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We determine the O(g 2) corrections to the anisotropy parameter in the fermionic action, which are required to guarantee a 
rotational invariant continuum limit on anisotropic lattices. We show the importance of these quantum corrections for QCD 
thermodynamics on isotropic lattices. Only after including these corrections do we find, on large lattices, agreement between 
lattice and continuum perturbation theory at finite temperature. The implied renormalization of the operators used in Monte 
Carlo simulations to measure the energy density leads to a 20% reduction of the fermionic part of the energy density which, to a 
large extent, compensates the previously found overshooting in the gluonic sector. We reanalyze existing Monte Carlo data for the 
thermodynamics of QCD with light quarks and extract the entropy density. We find that immediately above the chiral transition 
the entropy density is already close to the ideal gas value. 

1. Introduction 

Lattice gauge theories at finite temperature are 
convenient ly formulated on anisotropic lattices, i.e. 
lattices with different lattice spacings a (a~) in spa- 
tial ( temporal)  directions. This allows us to keep 
track of the temperature (T)  and volume (V) depen- 
dence of the parti t ion function and makes an inde- 
pendent  variat ion of T and V possible. In order to 
ensure a rotationally invar iant  con t inuum limit even 
on anisotropic lattices a renormalizat ion of the bare 
couplings appearing in the lattice action is required 
[ 1 ]. The couplings then become functions of a and 
the anisotropy parameter  ~=a/a~.  For pure SU (N) 
gauge theories the renormalizat ion of the bare cou- 
plings, necessary to guarantee a rotational invariant  
con t inuum limit on anisotropic lattices, has been cal- 
culated to O ( g  2 ) in weak coupling perturbat ion the- 
ory [ 1,2 ]. Modifications due to dynamical  fermions 
have also been determined [ 3 ]. A similar analysis of 
the renormalizat ion of the fermionic part of the lat- 
tice QCD action on anisotropic lattices, however, is 
missing at present. First results, relevant for QCD 
thermodynamics,  will be presented here. 

On leave of absence from FEST, Heidelberg, FRG. 

Thermodynamic  observables like, for instance the 
energy or entropy density involve derivatives of the 
couplings with respect to ~ [2,4]. Thus, even if ther- 
modynamic  quanti t ies are calculated on isotropic 
lattices, knowledge about the renormalizat ion of the 
bare couplings on anisotropic lattices is required. So 
far only the leading classical anisotropy effects have 
been taken into account in the fermionic sector of the 
QCD parti t ion function. Expressions for energy or 
entropy density are thus approximate and may not 
give the correct temperature dependence of these 
quantities. An understanding of the influence of 

quan tum corrections of the derivatives of the bare 
couplings thus becomes important ,  in particular, in 
view of the recently observed differences in behav- 
iour of the energy density in pure SU (N) gauge the- 
ory and QCD with light quarks [5]. In fact, we will 
show that these quantum corrections have to be taken 
into account properly in order to recover, on large 
lattices, the correct high temperature perturbative 
behaviour found in cont inuum perturbat ion theory. 
Without  them one finds the wrong sign and magni- 
tude for the O ( g  2) corrections to the high tempera- 
ture ideal gas behaviour of the QCD energy density. 
This gives a qualitative unders tanding of the large 
overshooting of the ideal gas l imit found in Monte 
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Carlo calculations of the energy density for QCD with 
light quarks [ 5 ], which were based on an expression 
for the energy density, which did not fully take into 
account the effect of quantum corrections to the bare 
couplings. 

We present here a calculation of the O (g2) quan- 
tum corrections to the anisotropy parameter appear- 
ing in the fermionic part of the QCD action. We have 
calculated these quantum corrections in weak cou- 
pling perturbation theory demanding rotational in- 
variance of the fermion propagator in the continuum 
limit. A detailed presentation of our calculations for 
staggered and Wilson fermions will be given else- 
where [6]. In this letter we present results for the 
staggered fermion action which are of immediate im- 
portance for thermodynamic calculations with dy- 
namical fermions. 

This paper is organized as follows. We briefly re- 
view in the next section the finite temperature for- 
malism on anisotropic lattices. In section 3 we dis- 
cuss the fermion self-energy on such lattices and 
extract the O(g 2) corrections to the anisotropy pa- 
rameter. Section 4 gives a comparison between the 
complete O (g2) correction to the QCD energy den- 
sity calculated on the lattice and the corresponding 
continuum result. In section 5 we discuss the rele- 
vance of the quantum corrections to the fermionic 
couplings for Monte Carlo simulations. Finally we 
give our conclusions in section 6. 

2. Finite temperature formalism 

For simplicity lattice simulations are generally per- 
formed on isotropic lattices, i.e. lattices with identi- 
cal lattice spacings in temporal and spatial directions 
(aT = a). However, in order to discuss the finite tem- 
perature formalism on the lattice it is convenient to 
work on an anisotropic lattice (a~ ¢ a) and introduce 
the anisotropy parameter [ 4 ] 

~=a/a~. (1) 

This allows us to keep track of the dependence on 
temperature, T, which enters the lattice action in a 
complicated way. While Tappears in the continuum 
formulation explicitly only as an integration limit for 
the integration over the time components of the fields, 
on the lattice it appears through the finite number of 

lattice sites in time direction (N~) as well as through 
the time-like lattice cut-off (a~). The continuum four- 
volume VT ' is replaced by a lattice of size N~ × N  3 
with lattice spacings at (a) in the temporal (spatial) 
directions such that 

1/T=N~a~,  VJ/3=N~a. (2) 

The lattice spacings a, a~ enter the lattice action only 
indirectly through the renormalization of the bare di- 
mensionless couplings in the gluonic and fermionic 
parts of the action. An anisotropy can be introduced 
by choosing different couplings for space-space and 
space-time plaquettes in the gluonic action and sim- 
ilarly by introducing a new coupling in the 0th com- 
ponent of the Dirac operator. The gluonic action then 
becomes 

n;0< u~<3 n;0</L~<3 

1 R e  Tr U~ ~,U~+ti. * * P,,j,. = 1 - , , U ~ + ~ , I , U  . . . . .  (3) 

and the fermion action for staggered fermions is given 
by 

Sv =z,,Q,,.mZ,,,, (4) 

with the fermion matrix Q defined as 

3 
Q ...... = ~ D ....... j+TFD ....... o+mrafi  ....... 

j = l  

Dn.,,,;~,=½q,,(n)(U,.~,~ ..... ~-U*, , , .~  ...... +~). (5) 

Here t/~(n) denotes the phase factors q~(n) = 
( - 1 )  "~+-+'~' f o r / t > 0  and qo(n)= 1 and mr is the 
bare quark mass in units of the lattice spacing a. 

Let us look at these expressions in some more de- 
tail. The QCD action on anisotropic lattices depends 
on three couplings flo, ~ and 2v. In the following we 
will ignore any further dependence on the quark 
masses, i.e. we assume mfa = 0. The couplings fl~, 7~ 
and Yv have to be tuned on anisotropic lattice in or- 
der to ensure rotational invariance in the continuum 
limit [1,2]. The renormalization of the coupling in 
front of the spatial plaquettes, fl~, may be parame- 
trized as 

fl,,={-~[fl+2Nc~({) + O ( g  2 ) ]. (6) 

Here f l = 2 N / g  2, with g2 denoting the bare coupling 
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constant on an isotropic euclidean lattice. It is re- 
lated to the lattice cut-off 1/a through the usual QCD 
renormalization group equation. Similarly, the cou- 
pling for the temporal plaquettes may be written as 
f l~=~[f l+2Nq(~)  + O ( g  2) ]. However, rather than 
using the couplings fl~ and/,¢~ in the definition of  the 
gluonic action, eq. (3),  we have introduced the ratio 
~'~; =x/'flJfl~ in order to stress the similarity of  the 
modifications in the gluonic and fermionic parts of  
the action required on anisotropies lattices. The cou- 
plings 7~ and 7~- determine the relative weights of  
space- and time-like components  in the gluonic and 
fermionic action. These couplings are equal to unity 
on an isotropic lattice. However, if the cont inuum 
limit is to be taken for fixed anisotropy ~, one has to 
adjust both couplings such that rotational invariance 
is guaranteed in that limit. The naive classical con- 
t inuum limit demands Z~=7r=~.  Quantum correc- 
lions to this leading order relation have been calcu- 
lated for 7~ in the pure gauge theory [ 1,2 ] as well as 
for Q C D [ 3 ]  by demanding rotational invariance of  
the effective action. Here we want to discuss the 
quantum corrections to the fermionic coupling 7> 
which have not been determined so far and also never 
have been taken into account in Monte Carlo simu- 
lations of  QCD thermodynamics.  We will show that 
its inclusion is important  for recovering the correct 
cont inuum limit of  thermodynamic  quantities. 

Consider for instance the calculation of  the energy 
density ~ on the lattice. It is obtained from the parti- 
tion function, 

Z =  f [ I  dU,,4, 1~ dz,, d)~,, exp( - S c ~ - S v ) ,  (7) 
II .  l l  I1 

by taking a derivative of  In Z with respect to 1 / T at 
fixed V. On a lattice o f  fixed size N~ × N 3 the temper- 
ature derivative can be written as 

a ~2 a 
a(1/T)  = -  N~aa~ (8) 

One obtains then for the energy density 

r 3 . 

0 ±lnZ (9) 
T 4 - -  T 4 - -  \ N ~ J  0,5, e =  I 

Thus even in the isotropic limit derivatives of  the 
couplingsflo, 7(; and 7~: with respect to {evaluated for 
~= 1 are needed to obtain the correct expression for 

the energy density. We have for the gluonic contri- 
bution, e(;, 

% _ _ 3N~ d//~ ( p ~ , + p ~ ) _ 6 f l N 4 ~  P~, 
7 ,4 d~ e=, a¢ I~=l 

(10) 

and the corresponding fermionic part, ev, for nf mass- 
less flavours is given by 

{F dyF 
e=l N4 n' ( ( T r  DoQ) - ~N). (11) T 4 - d~ ~ 4 

In eq. (10) we have introduced the normalized pla- 
quette variables P~.~ ~, which are defined by 

/ 5  = ( P ~ I ~ )  ~ . : x ~ -  ( P ~ ) x ~  .~. (12) 

This takes care of  the subtraction of  divergent vac- 
uum contributions and normalizes the gluonic part 
of  the energy density to zero at T =  0. The subtraction 
of  the zero temperature contribution in ev is given 
explicitly by the last term in eq. ( 11 ). We note that 
the distinction between 6G and 6v reflects only the fact 
that the expectation values ofgluonic  and fermionic 
parts of  the action contribute to these quantities. Also 
e(~ depends on the presence of  light quarks through 
the statistical ensemble used to evaluate the expecta- 
tion values and the explicit dependence offl ' ,  and 7~ 
on n,- [41. 

The derivatives of  the couplings appearing in eqs. 
(10) and ( 11 ) can be calculated perturbatively when 
the corresponding renormalizations on anisotropic 
lattices are known. For/?~ these are given by eq. (6).  
Similarly, the leading order quantum correction to the 
7G~ v~ can be parametrized as 

7G =~[1 + q ; ( ~ ) g 2 + O ( g 4 ) ] ,  

7F =~[1 +cF(~)g2+O(g  4)]. (13) 

In general, beyond the validity regime of  perturba- 
tion theory, one can determine the l-dependence of  
these couplings by demanding rotational invariance 
of  physical observables, like for instance the heavy 
quark potential, in the cont inuum limit [2,7 ]. 

In eq. (13) we have introduced the parameter cc~. 
In terms of  the functions c~ and q [ 2 ] that renormal- 
ize the spatial and temporal couplings fl~ and fl~ this 
is given by 

q ; (~)  = ½ [q(~)  - c ~ ( ~ ) ] .  (14) 
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The derivatives of  c~ and c~ have been calculated 
previously in weak coupling perturbation theory 
[2,3 ] and a first attempt ofa  non-perturbative deter- 
mination has been undertaken in ref. [7]. The cou- 
pling 7v, however, has been approximated so far in 
all numerical and analytic calculations by its classical 
approximation, 7v=~. In the next section we present 
an explicit calculation of the O(g  2) corrections and 
determine the derivative c;~ needed in the evaluation 
of the fermionic part of the energy density, eq. ( 11 ). 

3. Fermion self-energy on anisotropic lattices 

Let us consider the free fermion propagator on an 
anisotropic lattice 

I - '  (Z,,X,,,) = d4p SF,O (p) exp[--ip(n--m)l (15) 

with Sv,o(p) given by 

3 
Sv,o(p)= ~ sin(p,a)+pFsin(poa~)+mfa. (16) 

i I 

Demanding rotational invariance in the continuum 
limit, a, a~--,0 at fixed ~=a/a~, determines the rela- 
tion between 7v and the isotropy parameter ~. We find 
?~F = ~. Including interactions, the fermion propagator 
receives self-energy corrections, 

S~(p ) =Sv o(p ) + S(p  ). (17) 

These fermion self-energy corrections have been cal- 
culated previously to O (g2) on isotropic lattices for 
Wilson fermions [ 8,9 ] as well as staggered fermions 
[ 10 ]. We have extended these calculations to the case 
of anisotropic lattices [ 5 ]. Here we will give our re- 
sults for staggered fermions as far as they are relevant 
for the discussion of QCD thermodynamics. 

The fermion self-energy on anisotropic lattices has 
the form 

X(p)=g 2 ~(rn , -aX~+ L p, aX,~,+poaPF X 
t=l  19" I , r /  

+O(g~). (18) 

Here X2 as well as Xt,~(~} depend on { and Pv. Using 
for 7v the ansatz given in eq. (13) and demanding 
again a rotational invariant continuum limit for the 

full propagator, eq. ( 17 ), we find that the O (g2) cor- 
rection to 7v({) is given by eq. (13) with cv({) de- 
termined as 

N2_l 
CF({)= 2 ~  [X,,,(~)-X,.~({)]. (19) 

The O(g  2) contributions to X(p) can be obtained 
from the two diagrams shown in fig. 1. Here we are 
interested in particular in the results for Xl.~ ~i which 
contribute to the renormalization of Yr. We find 

~' o= I d 4 q [ _  sin2ql 
• 2A, ~ ( ~ )  

X + A ~ )  [3- -cosq , - -½AI(1)]  

+ 

I [ sin~-q° X~,~= d4q - 2A~(~)A~(~) 

1 
x + ~,(~T 

'1 + 4¢_~A,(~ . ( 20 )  

where we have used the abbrev ia t ions  

3 

A,(~)=  ~ ( 1 - c o s q , ) + ~ 2 ( 1 - c o s q 4 ) ,  

3 
A2(~) = ~ sin2qi +~2sin2qo, (21) 

0 
Fig. 1. Feynman diagrams contributing to the fermion self-en- 
ergy at O(g- ') .  
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The above formulae are given for mr= O. Corrections 
due to finite fermion masses are O(m~)  for f~,~ and 
Xn~. For non-zero mf there is also an additional con- 
tribution to the energy density, eq. ( 11 ), which comes 
from the multiplicative, ~-dependent renormaliza- 
tion of  mrfor staggered fermions. However, we found 
this contribution to be numerically small [6] and we 
will thus neglect it here. 

We note that both integrals in eq. (20) are loga- 
rithmically divergent. The divergent piece, however, 
is ~-independent and identical in both integrals; the 
difference, contributing to eq. (19),  is thus finite. 
Furthermore, we have, of  course, X~.,( 1 ) =X~,~( 1 ). 
In the numerical evaluation ofX~ ,. and X~,~, however, 
some care has to be taken in order to ensure the cor- 
rect cancellation of  the divergent part in the differ- 
ence X~,,-Z'~,~. We have transformed the integrals 
appearing in eq. (20) to the interval [ - 7 r / 2 ,  ~ /2 ]  
for the three spatial momenta  and to [ - ~ / 2 ,  ~z~/2 ] 
for qo. The divergent part is then cancelled by first 
calculating the finite differences X~.~) (~) 
- X j . ~  (1). From this we find the derivatives by 
taking the limit ~ 1 numerically. We then obtain for 
the derivative at ~= 1 

N-~_I  
c ; :=  2 ~  0.1599. (22) 

It is interesting to compare this with the correspond- 
ing result for the derivative of  the gluonic anisotropy 
parameter 7(;. The derivative of  the O ( g  2) correc- 
tions gives in this case 

N ~ - I  
c ' ( ; - -  2 ~  O. 1466+O.O096N--O.OO18nf. (23) 

The quantum corrections to the derivatives of  TG and 
7v are thus very similar in magnitude for QCD. 

ergy density, e, in an S U ( N )  gauge theory with nf 
massless quark flavours [ 11 ] 

~ /T  4 = ~j~ (N) + nt-~ ~ (N) 

+ g 2 ( N 2 -  1 ) [E~;(N) + n,-fV(N) ] 

--  ,~ ( N  2 -  1 ) t c 2 + n , . . 7 N  

+ g ~ ( N - ~ - l ) (  4~N-nc • 5 - ~-~). (24)  

We note that the splitting into a fermionic and gluonic 
contribution to the energy density as indicated in eq. 
( 24 ) is different from the conventions used to define 
e~; and ev in eqs. (10) and ( 11 ).In fact, f~ receives 
contributions from the perturbative expansion of  e~; 
as well as ev. 

The O (g2) corrections to the energy density have 
been calculated in weak coupling perturbation theory 
[ 12,13 ]. It has been found there that even on rather 
small lattices the purely gluonic corrections approxi- 
mate well the cont inuum result ( ~ / T a =  i N  --  48 
whereas the corrections to the fermionic part showed 
much larger finite size effects and did not indicate 
any convergence to the cont inuum result. In fact, the 
O ( g  2) corrections turned out to be positive rather 
than reproducing the cont inuum result (-f/T4= 

5 - T ~ .  These calculations, however, neglected the 
O (g2) contribution coming from the derivative of  7v, 
and these terms have also not been included in the 
expressions used for the Monte Carlo simulations. In 
the previous section we found that the O (g2) correc- 
tion to the derivative o f  YF is large and negative for 
{=  1. We thus expect that this leads to a compensa- 
tion of the positive O ( g  ~-) correction to the energy 
density found in previous perturbative calculations 
[ 12,13 ]. In fact, we find that the cont inuum result is 
well reproduced on large lattices when the contribu- 
tion coming from the O(g 2) corrections to the cou- 
pling 7r is taken into account correctly. 

We will concentrate in the following on a discus- 
sion of  the fermionic part, e}, of  the O(g 2) 
corrections ~j 

4. Comparison with continuum perturbation theory 

From perturbative calculations of  the energy den- 
sity for massless QCD we would expect that at high 
temperature corrections to the leading ideal gas be- 
haviour are negative. To O (g2) one finds for the en- 

~J We use the same notations as in refs. [12,13]. Explicit for- 
mulas for all perturbative terms, except c~, which is given by 
eq. (22), can be found in these references. 
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(V(N) ( 
T 4 = N  4 6(p24f)_p~4,))+p~t2) 

+3  "' ~) [e<v(P,,~ _p;2~) , ~2> __p(r2) +c~,v(P,ym )] 

, ) + ~ c ' ~ ( p ~ " - , ~ )  . (25) 

All but the last term appearing in eq. (25) have been 
calculated in ref. [ 12] and ref. [ 13 ]. We have de- 
noted by c'~),v the nr dependent part of c ; ( ,  [3], 
i.e. c'~,v = -0.00031 and c'~,v = -0.00391.  

In fig. 2 we show results for ( ~ / T  4 as a function of 
N~. The perturbative contributions p24r) p~4r), p}~ 
and P1-2) have been evaluated on infinite spatial lat- 
tices with varying temporal extent N~. With increas- 
ing N~ larger numerical accuracy is required as the 
contributions to e v drop like N 4 .  We therefore had 
to restrict our analysis to N~< 32. As can be seen from 
fig. 2 the approach to the infinite N~ limit is rather 
non-uniform for small N~. This has been noted pre- 
viously also for the lowest order ideal gas contribu- 
tions e~ and ev on finite lattices [ 14 ]. The first term 
in eq. (25) gives for all N~ a large positive contribu- 
tion to (v whereas the other contributions resulting 
from the derivatives of the couplings give negative 
contributions, the largest coming from the term pro- 
portional to c{. For N~=32, we find for instance 
~ / T 4 = 0 . 0 6 6 5 - 0 . 0 0 1 2 - 0 . 0 9 3 9 =  -0 ,0286  for the 
contributions from the three different terms in eq. 
(25). For large N~ the finite volume effects turn out 
to be proportional t o  N ~  -3. An extrapolation to infi- 

1-.. 
\ 

-0.05 

-0.1 

& 

0 . 1 5  . . . , . . . .  I . . . .  , . E . . . . . . . . .  

0 0.1 0.2 0.3 

1/N.~ 

Fig. 2. ~.F/T4 on N,X (00) 3 lattices as function of  I/N,. The star 
on the ordinate gives the con t inuum result g[/T4= - 5/192.  

nite N~ gives e v / T 4  _ 0.027, which is in good agree- 
ment with the result obtained in continuum pertur- 
bation theory, ( F / T 4 : -  1 - ~ 2 - - - 0 . 0 2 6 0 .  Note that 
the contribution coming from C'v is essential for get- 
ting agreement with continuum perturbation theory. 
In fact there is a strong cancellation between the neg- 
ative contribution coming from c{ and the positive 
contribution from the perturbative expansion of the 
lattice operators entering the expectation values in 
eqs. (10) and ( 11 ). In fig. 3 we show perturbative 
results on smaller lattices with finite spatial extent. 
As can be seen also in this case the O(g  2 ) corrections 
turn out to be negative. The dependence on the spa- 
tial size turns out to be proportional to 1/N~ once 
N~> 2N~. 

5. Monte Carlo results for the energy density 

The thermodynamics of QCD with light quarks has 
been studied in much detail in numerical simulations 
[ 5 ]. Already in the first SU (2) calculations [ 13 ] it 
has been observed that, unlike in the pure gauge sec- 
tor, the energy density overshoots the ideal gas limit 
in the plasma phase. This effect increases with in- 
creasing number of flavours [ 15-17 ]. For instance 
in the case of QCD with nr=4 light flavours it has 
been found that for temperatures in the interval 
( l -2)T, .  the energy density is about a factor (1.5- 
2.0) higher than the ideal gas value for a massless 
quark-gluon gas. It has been noted that this over- 

\ 

-0.05 

-0.1 

J 

-0.15 - -  i i 
0 0.2 0.4 0.6 

N x / N a  

Fig. 3. (~ /T  4 on N, x N ]  lattices as func t ion  of N J N ,  for  N , = 4  

(dots) ,  6 (squares)  and 8 (triangles). The stars on the ordinate 
give the infinite spatial volume results shown in fig. 2. 
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shooting mainly results from a " too" large contribu- 

tion of the gluonic sector. 
In all the above-ment ioned numerical  work modi- 

fications of ev due to quan tum corrections to the fer- 

mionic  couplings have been neglected, i.e. dTv/ 
d{] ¢= i ~ 1 has been used in eq. ( 11 ). We can use our 
perturbative results to get improved formulas for the 
energy density. This merely amounts  to a multipli- 
cative renormalizat ion of ev, see eq. ( l 1 ). We thus 
can easily take this into account and reanalyze the 
existing Monte Carlo data. As we have seen in the 
previous chapters the inclusion of these corrections 
will lead to a large reduction of the contr ibut ion of ev 
to the total energy density. One thus may expect that 
the previously observed overshooting will be reduced. 

When reanalyzing the existing data we also should 
take into account that in most of the existing calcu- 
lations the zero temperature contr ibut ion in the 
gluonic sector has not been subtracted and conse- 
quently also the derivatives of ft, and )'(~ have been 
approximated by the leading classical term ~2. It has 
been noted that this effectively means that one cal- 
culates the entropy density rather than the energy 
density [ 18 ]. We have used the data of refs. [ 16,17 ] 
to calculate the entropy density 

s 8N ~( c'~-cl ) 
- ~ N ~  1 ge ( I ' . - P ~ ) + - - -  

T 3 g~ 2 
4 ~ F  

3 T 4" 

(26) 

with e v / T  4 given by eq. ( 11 ). In fig. 4 we show re- 
sults for a lattice with N~=4, n r=2  and 4. As can be 
seen the overshooting previously found in e(~ is now, 
to a large extent, compensated by the reduction ofev. 
The entropy density turns out to be in good agree- 
ment  with the ideal gas result. For & = 4  there still 
remains a peak close to T, in S / T  3 which may be 
physically significant also in the con t inuum limit. In 
order to clarify this the scaling of results obtained on 
lattices with different N~ should be checked in the fu- 
ture. It is interesting to note that a similar behaviour 
is also found in recent instanton liquid calculations 
[19]. 

~-~ A proper subtraction of the vacuum contributions has been 
performed in ref. [ 15]. However, in this case only the total 
energy density has been published. We thus cannot use these 
data to correct the part coming from the fermionic sector. 
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4.8 5 5.1 5.2 5,3 

+ 

i 

4 .9  

Fig. 4. Entropy density for QCD with quarks of mass m/T= 0.1 
on lattices of size 4 X N ] versus ,8. Monte Carlo data from simu- 
lations for nr=2 and N~--8 (triangles), 12 (dots) shown in (a) 
are taken from ref. [16]. Those for n~-=4 and N~=8 shown in 
( b ) are taken from ref. [ 17 ]. The data have been reanalyzed us- 
ing eq. (26) to extract the entropy density. 

6. Conclusions 

We have studied the O (g-') corrections to thermo- 
dynamic quantit ies calculated for QCD with light 
quarks on euclidean lattices. We find that quan tum 
corrections to fermionic couplings are crucial in or- 
der to reproduce the correct perturbative results in 
the con t inuum limit. These perturbative corrections 
reduce the fermionic contr ibut ion to the total energy 
calculated in Monte Carlo simulation by about 20%. 
It thus leads to a reduction of the total energy density 
by 10% for nr= 2 and 15% for nr= 4 compared to ear- 
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lier ca lcu la t ions  [ 5 ]. I nc lud ing  all O ( g  2 ) cor rec t ions  

to the de r iva t ives  o f  the  coupl ings  appea r ing  in the  

Q C D  ac t ion  on an i so t rop ic  la t t ices  we f ind good  

agreement  o f  the en t ropy  densi ty  calculated in M o n t e  

Carlo s imula t ions  wi th  the high t empera tu re  ideal gas 

result  on  f in i te  lattices. To wha t  ex ten t  the  r e m a i n i n g  

ove r shoo t ing  o f  the  ideal  gas l imi t  obse rved  for  n f =  4 

is a f in i te  la t t ice  ar t i fact  or  can be a t t r ibu ted  to truly 

n o n - p e r t u r b a t i v e  effects  requi res  the  analysis  o f  the 

en t ropy  dens i ty  on larger latt ices.  

F ina l ly  we wou ld  like to stress again that  a t ruly 

n o n - p e r t u r b a t i v e  ca lcu la t ion  o f  t h e r m o d y n a m i c  

quan t i t i e s  on the  la t t ice  also has to inc lude  a non-pe r -  

t u rba t ive  d e t e r m i n a t i o n  o f  the  de r iva t ives  o f  the  cou- 

plings fl~, 7~ and  7v. Fo r  the f e r m i o n i c  coupl ing  7F this 

can be ach i eved  by c o m p a r i n g  f e r m i o n i c  co r re la t ion  

func t ions  on an i so t rop ic  lat t ices m e a s u r e d  in differ-  

en t  d i rec t ions  and d e m a n d i n g  ro ta t iona l  invar iance .  

A s imi la r  p rocedure  has been  used for  flo and  7 , ( ~ )  

by d e m a n d i n g  ro ta t iona l  i nva r i ance  o f  the heavy  

quark  po ten t ia l  [ 7 ]. 
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