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We present results of a numerical study of lattice QCD with four dynamical flavours of staggered fermions, performed by using 
a hybrid Monte Carlo algorithm on an 8× 123 lattice. We find a rapid change in the average value of the Polyakov loop at 
fie= 5.25 +_. 0.025 for a quark mass ma=0.025; at this mass value, the behaviour of the chiral order parameter, ( ~7~u), does not yet 
allow an independent determination of the transition point. Using existing hadron mass calculations, the value of Pc we have 
obtained here would lead to a transition temperature T~ 100 MeV. 

An important  prediction which has emerged from 
numerical simulations o f  lattice quantum chromo- 
dynamics ( Q C D )  is the existence o f  a phase transi- 
tion in strongly interacting matter, as one raises its 
temperature. In principle, such simulations are ca- 
pable of  yielding a variety o f  information, including 
the value of  the transition temperature, To, and the 
order of  the phase transition. This information is very 
useful in the search for this transition in relativistic 
heavy ion collisions or in studies of  the development 
of  the early universe. For reliable results, however, 
one first has to establish the presence of  scaling and 
then consider in detail the effects of  finite lattice size. 
This requires large lattices and high statistics. From 
the experience o f  pure SU (3) gauge theory simula- 
tions at finite temperature, one anticipates that a lat- 
tice with at least eight sites in the temporal  direction 
may be needed to reach the scaling region of  the full 
theory. In this letter, we report on first simulations of  
full QCD on an 8 × 12 3 lattice and compare these with 
previous results on smaller lattices. 

The inclusion of  light dynamical quarks in the sim- 
ulation complicates the matter further, due to con- 

ceptual and technical difficulties which have left the 
simulations of  the full theory lagging behind those of  
pure gauge theory in both the statistics and the lattice 
sizes. The emergence of  the Hybrid  Monte Carlo 
(HMC)  [ 1 ] method to incorporate the fermionic 
loops in the theory has provided us with a reliable 
fermion algorithm which is free of  the systematic er- 
rors characteristic of  all small step-size algorithms. 
However, the HMC algorithm has so far been ap- 
plied only to smaller lattices and intermediate quark 
masses. It has been argued that, asymptotically, the 
acceptance can be maintained constant by changing 
the step-size in the molecular dynamics part o f  the 
HMC as V -  1/4m3/2 [2,3]. Nevertheless, it is far from 
clear how the algorithm will perform for physically 
reasonable quark masses and realistic lattices sizes. 
One anticipates that the tuning of  step-size should be 
much less dependent on the quark mass in the chir- 
ally symmetric phase since there are no zero eigen- 
values for the Dirac operator in this regime. In addi- 
tion, for finite temperature QCD, the specific 
questions o f  thermalisation, metastabilities and crit- 
ical fluctuations need to be investigated afresh with 
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the new fermion algorithm. Our paper will also ad- 
dress some of these issues. 

Finite temperature QCD has been investigated nu- 
merically for a variety of input parameters, such as 
the number offlavours or the value of the quark mass 
[4]. While the results seem to depend crucially on 
the quark mass, the flavour dependence is rather 
weak. The overall picture so far can be summarized 
as follows. For three or more light flavours, a first or- 
der chiral phase transition is observed up to some 
quark mass mch. With increasing quark mass the 
transition seems to become weaker, and beyond mch 
the determination of its order becomes ambiguous. 
There are furthermore indications from simulations 
at intermediate quark masses (m/T. . .  0.4) [ 5 ] that 
the transition discontinuity decreases with increas- 
ing spatial volume. Most of  the studies so far used 
approximate algorithms to include dynamical fer- 
mions and lattices with N~< 6, where N~ is the num- 
ber of lattice sites in the inverse temperature direc- 
tion. In ref. [ 6 ], the thermodynamics of  four flavour 
QCD with quarks of  mass ma = 0.025 was studied on 
a symmetric 84 lattice using a hybrid algorithm; a 
strong first order phase transition was claimed at this 
mass value. We shall here work on an 8 × 123 lattice 
with four flavours of staggered fermions of mass 0.025 
in lattice units, using the "exact" HMC algorithm. As 
mentioned above, simulations with this algorithm 
have so far only been performed on smaller lattices 
[7,8]. 

The QCD partition function at finite temperature 
can be defined in terms of gluonic degrees of freedom, 

Z =  f l-l dU, ,udet  Q e x p ( - S G )  , (1) 
n,/t 

where So denotes the standard gluonic Wilson action 
and the fermion matrix Q,,m is defined as 

Q,,,,,, = mar,,.,,, 

3 
+1 Z rla(n)(Un,u(~n,m-/~--U~,u(~n,m+,a), ( 2 )  

/z=o 

with phase factors tlu(n) = ( - 1 ),o+...+,~-~ fo r / z>0  
and qo(n) = 1. 

We generate equilibrium configurations by using 
the HMC algorithm [ 1 ] and obtain expectation val- 
ues of  the physical observables of  interest by averag- 
ing over these configurations. The advantage of the 

HMC algorithm is that it has no systematic step-size 
errors. For staggered fermions it is in practice only 
applicable to QCD with a multiple of  four fermion 
flavours. Using pseudo-fermion fields ¢~e, 0~* which 
occupy only even lattice sites (e) and momenta n,~,u, 
a =  1 . . . .  , 8, the partition function given in eq. (1) 
can be rewritten in the form 

Z -  I-I ,.u,, d n ' ~ , u e x p ( - n ) ,  n (3) 

where the hamiltonian, H, is given by 

H =  ~ i ,~ 2 ~ (7~n,/.t) dFV, (4) 
t/,/Z,Ot 

with the potential, V, defined as 

V=SG + l (9*e( Q t Q  )~e,lOe , . (5) 

Here e denotes a multiple index e =  (n, 2), where n 
designates even sites only and 2=  1, 2, 3 is the colour 
index. Similarly we will use a multiple index o for odd 
sites. Eq. (3) defines the scheme for the molecular 
dynamics steps of  the HMC algorithm. At the begin- 
ning of the trajectory complex random numbers Re, 
Ro are generated for each lattice site and colour ac- 
cording to the distribution e x p ( - ½ R ' R ) .  The ~ are 
then calculated from 0e= (Q*R)e= maRe+ Qt~oRo, 
leading to the distribution in eq. (3). The 0e are kept 
fixed for the remainder of the molecular dynamics 
trajectory. We use a version of the approximate leap- 
frog scheme, where the gauge fields U,,u are updated 
according to 

Un,u(Tk+ 1 ) =exp [iAT/r~,U(Tk + ½AT) T,~] Un,u(Zk ) , 
(6) 

with 

7[an,,u(Tk + IAT) = ltn°t,u(Z k -  ~AT) -- AzOC~,u V(Zk) , ( 7 ) 

where 0n~u is to be interpreted as the derivative on the 
group manifold as defined in ref. [9 ]. An explicit 
expression for ~,u Vcan be found in ref. [ 7 ], For k =  0 
and NMD, the time step in eq. (7) has to be halved 
and the initial momenta are chosen for k = 0  to be 
gaussian distributed random numbers. 

The new feature of the HMC algorithm comes from 
the global accept/reject step. This is determined by 
the change 6Hof the  hamiltonian, defined in eq. (4), 
during the molecular dynamics trajectory, as calcu- 
lated using the approximate leapfrog algorithm. The 
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change in the fields U,,u accumulated during the tra- 
jectory is accepted with the probability 

P = m i n [  1, exp( - 5H) ] . (8) 

This removes the systematic O ( A z  2) e r rors  intro- 
duced by the leapfrog scheme. 

The HMC algorithm has been tested before on 
smaller lattices and it has been found that reasonably 
high acceptance rates can be achieved without mak- 
ing the t ime step Az impractically small. On a 8 × 12 3 
lattice with ma=0 .025 ,  5.1 ~ fl~ 5.6, we observe that 
a time step Az between 0.0125 and 0.025 is suffi- 

ciently small to guarantee acceptance rates of  at least 
50%. For these Az values, we find that the motion 
through phase space is still rapid enough to take the 
system from one phase to the other in 1000 trajecto- 
ries (see below and fig. l ). The acceptance rate de- 
pends only weakly on the parameter NMD. Ideally, the 
latter should be chosen so as to minimize autocorre- 
lations in computer  time. Such a tuning is, however, 
costly, and we have, somewhat arbitrarily, chosen to 
work with a trajectory length 0.5 ~< z~< 1.0. In table l, 
our Monte Carlo parameters are given in detail, to- 
gether with the acceptance rates achieved. From this 
table, we see that the acceptance rate exhibits a clear 
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Fig. 1. The run time history for Re L (a) and ~ / (  b ) on an 8 × 123 lattice at fl = 5.4 starting from a configuration equilibrated at fl= 5.1. 
The bands of straight lines indicate the equilibrated values at fl = 5.4 and 5.1. 
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Table 1 
Parameters for the HMC algorithm used in our simulations. The 
last column gives the acceptance rates achieved. 

fl AT z Acceptance (%) 

5.1 0.0125 0.5 51 
5.175 0.0125 0.5 70 
5.2 0.0125 0.5 72 
5.225 0.0125 0.5 76 
5.25 0.0125 0.5 84 
5.275 0.0125 0.5 83 
5.3 0.0250 1.0 43 
5.4 0.0125 0.5 90 
5.6 0.0250 1.0 75 

fl dependence. In particular, it is much easier to 
main ta in  a high acceptance in the deconfined than in 
the confined phase. As ment ioned above, this is to be 
expected due to the absence of zero eigenvalues for 
the Dirac operator in the chirally symmetric phase. 
For the range of bare parameters we have studied on 
the 8 X 12 3 lattice and also from runs on smaller lat- 
tices with different quark masses, we further find that 
in order to keep the acceptance fixed one needs to 
change A x ~ m a ,  unlike the naive expectation 
AT~ ( m a )  3/2 [3]. In fact, this seems to be also the 

case for the data presented in ref. [3]. A more de- 
tailed presentation of our results for the algorithm 
performance will be given elsewhere. 

For the analysis of the phase structure of QCD at 
finite temperature, the relevant physical observables 
are the Polyakov loop L, 

Nz 

L = ~ 3 ~ T r  I ' I  U(.o,.,,o, (9) 
n 0 = I  

and the chiral condensate (#~u),  

' m  o ( ¢ ~ )  = N.N~ 8 a l n Z "  (10) 

Monitor ing the t ime evolution of these observables, 
in addit ion to others such as plaquette, we checked 
for thermalisation. Fig. 1 shows the t ime evolution of 
# ~  and L from a random start at f l= 5.4; an equili- 
brated configuration at f l= 5.1 was used as a random 
start. One sees that it took approximately 1100 tra- 
jectories from the random start to converge to the or- 
dered start value. However, we find that only ~ 700 

trajectories are needed for thermalisation i fa  starting 

configuration corresponding to a nearby fl value is 
used. Fig. 2a displays the absolute value of the 

Polyakov loop as a function of ft. It shows a clear 
structure in the range 5.2 ~< fl~< 5.3 and changes most 
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Fig. 2. (a) The average of the absolute value (circles) and the 
real part (crosses) of the Polyakov loop as a function offl on an 
8 X 123 for four flavours of mass 0.025 in lattice units. (b) The 
order parameter (q~V) on an 8×123 (circles) and 24X123 
(crosses) lattice for four flavours of mass 0.025. Filled (open) 
circles denote results obtained from a starting configuration 
equilibrated at a lower (higher) ,8. 
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Fig. 3. The run time history for Re L (a) and ¢7~u ( b ) on an 8 × 123 
lattice at fl= 5.25, originating from random and ordered states. 

rapidly around ] /= 5.25. We estimate from this that 
the critical coupling, tic, lies in the region between 
5.225 and 5.275. We have reaffirmed the value of  
Abs L at f l= 5.25 by using both a cold and a hot start, 
as shown in fig. 3. After about 700 trajectories f rom 
the respective starts the two runs come close to each 
other and fluctuate around a mean which is the same 
for both the runs. 

In fig. 2a we also show the expectation value of  
Re L. As can be seen it starts differing from (Abs  L )  
below 5.225. For ]/>tic, one expects ( R e L ) - ~  
(Abs  L )  for the full theory even on a finite lattice, 
since fermions explicitly break the Z ( 3 )  symmetry 
present in the gluonic sector. At ] /= 5. l, however, our 
data show that ( R e  L )  is consistent with zero. This 
means that the explicit breaking of  the Z (3) sym- 
metry in the low temperature phase is small. 

In fig. 2b we show the chiral condensate. Our re- 
suits for ( ~ )  are roughly in agreement with mea- 
surements on a 2 4 ×  123 lattice [ 10], i.e., for T---0; 
these data are shown as crosses in fig. 2b. It thus ap- 
pears difficult to establish genuine finite temperature 
effects in our data for ( ~ u ) .  In order to see them it 
seems to be necessary to further reduce the bare quark 
mass, which will then reduce the large perturbative 
tail present in our data fo r ] />  tic. 

Let us finally discuss the behaviour o f  the entropy 
density on the 8 × 12 3 lattice. It is given by 

s _½ 
T---- ~ =4f iN4[  1 ( c ' - c ' ) g 2 ] ( ( P , , ) - ( P ~ ) )  

4 4 +3N ~(  1 +C'Fg 2) ( ( T r  DoQ -1 ) - ~ ) 

+ ~ N ~ m a ( T r  Q - l )  , ( 11 ) 

where ( P , )  ( ( P ~ ) )  are the expectation values of  
space-space (space- t ime)  plaquettes, and Do de- 
notes the 0th component  of  the lattice Dirac operator 

D,,m;o = ½ ( U,,oC~ . . . .  ~ - -  U t m , o t ~ n , m + O )  . (12 )  

In this formula we have included O (g2) perturbative 
results for the derivatives of  the bare couplings of  the 
lattice lagrangian with respect to the anisotropy 
(temperature).  For the SU(3 )  theory with four 
massless flavours one finds for these corrections 
c~,=0.2002, c" = - 0 . 1 4 7 4  and c~ = - 0 . 2 1 3 2  [ 11 ]. 
Corrections due to finite quark masses are expected 
to be small. Fig. 4 displays our results for the entropy 
density. As observed earlier on the smaller lattices, 
the entropy density appears to overshoot just above 
the critical region which roughly coincides with the 
critical region deduced from the Polyakov loop. Al- 
though its general features do thus stand out in spite 
o f  our enormous error bars (which even compelled 
us to leave out the data point a t ] /=  5.225 for the sake 
of  clarity), it is clear that one needs a lot more statis- 
tics to draw any firm conclusions from this quantity. 
This is known already from the experience gained 
from simulations in the pure gauge sector. In fact, also 
here the main source of  errors is the difference in pla- 

6O 
I E I I l I I I 

[ 
4O 

P 

Fig. 4. Same as fig. 2 but for the entropy density s~ T 3, defined in 
eq. ( 11 ). The full line gives the result for the entropy density of 
an ideal gas on a lattice of same size. 
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quette expectation values. However, the cost of gen- 
erating independent configurations in the full theory 
is much higher and consequently any attempt at ob- 
taining the entropy density would require much more 
computer resources than the ~ 4000 CPU-hours on a 
CRAY/XMP utilized in the present work. 

Our present work has been performed for a rather 
large quark mass, m~ T= 0.2. It should be stressed that 
our simulations do not provide any evidence for 
strong metastabilities that could be interpreted as a 
hint for a first order transition, such as those ob- 
served in simulations on a 84 lattice with the same 
quark mass [ 6 ]. Whether the change in thermody- 
namic quantities we observe is caused by a genuine 
second order phase transition or is just related to a 
rapid crossover behaviour cannot, of course, be de- 
cided by the present calculation; this requires a more 
detailed finite size analysis. 

The main aim of our calculations was the deter- 
mination of the critical coupling for the finite tem- 
perature transition on an 8 × 123 lattice. We found 
tic= 5.25 + 0.025. Using the asymptotic scaling rela- 
tion this corresponds to a critical temperature of 
Tc = (2.31 + 0.09 )A~-g. Comparing this with earlier 
results for N~=4 and 6, 

Tc/A~g=3.42(25) ,  N~=4, m / T = 0 . 2 0  [121, 

=2 .77(15) ,  N~=4, m/T=0 .15  [13] ,  

=2 .55(10) ,  N~=6, m/T=0 .15  [14] ,  

= 2 . 3 1 ( 9 ) ,  N~=8, m / T = 0 . 2 0 ,  (13) 

one finds that in going from N~= 6 to N~= 8, the vio- 
lations of asymptotic scaling are of the order of 10%, 
which is similar to what has been found in the pure 
gauge sector. The experience gained from earlier cal- 
culations on lattices with N~ = 4 suggests that the crit- 
ical temperature may further drop by about 20% when 
one extrapolates to zero quark mass. 

We can convert our estimated critical temperature 
into physical units by comparing with hadron mass 
measurements. Ideally, one would like to compare 
with mass calculations performed at tic using the HMC 
algorithm. Such data, however, do not exist at pres- 
ent. Thus we can only compare with data obtained 
with a pseudo-fermion algorithm [ 10 ]. As the exist- 
ing data for mp and mN at 5.2 and 5.35 show only 
little fl dependence, we can interpolate between them 

to determine Tc in units of hadron masses. We find 

Tc =0.13( 1 )mp= 100(8) MeV, 

=0.083(3)mN =78(3 )  MeV. (14) 

These values for the transition temperature are much 
lower (by a factor 2) than estimates for the pure gluon 
theory. This confirms the tendency seen in calcula- 
tions at smaller N~ for nf= 4 [ 12-14 ] as well as nf= 2 
[ 15 ]. Such a low value of Tc would have serious im- 
plications for the experimental search of quark-gluon 
plasma: it would dramatically reduce the critical en- 
ergy density relative to the value estimated from pure 
gauge theory calculations. It is therefore necessary to 
extend the present calculations to larger lattices and 
smaller quark masses. We are presently carrying out 
such a study, using the HMC algorithm, on 8 × 16 3 

and 24× 163 lattices with quark masses ma=O.O1. 
The aim is to determine both Tc and hadron masses, 
as well as to investigate the relevance of finite size 
effects for the determination of the transition 
temperature. 

The computations presented here were performed 
on the CRAY-XMP at CERN, C R A Y - Y M P  at HLRZ, 
J~lich, the CRAY-2 at NCSA, Urbana-Champaign 
and the VP400 in Karlsruhe. We are thankful to the 
staff of the respective computer centers for their as- 
sistance. In particular, the friendly support by Dr. E. 
McIntosh, Dr. H.R. Renshall and Dr. H. Rollnik is 
greatly appreciated. 
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