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FIRST-ORDER CHIRAL PHASE TRANSITION IN LATTICE QCD
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The chiral phase transition in lattice QCD has been studied for light fermions of mass ma=0.025 on lattices of size 4* and
8%x 4 using the hybrid algorithm. We find evidence for a first-order chiral phase transition with a large latent heat. A comparison
with 10%x 6 data shows violations of asymptotic scaling for T, which are similar in magnitude to those observed in the pure gauge

sector.

While the phase structure of pure SU(N) gauge
theories at finite temperature is quite well under-
stood by now, the corresponding problem in the
presence of dynamical fermions is still subject to
much debate. For SU(3) gauge theory it has been
found that the first-order deconfining phase transi-
tion of the pure gauge sector disappears for interme-
diate quark masses. A very rapid but smooth cross-
over behavior is observed in the intermediate mass
regime, m/T'~0.2-0.4 (T being the temperature) [1].
However, a recent simulation with even smaller quark
masses, m/T=0.1, presented evidence for the exis-
tence of a first-order chiral phase transition [2]. This
is in nice agreement with predictions based on anal-
ysis of an effective lagrangian in the chiral limit [3].
The results of Gupta et al. [2] have been obtained
with an exact algorithm [4]. This allows large steps
in the update from one gauge configuration to the
next. Application of this method is in practice, how-
ever, restricted to rather small lattices because of its
slowness.

In the present letter we analyze the chiral transi-
tion for very light quarks, m/T=0.1, using the well-
tested hybrid algorithm [5,6]. This will allow us to
check this algorithm, which by contrast is a ‘“‘small
step” algorithm, against the exact algorithm used in
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ref. [2]. In addition we will extend the analysis of
ref. [2], which has been performed on a 4 lattice, to
an 8*x4 lattice. This will give further information
about the critical parameters of the transition, i.e. T,
and latent heat.

The hybrid algorithm has been well tested and is
described in detailed in the literature (for recent
modifications and further references, see ref. [7]).
Previously it has been used for a wide range of quark
masses, the smallest being m/T=0.15 [7]. At this
small mass value, indications for a nearby critical
point were found, but no metastable states were
observed. In the present analysis we have used two
versions of the hybrid algorithm, differing in the ways
they handle the fermionic sector. The first includes
dynamical fermions as bilinear noise and the gauge
fields are updated using an exponential update [7].
The second version introduces the fermions through
microcanonical equations of motion [7]. The noisy
version was used to study the chiral transition on a
44 lattice for QCD with n;=4 light fermions of mass
ma=0.025 (m/T=0.1). As in ref. [2] we used anti-
periodic boundary conditions in both the spatial and
temporal directions for the 44 runs.

We have performed runs with ordered and ran-
dom start configurations at various couplings,
B=06/g?, in the interval B [4.8, 5.0]. The evolution
in Monte Carlo time ¢ was followed up to = 300. We
noticed a considerable slowing down of the conver-
gence rate around $=4.95. Indeed clear signals for
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coexisting states have been found in this region. In
fig. 1 we show the time evolution for {¥x > at various
B values and corresponding data for the plaquette
expectation values are given in fig. 2. We claim this
provides good evidence for a first-order chiral phase
transition around B.~4.94. On this small lattice,
however, there is a broad region where coexisting
states can be found. This makes a precise determi-
nation of g, difficult. Our results are in agreement
with those reported in ref. [2]. Our values for {yx>
agree outside the critical region as does the size of the
jump in {¥x) in the metastble region. The critical
coupling itself may be shifted to a slightly higher
value.

It has been noted in ref. [2] that in the confined
region their algorithm leads to a noticeable system-
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atic error due to the conjugate gradient inversion of
the fermion matrix having been truncated after 90
iterations. We used the magnitude of the residual
vector r as stopping criterion for the conjugate gra-
dient algorithm. We found that while in the chiral
symmetric region ~ 100 iterations yield an accepta-
ble inverse (r<0.005), about 300 iterations were
necessary in the confined region to reach this accu-
racy. This reflects the influence of small eigenvalues
in the fermion determinant, which are present in the
confined region and are responsible for the nonvan-
ishing chiral condensate, but which are absent in the
chirally symmetric phase.

Another qualitative difference between these two
regimes can be found in the amount of screening vis-
ible in Wilson loop expectation values. In table 1 we
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Fig. 1. Time evolution of {fx ) on a 4*lattice at (a) $=4.9, (b) 4.93, (c) 4.95 and (d) 5.0. Shown are runs with ordered (open circle)
and random (full points) start configurations. The increment of the Monte Carlo time T was chosen to be d¢=0.01.
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Fig. 2. Same as fig. 1 but for the plaquette expectation value {Tr UUU+U™* .
Table 1

Comparison of Wilson loop expectation values on a 4* lattice obtained with four flavors of mass ma=0.025 and for the pure gauge theory

(ma=oo) for various values of 8.

Wilson ma=0.025 ma=co ma=0.025 ma=co
loop p=4.8 £=5.0 B=5.0 B=55
Ix1 0.4067(29) 0.3996(6) 0.5126(24) 0.4996(30)
1x2 0.1699(21) 0.1622(5) 0.2921(36) 0.2633(38)
1x3 0.0712(13) 0.0660(4) 0.1737(36) 0.1402(34)
2x2 0.0297(11) 0.0272(2) 0.1201(40) 0.0819(31)
2x3 0.0045(10) 0.0045(1) 0.0608(39) 0.0271(19)
3x3 —0.0015(14) 0.0007(2) 0.0332(37) 0.0074(9)

compare Wilson loop expectation values below
(f=4.8) and above (f=5.0) the chiral transition
with suitable data from simulations of the pure gauge
theory at shifted f-values. These shifted couplings

have been selected such that the 1 X1 Wilson loops
with and without dynamical fermions are in rough
agreement. While such a simple shift seems to be suf-
ficient to match all the larger loops in the broken

355



Volume 188, number 3

Table 2

PHYSICS LETTERS B

16 April 1987

Results for (x> and the plaquette expectation value { TrUUU*U™ >/3 on a 4* lattice with four light flavors of mass ma=0.025. Where
coexisting states were found, separate results are given for the broken (b) and symmetric (s) phases.

B 1979 KTr UUU*U* /3

b s b s
4.8 1.1000(61) - 0.4067(29 -
4.9 1.0385(86) - 0.4256(23) -
4.93 0.8620(86) 0.2456(276) 0.4475(27) 0.4917(32)
4.95 0.8551(74) 0.2123(86) 0.4487(23) 0.4952(21)
5.0 . 0.1432(57) - 0.5126(24)

phase too, this is clearly not possible in the chirally
symmetric phase. This may be taken as an indication
for larger screening effects in the chiraily symmetric
phase. However, it is partly due also to the smaller
coupling, f=4.8 being still in the strong coupling
regime. At larger couplings screening effects, though
not that strong, are also visible in the symmetry bro-
ken phase [8].

Let us summarize the critical parameters we
obtained for the 44 lattice:

B.=4.9410.04 .
Ap=0.045+0.005 ,

Ayx=0.630+0.020 .

Detailed results are given in table 2. Notice the large
discontinuity in the plaquette expectation value. This
is to be compared with the result found in the pure
gauge sector, where on an 83 4 lattice the disconti-
nuity was Ap=0.007. Of course, this reflects a pecu-
liar feature of the energy density noted already in
earlier calculations with dynamical fermions at larger
masses: while the fermionic energy density immedi-
ately above T is quite close to the asymptotic ideal
gas value, the gluonic contribution overshoots this
limit considerably. This is reflected here in the large
jump observed in the plaquette expectation value p.
We now turn to a discussion of our 8°x 4 data. Here
we used both versions of the hybrid code. Again we
find clear indications for coexisting states around
B=4.95. In fig. 3a we show the time evolution of
{Fx> at f=4.95 obtained with the deterministic
algorithm. The Wilson line expectation values
obtained with the noisy algorithm are shown in fig.
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3b. Both our programs were accurate up to system-
atic errors of O(A¢*). However, it is known that the
systematic errors are larger for the noisy algorithm
[9], which thus may require smaller step size than
the deterministic algorithm at the same bare mass.
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Fig. 3. (a) Time evolution of {(¥x» and (b) the thermal Wilson
line (L) on a 8*x4 lattice at f=4.95. Shown are runs with
ordered (open circle) and random (full points) start configura-
tions. The increment of the Monte Carlo time T was chosen to be
dr=0.01.



Volume 188, number 3

Outside the transition region these differences are not
visible in our simulation, but in the transition region
they have the effect that the critical coupling seems
to be shifted to slightly higher values for the noisy
algorithm.

The results for  yx > and the Wilson line obtained
at various couplings fe [4.9, 5.15] with both algo-
rithms are shown in fig. 4a and the energy density is
given in fig. 4b. From this we get for the critical
coupling

B.=4.96+0.03 .

Using earlier data for larger masses [10] on a 8°x 4
lattice we find for the critical coupling in the m—0
limit

B.=4.9110.03,

which in units of 4,,,;, corresponds to a critical tem-
perature of 7./An;n=2.7710.15. Note that this is
somewhat larger than the value found for N, =6 [7]
and indicates violations of asymptotic scaling in this
intermediate coupling regime. Results for the critical
temperature obtained for N,=4 and 6 are summa-
rized in table 3 and compared with corresponding
pure gauge data [11]. This shows that the observed
scaling violations follow a similar pattern as in the
pure gauge sector. A similar observation has been
made in MCRG studies of the QCD g-function in
the presence of dynamical fermions [8]. We leave it
to the interested reader to try on the basis of table 3
a guess where the value for T./A4,,;, will settle down
on larger lattices with dynamical fermions.

From the jump in the fermionic and gluonic con-
tribution to the total energy density (fig. 4b) we see
that the latent heat of the transition overshoots the

Table 3

Comparison of critical temperatures obtained for QCD with four
massless fermions with critical temperatures for the pure gauge
sector.

PHYSICS LETTERS B

N, T/ Amin

ne=4 ne=0
4 2.77£0.15 2.61+0.01
6 2.14%0.10 2.12+0.01
-10—14 ; -1.6810.05
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Fig. 4. (a){(Zx> and thermal Wilson line (L) versus § on a

8% 4 lattice. (b) Gluonic (dots) and fermionic (triangles) con-
tributions to the total energy density versus 5.

Stefan—Boltzmann value considerably. On a 83x4
lattice the Stefan-Boltzmann limit would corre-
spond to a total energy ¢/T*=31.61 [12], while we
find a latent heat Ae/T*= 50+ 10. This overshooting
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is due to the large gluonic contribution, ¢;. Weak
coupling expansions for this term [12] suggest that
the large overshoot is indeed a finite-lattice effect.
Thus much larger lattices will be necessary to get reli-
able estimates for the size of the latent heat in the
presence of dynamical fermions. It is also interesting
to note that the discontinuity in the Wilson line has
about the same size as for the pure SU(3) gauge the-
ory on an 8°x 4 lattice [13]. The critical parameters
found for the 8% 4 lattice are similar to those for the
44 lattice:

B.=4.9610.03,
Ap=0.06£0.01,
Ayx=0.610.1,

A{L>=0.35%£0.05.

In conclusion we note that the data obtained with
the hybrid algorithm show good agreement with those
obtained using the exact algorithm of ref. [2]. The
results obtained for the first-order chiral transition
for four light flavors of mass m/T=0.1 lead to criti-
cal parameters which agree well with those found in
the pure gauge sector. This shows that in some sense
the transition is as strong as the transition in the
quenched limit. Indeed we expect that the gap in
physical observables may become even larger once
the extrapolation to zero quark mass is possible. This
will require more data in the first-order regime for
even lighter fermions. Finally we want to stress that
the present data have been obtained for a theory with
four light flavors. The arguments leading to a predic-
tion of a first-order transition for n;>3 are some-
what more subtle for the physically interesting case
of two light flavors [3]. This case deserves further
study. Moreover, it will be interesting to see whether
the introduction of an intermdiately heavy fermion
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(strange quark) in addition to the two massless u and
d quarks can smooth out a first-order chiral transi-
tion. Work in this direction is in progress.
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