.0 x 106 8 16 0.1663(57) 7.08 7 
0.1370 50 1.0 x 106 8 16 0.1543(43) 9.53 7 
0.1382 50 1.0 × 106 8 16 0.0638(23) 2.03 7 

distances the two local masses seem to converge nicely to a common limit, thus 
suggesting that the same longest correlation length is measured. We have also 
extracted the mass gap from a global fit of our data for Cw(z ) and Cpb(Z ) to the 
expression 

f(z;A,ff)=Acosh(ff(~L:-z)), O<<z<<L: .  (3.8) 

Since measurements of the different C(z) ' s  are strongly correlated, especially in the 
critical region, we use for our fits a definition of X 2 including off-diagonal terms. 
Following ref. [14], we define the best fit by minimizing 

X 2 =  Y'~ ((C(z,))-f(z,;A,ff))V~]T12((C(z2))-f(z2;A,ff)). (3.9) 
21 , z 2 

After dividing the measurements into N separate blocks, we estimate the covariance 
matrix V.: 2 in eq. (3.7) as 

1 E Ck(zl)Ck(z2) - (C(z , ) ) (C(z2)  (3.10) 
V ~ 2 -  N -  1 k=l 

where Ck(z ) is the average over the k th  block. For this to be a good estimate we 
need a large number of statistically independent blocks, i.e., the individual blocks 
should be large enough. The latter requirement is, of course, especially important in 
the presence of metastabilities. When choosing the block size, we checked that the 
diagonal elements of V:,. were reasonably N independent. The number of blocks N 
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Fig. 10. Inverse correlation length # as a 
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Fig. 11. The Fisher  scaling variable/~L as 
a function of /~ for different transverse 

sizes L. 

we have used varies between 30 and 100, corresponding to block sizes of 
10000 130000 iterations. Further details of the fits are given in tables 2-5. Errors 
quoted are defined as the region of parameter space over which X 2 increases by one 

unit, assuming that this region is of quadratic shape. We note that the relative 
efficiency of the two different methods is/?-dependent. In the disordered phase, we 
needed about  three times more statistics for the correlation function on the largest 
lattice without a source than in the case with a cold wall to obtain similar statistical 
errors. In the ordered phase, on the other hand, the method without the source 
seems to be the most efficient one. 

The values for the mass /x as given in tables 2 5 are in good agreement with 
estimates from the local masses. Comparing again the source method results (tables 
2-4)  with those obtained without a source (table 5), we find in general a very good 

agreement. We further note that the X 2 per degree of freedom for the fits are in the 
range 0.25 to 2.0. This, together with an approximately constant long-distance 
behaviour of the local mass, we take as evidence that our values for tt are reasonable 

estimates of I%. Fig. 10 displays tt as a function of 13 for all the lattices sizes we 
studied. From this figure we see that the decrease of/z in the critical region becomes 
significantly sharper with increasing L. In addition we also find that outside the 
critical region /x increases (decreases) with increasing lattice size for/3 </lc (/3 >/lc).  
This suggests that a discontinuity develops in the infinite volume limit, as expected 
for a first-order transition. 

In fig. 11 we show the Fisher scaling variable /~L in the neighbourhood of the 
phase transition. We note from this figure that there exists a /l value at which the 
Fisher scaling variable corresponding to different L ' s  are roughly equal. This 
implies that at this /l the correlation length scales linearly with L, which is the 
behaviour expected at /lc for a second-order phase transition. However, our results 
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TABLE 6 
Next largest correlation length for L = 8 as obtained from fits of the data indicated in the second column. 

Details of the fits are given in the text. 

,8 data blocks dmin dma x P'o ,tt, l X 2 DOF 

0.1372 Cpb 50 4 14 0.0193(16) 0.4288(189) 6.82 7 
0.1373 Cpb 75 2 i2 0.0095(5) 0.6461(243) 8.27 7 
0.1375 C w 133 3 12 - 0.7148(617) 5.70 7 

also show that,  at least with a modera te  number  of  different L ' s  available, this 
behav iour  canno t  be used to determine the order  of the transition. If the transit ion 
were of  second order, then the finite size scaling behaviour  of the Fisher scaling 
var iable  would be given by 

. L  : .  + b L " ( B  (3.11) 

for fi close to Bc L. It  is evident f rom the data shown in fig. 11 (see also fig. 15 for the 
Pot ts  model)  that  the validity regime of this linear relation shrinks with increasing 
latt ice size; for the numerical  analysis a quadrat ic  fit thus becomes necessary. We 

have  fitted the Fisher variable on all three lattice sizes to a polynomial  in (B - fl~')- 
For  the two smaller  lattices a linear form suffices. The resulting fits, when investi- 

ga ted  close to fl]- are consistent with v = X . The volume dependence  of our  data  
for  fl < fl,. (but  ]3 c - B not too small) is also consistent with the form 

~ = a +  b / L 2 ( f l -  flc), (3.12) 

suggested [16] for a first-order transit ion on the basis of  an effective potent ial  model  
neglect ing ins tanton  effects. Fits to this form suggest that  on a lattice infinite in all 
d i rect ions ~(fi  ~ fl~-) = 2. 

All the results above refer to the mass gap /~0- At high fl values on the largest 
latt ice we have also calculated the next largest correlat ion length (see table 6). At 

fl = 0.1372 and 0.1373 this was done by a two-mass,  i.e. four-parameter ,  fit of the 
da ta  for Cpb(Z ). As seen f rom table 6, the X 2 p e r  degree of f reedom for the fits are 
close to one and we further note that  the values obta ined for /~0 are in nice 
agreement  with our previous results. Fits to the simplified three-parameter  expres- 

sion eq. (3.3) are in this fl region less well behaved.  At fi = 0.1375, on the other 

* A similar analysis of the Fisher scaling variable has recently been performed for the SU(3) transition 
[15]. Qualitatively their results on the Fisher variable are very similar to ours. They analyse their data 
using the linear form given in eq. (3.11). On their largest lattices they find that v does not agree with 1. 
We note, however, that with increasing lattice size the scaling region, in which eq. (3.11) is valid, 
decreases rapidly. We find from our analysis that using this linear relation in a too large fl interval 
leads to an overestimate of v on larger lattices. This may be the reason why their estimates for v are 
consistent with ~ on small lattices only. 
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Fig. 12. /~o (filled circles) and/~l  (open circles) as a function of fi for L = 8. 

hand, ~0 is very small and it is possible to extract the next largest correlation length 
from the three parameter fit. In fig. 12, we have collected our results for/~1 as well 
as ~0 for L = 8. This figure suggests that the physical correlation length remains 

small also on the high f side of the transition. We estimate it to be of the order of 
two lattice spacings at f t .  We also attempted to determine the physical correlation 
length according to the prescription suggested in ref. [17]. We find, however, that 
results are strongly dependent on the parameters of the prescription, such as the 
criterion used to separate the two coexisting phases or to subtract the disconnected 

part  in the correlation functions. 

3.2. T H E  POTTS M O D E L  

Figs. 13 and 14 display the local masses/~(z)  for the Potts model on a 242 × 96 
lattice with and without a cold wall respectively. They exhibit the same behaviour as 
those for the Polyakov loop model, namely, in the absence of a wall they approach 

their asymptotic  value from above for all fl and the asymptotic values themselves 
are independent of the boundary conditions. Note that the statistics for both the 
figures are comparable and so are roughly the ranges from which an asymptotic 
value can be extracted in either case. We therefore do not see any particular 
advantage which selects one of them in this case. The resultant asymptotic masses 
are more or less the same as those obtained on a 363 lattice: while they do differ 
somewhat for 13 << fie, near fc they coincide. In fig. 15, we plot the Fisher scaling 
variable obtained from the data in ref. [13]. Again, we can find a f where values of 
/~L corresponding to several different L ' s  are approximately equal. Again an 
estimate of ~, on the basis of eq. (3.11) is consistent with 3- However, on the larger 
lattices the scaling region is very small and a better coverage of this region would be 
needed for a systematic analysis of 1, based on the correlation length. 
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Fig. 14. Same as fig. 13 but  wi thout  a source. 

4. Discussion and conclusions 

In this article we have studied in detail the phase transition in an effective 
three-dimensional model for the Polyakov loop with ferromagnetic coupling, which 
is related to finite temperature SU(3) gauge theory. We have also extended the study 
of the three-dimensional three-state Potts model, which was performed in ref. [13]. 
Both models have the same global Z3-symmetry as the SU(3) gauge theory, and a 
phase transition to a phase where this symmetry is spontaneously broken. 

In order to determine the order of the phase transition, one may choose to study 
global quantities like the order parameter and the energy density, or the behaviour 
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Fig. 15. The Fisher scaling variable for the 3-d three-state Potts model as a function of ft. The data are 
taken from the correlation length measurements  on periodic L 3 lattices presented in ref. [i3]. 

of the correlation length near the transition. We have found that in both models the 
finite size scaling analysis of the global quantities gives clear evidence for a 
first-order phase transition. The analysis of the correlation length turns out to be 

more subtle. 
In particular, we describe, in this article, measurements in the Polyakov loop 

model of the probability distributions of the order parameter, its absolute value, and 
of the energy density (average action). The measurements were performed on 
lattices of size 43 , 63 , 83 and 103 . For all quantities we find, at the transition point, 
well-separated peaks, one corresponding to the disordered phase and the other (in 
the case of the order parameter, and three others) to the ordered phase. The 
separation of the peaks is independent of the lattice size. This corresponds to a 
finite size dependence of the corresponding response functions (specific heat and 
susceptibility), where the maximum of these quantities is proportional to the 
volume. This is in contrast with what is expected for a second-order transition, 
where the probability distribution shrinks, does not show well-separated peaks, and 
the maxima of the response functions accordingly grows slower than the volume 

with a rate given by the critical indices. 
For  the Potts model, we have data on correlations between spins on cubic lattices 

with size up to 483 and on 242 × 96. For the latter we also explore the influence of a 
cold wall. The corresponding data in the Polyakov loop model have been collected 
mainly by using the response to a cold wall. In some cases we have made runs with 
periodic boundary conditions, measuring the correlation function. For the Polyakov 
loop model we find that below/~c the source method is the more efficient one. 
Above /~c, on the other hand, the method without the source becomes preferable, 
both for the longest and the next-longest correlation length. In the Potts model no 

such clear differences are observed. 
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For  the interpretation of the unsubtracted correlation function that we measure, it 
is important  to note that in the ordered phase, in the infinite volume limit, the 
largest correlation length is infinite. This corresponds to the constant which should 
be subtracted in this phase. On a finite lattice, or a lattice finite in the two 
transverse directions, this correlation length is finite, but exponentially large in this 
phase, because of the tunnelling between the Z 3 vacua. In the transition region, the 
behaviour is more complicated. In the infinite volume limit, one expects a disconti- 
nuity in the correlation functions for a first-order phase transition, while for a 
second-order phase transition the correlation length goes continuously to infinity 
when the phase transition is approached from the disordered phase. On a finite 
lattice there is, ot; course, no discontinuity. Thus the difference between these two 
cases is given only by the finite size scaling behaviour. 

We find, in fact, a value of p where the correlation length scales like L, the 
transverse dimension of the lattice, on our three lattices. We do not, however, 
consider this to be evidence for a second-order phase transition. Our data are 
reasonably well described in the disordered phase to be a universal function of 
L2(/3-p~,)  in a form expected for a first-order phase transition. Close to the 
transition, a Fisher finite size scaling analysis shows that our data are consistent 
with a critical exponent v = }. This corresponds to a leading order/~ dependence of 

through L2(/? - tic). For a first-order phase transition one expects a = 1~ y = 1 
and v = 1 / d  [11]. These exponents are in good agreement with the scaling be- 
haviour seen in our data for the Polyakov loop model, both for the global quantities 
and for the correlation length. The measurements of the correlation length necessary 
for the finite size scaling analysis are, however, considerably more time-consuming 
than for the global quantities. 

Finally, trying to separate the physical correlation length in the ordered phase 
from the tunnelling correlation length leads, in the Polyakov loop model, to a quite 
small value ~ = 2. This is also what results from the analysis in the disordered phase. 
For the Potts model the corresponding correlation length ~ ~ 10 [13]. A posteriori, 
we find that we have used lattices considerably larger than the physical correlation 
length. We thus conclude that the phase transition for both models is first-order. 
From a strong-coupling analysis one would expect also the next-nearest neighbour 
interactions in the Polyakov loop model to be ferromagnetic, and not to change the 
nature of the phase transition, but making the correlation length longer. 

On the methodological side, we conclude from our experience with these models 
that the finite size scaling behaviour of the global quantities seems to be easier to 
analyse than the correlation length. Neither a long correlation length, nor its scaling 
behaviour at one value of ,8 seem to be sufficient to ascertain the order of the phase 
transition. A very careful simultaneous finite size scaling analysis of these quantities 
seems to be necessary to determine the order of the phase transition in SU(3) and 
related Z3-symmetric models. 

We would like to thank the Deutsche Forschungsgemeinschaft for financial 



284 S. Gupta et al. / Z~ symmetric models 

support under contract Pe 340/1-2. We are very grateful to HLRZ, Jfilich and 
CERN for the computer time necessary for this project. One of us (B.P.) thanks A. 
Billoire, R. Lacaze, E. Marinari, A. Morel and in particular J. Zinn-Justin for 
discussions and the Stimulation project of the European community for financial 
support. 

References 

[1] F. Karsch, Z. Phys. C (Particles and Fields) 38 (1988) 147 
[2] F.R. Brown, N.H. Christ, Y. Deng, M. Gao and T.J. Woch, Phys. Rev. Lett. 61 (1988) 2058 
[3] P. Bacilieri et al., Phys. Rev. Lett. 61 (1988) 1545 
[4] P. Bacilieri et al., Nucl. Phys. B318 (1989) 553 
[5] L.G. Yaffe and B. Svetitsky, Phys. Rev. D26 (1982) 963; Nucl. Phys. B210 (1982) 423 
[6] J. Pol6nyi and K. Szlachfinyi, Phys. Lett. Bl10 (1982) 395 
[7] F. Green and F. Karsch, Nucl. Phys. B238 (1984) 297 
[8] M. Okawa, Phys. Rev. Lett. 60 (1988) 1805 
[9] F.Y. Wu, Rev. Mod. Phys. 54 (1982) 235 

[10] L.A. Fernfindez, E. Marinari, G. Parisi, S. Roncolini and A. Taranc6n, Phys. Lett. B217 (1989) 309 
[11] M.E. Fisher and A.N. Berker, Phys. Rev. B26 (1982) 2507 
[12] M.N. Barber, in Phase transitions and critical phenomena, Vol. 8, ed. C. Domb and J.L. Lebowitz 

(Academic Press, New York, 1983) p. 145 
[13] R.V. Gavai, F. Karsch and B. Petersson, Nucl. Phys. B322 (1989) 738 
[14] T.A. DeGrand and C.E. DeTar, Phys. Rev. D34 (1986) 2469; 

S. Gottlieb, W. Liu, R.L. Renken, R.L. Sugar and D. Toussaint, Phys. Rev. D38 (1988) 2245 
[15] B.A. Berg, R. Villanova and C. Vohwinkel, Phys. Rev. Lett. 62 (1989) 2433 
[16] E. Br~zin and J. Zinn-Justin, Nucl. Phys. B257 [FS14] (1985) 867; 

J. Zinn-Justin, private communication 
[17] M. Fukugita and M. Okawa, Kyoto University preprint, RIFP-790 (1989) 


