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We calculate Polyakov loop correlation functions in SU (3) gauge theory on a 123 × 4 lattice. We determine from this the colour 
averaged heavy quark potential and compare it with the corresponding colour singlet potential in Landau gauge. A comparison 
with finite temperature perturbation theory shows that perturbative relations are at best recovered for very high temperatures. 

Numerical  studies of  the QCD plasma phase have 
shown that quantities that are sensitive to short dis- 
tance (large m o m e n t u m )  structure o f  the plasma are 
well described by finite temperature perturbation 
theory. In particular the energy density o f  a quark-  
gluon plasma closely resembles ideal gas behaviour 
above the deconf 'mement/chiral  phase transition ~1. 
Recent studies o f  long distance features like Debye 
screening of  external colour charges [ 2,3 ] have, how- 
ever, shown that even at rather high temperatures 
numerical results do not agree with perturbative re- 
suits [4 ]. This may not be too surprising, as various 
non-perturbative modes may play a role in the long 
distance (low momentum)  sector of  the QCD plasma 
[ 1,5,6 ]. In fact it has been argued that the Debye mass 
itself cannot be defined perturbatively [ 7 ] and that 
the standard definition as the zero m o m e n t u m  limit 
o f  the zeroth component  of  the vacuum polarization 
tensor is meaningless. In any case this is a gauge in- 
variant concept only in leading order perturbation 
theory. 

Understanding Debye screening in non-abelian 
gauge theories is in itself of  fundamental  importance 
and plays a keyrole in the discussion of  convergence 
o f  finite temperature perturbation theory [ 8 ]. In  or- 
der to see whether contact can be made between non- 
perturbative calculations of  the heavy quark poten- 

~ For a review see ref. [ 1 ]. 

tial and finite temperature perturbation theory we 
studied the colour averaged heavy quark potential as 
well as colour singlet and octet potentials in Landau 
gauge. We prefer this gauge over e.g. the axial gauge 
at finite temperature because o f  the rotational sym- 
metry o f  the gauge condition. This allows us to check 
various relations among these potentials given in 
perturbation theory [4 ]. 

For temperatures above deconfinement the colour 
averaged heavy quark potential is defined in terms of  
Polyakov loop correlation functions on a lattice of  size 
N ~ X N ~ ,  

exp [ - V ( r ) / T ]  = ( T r L ( R )  Tr L*(0)  ) / ( L )  2, 
(1)  

with T r L ( R ) = T r ~ 2 1 U ( R , i ) , o  denoting the 
Polyakov loop and ( L )  = ( T r L ( 0 ) ) .  Temperature 
T and distance r are measured in units o f  the lattice 
spacing a and are given by 

1 / T = N ~ a ,  r = R a ,  R = l , 2 , . . . , N ~ / 2 .  (2) 

At high temperature, perturbation theory predicts 
for this colour averaged potential 

V ( r ) / T =  - ~ V I ( r ) 2 / T  2 , (3) 

where 111 (r) is the singlet term, which is expected to 
be o f  Debye screened Coulomb form 

VI ( r) = [ a (  T )  /r]  e x p [ - # o ( T ) r ]  , (4a) 
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with 

o~( T) = - g 2 (  T) (N  2 -  1 ) /8gN.  (4b) 

Here/ZD(T) = x / ~ g ( T )  Fis the Debye mass in the 
case of  a pure SU(N)  gauge theory. It should be 
stressed, however, that the Debye screening mass in 
the potential is not a perturbative result, but rather is 
based on the usual attempt to reproduce non-pertur- 
bative features in perturbative calculations by sum- 
ming up certain infinite subsets of diagrams [ 9 ]. Thus 
we are actually discussing the incorporation of non- 
perturbative effects in the framework of  perturbation 
theory when we compare eqs. (3) and (4) with 
Monte Carlo simulations. The simulations [2,3] so 
far seem to indicate that the colour averaged poten- 
tial behaves like V ( r ) ~ e x p ( - c r ) / r  rather than 
showing the expected 1/r  2 behaviour. 

In order to analyze this discrepancy further and see 
in which sense the perturbative limit can be reached, 
we have studied the potential in more detail for the 
pure SU (3) gauge theory. In addition to the colour 
averaged potential defined by eq. ( I ) we also study 
the singlet and octet potentials defined as [ 4,10 ] 

e x p [ -  V~ ( r ) /T]  = 3 ( T r L ( R )  L*(0)  ) / ( L  ) 2 
(5) 

e x p [ -  Vs(r) /T]  = 9 ( T r L ( R )  Tr L * ( 0 ) ) / ( L )  2 

- ] ( T r L ( R )  L*(0)  ) / ( L )  2 

=9 e x p [ - V ( r ) / T ] - ~ e x p [ - V l ( r ) / T ] .  (6) 

As these quantities are not gauge invariant we study 
them in Landau gauge. In perturbation theory the 
singlet and octet potentials are related by 

V1 (r ) /Vs(r )  = - 8 + O ( g  4 ) . (7a) 

We note that in this relation the O ( g 2 )  corrections 
cancel, while this is not the case for similar relations 
deduced from eq. (3): 

Vl ( r )2 /TV(r )  = - 1 6 + O ( g  2) . (7b) 

To study these potentials we performed Monte 
Carlo simulations on a 123)<4 lattice at three cou- 
plings fl= 5.75, 6.10 and 8.00. As the deconfinement 
phase transition on this sized lattices occurs at 
flc-~5.69 [11], the above fl values correspond to 

T / T c =  1.16, 2.3 and 13.7 t,2. In units of  the decon- 
finement temperature To. At each fl value we have 
performed 42 000 iterations. Measurements have 
been performed every tenth iteration. On these con- 
figurations we also fixed the Landau gauge following 
the procedure outlined in ref. [ 13 ], i.e. we first fixed 
the axial gauge and then iteratively fixed the Landau 
gauge by maximizing the quantity 

3 
R e T r  Z (Ux,u+U~-,,u) (8) 

a=o 

on each site. The iterative process has been per- 
formed 100 times. We checked rotational symmetry 
by comparing ( T r  Ux.u) in the four directions. After 
100 iterations the differences between these values 
were found to be less than 2%. 

The error analysis has been performed by subdi- 
viding the total data sample in 8 blocks of  512 mea- 
surements each. On each of these blocks we 
determined the potentials according to eqs. ( 1 ), (5) 
and (6). Errors are then calulated as statistical errors 
of  these eight measurements of  the potentials. In fig. 
1 we show results for the colour averaged (fig. la)  
and singlet and octet (fig. lb)  potentials at the three 
fl values studied. 

Our results are summerized in table 1 and shown 
in fig. 1. From this we see that indeed the octet poten- 
tial is repulsive, while the singlet potential is attrac- 
tive. In fig, 2 we show the ratio between singlel and 
octet potentials (fig. 2a) as well as - V~ (r)2/V(r)  T 
(fig. 2b) as functions of R. We note that for lower 
temperatures the ratio - V~ ( r ) /Vs ( r )  rises fast, in- 
dicating that the octet potential drops fast. At large 
distances the colour singlet potential thus gives the 
dominant contribution to the colour averaged poten- 
tial for temperatures close to To. In the perturbative 
regime we would expect the relations (7a) and (7b) 
to hold. For the largest fl value we indeed find the 
expected ratio between singlet and octet potentials, 
while the relation between colour averaged and sin- 
glet potential is in general not yet fulfilled. This may 
reflect the different order in g2 neglected in (7a) re- 
spectively (7b). Apparently we find the best agree- 
ment with perturbation theory at short distances. At 
large distances, the "non-perturbative" screening 

~2 Here we have taken into account the observed scaling viola- 
tions for Tc/AL. For further details see re£ [ 12 ]. 
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Fig. 1. (a) The function - V(R) / Tversus lattice distance R on a 123 X 4 lattice at/?= 5.75 (circles), 6.10 (squares) and 8.00 (triangles), 
where V(R ) is the colour averaged potential. (b) The same as jn  (a), with filled symbols for the singlet potential - 111 (R) /T  and open 
symbols for the octet potential Vs (R) / T. 

Table 1 
Monte Carlo data for the colour averaged potential V(R), singlet potential V~ (R) and octet potential Vs(R) in units of the temperature 
T at three fl values fl= 5.75, 6.10 and 8.00. Details about the data sample and error analysis are discussed in the text. 

fl ( L )  R V (R) /T  V~(R)/T Vs(R)/T 

5.75 0.53753 (191) 1 0.2790 (26) 1.6946 (63) 0.2152 (13) 
2 0.0687 (17) 0.7847 (54) 0.0715 (11) 
3 0.0231 (9) 0.3199 (28) 0.0211 (10) 
4 0.0096 (9) 0.1138 (30) 0.0043 (8) 
5 0.0051 (11) 0.0403 (28) -0.0005 (11) 
6 0.0024 (11) 0.0194 (25) 0.0002 (10) 

6.10 0.81948 (98) 1 0.10422 (48) 1.1156 (25) 0.1426 (5) 
2 0.02005 (31) 0.4596 (20) 0.0515 (5) 
3 0.00599 (14) 0.1766 (12) 0.0176 (3) 
4 0.00209 (27) 0.0642 (13) 0.0060 (3) 
5 0.00041 (19) 0.0222 (14) 0.0023 (3) 
6 0.00066 (46) 0.0127 (24) 0.0009 (5) 

8.00 1.44292 (119) l 0.02148 (14) 0.5445 (17) 0.0683 (3) 
2 0.00402 (9) 0.2210 (18) 0.0267 (3) 
3 0.00110 (7) 0.0969 (19) 0.0116 (2) 
4 0.00032 (6) 0.0448 (18) 0.0054 (2) 
5 0.00012 (6) 0.0232 (16) 0.0028 (2) 
6 0.00015 (8) 0.0172 (16) 0.0020 (2) 
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governed by a screening mass #. Note that this pa- 
rametrization gives an effective screening mass de- 
scribing the behaviour of the potential at intermediate 
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Fig. 2. The ratios - V~ ( R ) / V s ( R )  (a) and - V~ ( R ) 2 / V ( R )  T (b) 
versus R for three values o f t .  Symbols are as in fig. 1. The dashed 
line corresponds to the perturbative result. 

factor exp [ --/~D (T) r ] becomes important, and we see 
in particular in fig. 2b that even at high temperature 
relation (3) is not well satisfied. On the other hand, 
the improved agreement at short distances shows that 
the "truly" perturbative aspects are better and better 
reproduced as T increases. 

Our present analysis of the heavy quark potential 
is limited to distances 0.25~<rT~< 1.5, whereas the 
simple Debye screening form of the potential can be- 
come valid only in the limit r T ~  ~ .  At intermediate 
distances the structure of the potential may be more 
complicated [ 14 ]. To study the functional behaviour 
in more detail we parametrize the potentials in the 
general form 

V( r) / T= [ c( T) / ( rT) a] exp( -~ t r )  . (9) 

We thus allow for an arbitrary power d in the "Cou- 

V(R)  / V(R + 1 ) = {R -d exp ( -- ~tR.aR) 

+ ( 1 2 - R )  -dexp [ -- #Ra(12--R) ] } 

× {(R+ 1 ) -dexp  [ --#R.d(R+ 1 ) ] 

+ (11 - - R ) - d  exp [ --#R,a( 11 --R)  ]}-1 (10) 

Here we take into account the periodicity of  our 
123×4 lattice. For any value of d these effective 
masses approach the same limiting value 

~t= lim #R,a. (11) 
R ~ o c  

I f  the potential drops according to a power law 
1/r d°, the approximants ItR.d approach # from above 
(below) for d<  do (d>  do ). The "best" choice for the 
exponent d obviously is obtained, if  #R,~ is roughly R 
independent already at short distances. In fig. 3 we 
show/tR,d for the colour averaged potential and three 
different values of d. We see that apparently we need 
1 ~< d~< 2 to get #R.d approximately R independent. In 
fig. 4 we show the behaviour of/tR,a for the singlet 
potential. Here we seem to need d ~  0,3. Detailed re- 
suits for d and #, obtained from a two-parameter fit 
of the ratios V ( R -  1 ) / V(R) ,  are given in table 2. Let 
us compare these results in some detail with pertur- 
bative calculations. 

We noticed already in connection with fig. 2 that 
at r =  5.75 and 6.10 we do not see any indications for 
perturbative behaviour. This also follows from the 
analysis of  the functional form of the potentials. At 
r =  8.00 the powerlike behaviour of  the singlet poten- 
tial is best described by d=0.24 in the range 

~3 Note that for d -  0 the effective masses rise with increasing R. 
Similar behaviour has been found for the gluon propagator in 
Landau gauge [ 15 ]. There the increase of the effective mass 
has been taken as evidence for the non-positivity of the trans- 
fer matrix in this gauge. 
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Fig. 3. Effective masses/zR.a in inverse lattice spacings for the colour averaged potential versus R and d = 0  (a) ,  d =  1 (b) and d = 2  (c). 
Results are shown for the three values of  fl (symbols as in fig. 1 ). Lines are drawn to guide the eye. 
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Fig. 4. The same as fig. 3, now for the colour singlet potential and d =  - 1 (a),  d = 0  (b) and d =  1 (c). 

Table 2 
The power d and Debye mass # for the colour averaged and sin- 
glet potentials obtained from a Z 2 fit of  the ratios V ( R -  1 ) / V ( R )  
as discussed in the text. 

B Singlet Colour averaged 

/t d /~ d 

5.75 [.11 (1) - 0 . 4 9  (1) 0.61 (7) 1.15 (10) 
6.10 t.07 (1) - 0 . 2 6  (1) 0.55 (7) 1.59 (11) 
8.00 0.74 (2) 0.24 (3) 0.58 (6) 1.59 (9) 

0.25 < rT< 1.5. Besides this we see from figs. 4b and 
4c that the effective masses extracted for d=  0 and 
d= 1 seem to give quite accurate upper and lower 
bounds for the asymptotic value of the screening mass 
at fl= 8.00: 

2.4< # / T <  3.2. (12) 

This is to be compared with the perturbative result, 
/tD / T=  g ( T). The large value found for # / T  would 
thus require a rather large value for the temperature- 
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dependent  running  coupling constant. To explain it 

by lowest order perturbat ion theory would demand  
an unreasonably high A value in the runn ing  coupling 

constant  

g2(T)  = 2 4 n 2 / 3 3  l n ( T / A ) ,  (13) 

namely A ~> 3 T~. This in tu rn  makes it likely to expect 

higher order terms to be relevant in the perturbative 
analysis. Unlike the singlet potential, which could be 
measured up to distances rT= 1.5, the colour aver- 

aged potential  could be determined by us only up to 
rT= 1. This makes the bounds  on the asymptotic val- 
ues of the screening mass less stringent. At ,6= 8.00 
we find 

2.0~<#/T~<4.0. (14) 

This makes it difficult to judge whether asymptoti- 

cally the re la t ion / t  . . . .  age = 2#singlet holds. To investi- 
gate the effects at finite lattice spacing, we have fitted 
our data to a lattice version of eq. (9) ,  defined from 
a discretized Fourier  transform. It turns out, how- 
ever, that the mass value obtained from this fit dif- 
fers very little from the one obtained by using eq. (9) 
and including the lattice periodicity. 

At finite distances rT>~ 1 we start feeling the finite 
size of the lattice used at present and we have to worry 
about the influence of these finite size effects. Work 
in this direction is in progress [ 16 ]. 

In  conclusion, we find that the heavy quark poten- 
tial exhibits a complicated structure at short and in- 
termediate distances studied by us, i.e. 0.25 ~< rT<~ 1.5. 
We see that for temperatures close to T¢, 1.0< T~ 
Te< 3.0, perturbative relations fail to describe the 
potential and no indications are found that they could 
describe the large distance behaviour of the poten- 

tial. At large temperatures, T ~  t0T¢, we f ind some 
indications for the validity of perturbative relations 

like eqs. ( 3 ) and (7) .  However, even here the screen- 
ing masses turn  out to be rather large. Presumably 
even higher temperatures are needed to find com- 
plete agreement with per turbat ion theory. 
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