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We discuss the behavior of the zero temperature limit of lattice field 
theories with finite chemical potential. The finite chemical potential 
lattice formalism is applied to the free fermion theory and the Gross-Neveu 
model where results can be compared with analytic solutions. Problems 
occuring in the application of this formalism in numerical simulations of 
lattice QCD are discussed. 

1. INTRODUCTION 

During the recent years we have seen that Monte Carlo simulations of QCD 

at finite temperature T can provide detailed quantitative information on the 

phase structure of QCD and the transition to a quark-gluon plasma at high 

temperatures. Evidence for the existence of a deconfining phase transition 

has been found in the pure gauge sector and the existence of a chiral 

transition in the presence of light dynamical fermions has been established 

numericallyl. 

In particular in view of future heavy ion experiments which can probe 

hadronic matter at high densities* it is of great interest to incorporate a 

non-vanishing chemical potential u in these calculations. This would allow 

to study the phase diagram of QCD in the whole temperature - baryon number 

density plane. However, at least for the most interesting case of SU(3) 

gauge theory with dynamical fermions, a numerical analysis at u f 0 is far 

more complicated than at u = 0. The fermion determinant turns out to be 

complex. Thus a probability interpretation of the Euclidean path integral 

is no longer possible and the application of standard simulation techniques 

is ruled out. It has been suggested to deal with this situation by taking 

the complex part of the action into the expectation values3 or using complex 

Langevin algorithms4. These techniques are, however, still fairly 

unexplored and at present it is not clear whether they can be used in finite 

chemical potential calculations 5 . Therefore, the numerical analysis of 

lattice QCD at p * 0 mainly has been restricted to the quenched sector 697. 
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In this talk we want to discuss some problems arising from such an 

analysis of the T + 0 limit of QCD at non-vanishing chemical potential IJ. 

In particular we will address the question of how far the lattice 

calculations are able to reproduce the threshold effects related to the 

discontinuous fermi distribution function at zero temperature. In a theory 

with massive fermions only the vacuum states will be occupied in the T + 0 

limit unless the chemical potential is large enough to raise the fermi 

energy above the energy level of the lowest state with non-vanishing fermion 

number. For QCD we expect this threshold value p. to be given by one third 

of the nucleon mass, if we assume that there are no stable exotic multi- 

quark or multi-flavor states. The numerical calculations7, however, 

indicate a threshold value given by one half the pion mass. Contrary to our 

expectations this would indicate that there exist light baryonic states in 

the QCD spectrum. These problems may be due to a failure of the numerical 

approximations made 8 or may even indicate the existence of exotic states in 

the strong coupling regime. We will present the Monte Carlo data leading to 

these conclusions in section 4 and discuss the approximations involved. In 

section 3 we will discuss the low temperature limit of the Gross-Neveu 

model. This allows to test the finite chemical potential formalism in a 

non-trivial interacting model which has some similarities with QCD. The 

Gross-Neveu model has the advantage that unlike QCD it has a real fermion 

determinant. The effect of dynamical fermions thus can easily be 

incorporated in the numerical calculations. In addition we can compare the 

numerical simulations with known continuum results 9,lO . 

In this talk we will concentrate on the question in how far the lattice 

models at T = 0 can handle the discontinuous fermi distribution function in 

the zero temperature limit and want to point out the relation of the 

associated threshold value for the chemical potential to the mass spectrum 

of the theory. 

Before discussing this issue for interacting lattice models let US 

illustrate the problem we are addressing in the case of a simple free fermi 

gas on the lattice. 

2. THE FREE FERMI GAS ON THE LATTICE 

In the case of a free fermionic theory we can study the behavior of exact 

solutions both in the continuum and on the lattice. In the zero temperature 

limit the fermi distribution function degenerates to a step function 

S(p - m) and the partition function becomes 
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Thus a chemical potential larger than the rest mass of the fermions is 

necessary in order to occupy states above the vacuum which can contribute to 

the partition function. From JGq. 1 we obtain for the number density n 

2 2 312 
n = e(n-m){& (11 90 1 1 

which again reflects the existence of a threshold value no 

(3) 

which the chemical potential has to exceed in order to create a non- 

vanishing number density. We now want to discuss how this threshold 

behavior of the continuum theory is realized in the lattice version of the 

free fermion model. The parition function on a 4-dimensional Euclidean 

lattice is given by 

where the action for fermions of mass m is given by 

SF = m 1 <$ + t: X Dzy Xy 
X x,v x 

and 

Di 
XY 

= + ni(x)[~Y x+i-6y,x_i] 1=1,2,3 
, 

Do = 3 [e’6 -e -6 
XY y,x+o Y 9x-o 

I 

(4) 

(5a) 

(5b) 

Note that the chemical potential has been introduced in the imaginary time 

direction of the lattice Dirac operator by providing a factor exp {u) in the 

forward and exp C-n} in backward direction 
6,11,12 

. In Eq. 4 we used 

staggered fermions to discretize the Dirac operator. It has been checked 

that in the limit of vanishing lattice spacing this formulation reproduces 
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the known continuum results for the T = 0 theory 
6,11,13 

. Here we want to 

show that also at finite lattice spacing a the free fermi model shows the 

expected threshold behavior in the zero temperature limit. The partition 

function can be evaluated exactly and we obtain for the number density13. 

n = f3 (n-E(o)) [ $$ 0 (n-E(s)) 

with 

E(p) = sinh + C sin 'pi) 

Thus the number density 

smaller than 

i=l / 

stays zero as long as the chemical potential is 

/--? 
!Jo = E(o) = Iln[m + dl+m-1 (8) 

(6) 

(7) 

We note that this value agrees with the mass of the free lattice fermion at 

finite lattice spacing which is defined by the pole of the free fermion 

lattice propagator at zero momentum. The behavior of the number density is 

in fig. 1 for several mass values. 

i.0 

Pa 

i.5 .O 

Figure 1: Number density versus chemical potential for the free fermi gas 
at zero temperature on an infinite lattice. Shown are results for different 
bare masses as indicated in the figure. 
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Thus the free fermion lattice gas model works as expected. In the zero 

temperature limit we find a threshold value for the chemical potential below 

which all observables agree with the u = 0 values. In particular the number 

density stays zero for all u<n,. In the following we will discuss the 

behavior of the Gross-Neveu model at finite u. This tests the finite 

chemical potential formalism in the case of a non-trivial interacting 

fermion model on the lattice and allows to illustrate the relation between 

the threshold value u, and the mass spectrum of the model. 

3. THE GROSS-NIXED MODRL 

Many features of the Gross-Neveu model (GNM)9 are similar to those 

expected from QCD. This makes it a particular interesting toy model. The 

GNM is a 2-dimensional model for n different species of fermions interacting 

through a four fermion term. It is asymptotically free and has a 

spontaneously broken (discrete) chiral symmetry. The quartic interaction 

term can be decomposed into a mass term by introducing a real scalar field u 

in the Lagrangian. Several lattice versions of this model have been 

analyzed14 which for large values of nf reproduce well known continuum 

results for the nf + m limit of this model. We will use a lattice 

Lagrangian that introduces the scalar field u on plaquettes of the 

2-dimensional lattice 

+ a 1 [fJx+o+~x_o+~x+l+~x_l li(k)xy 
x,k 

with the partition function given by 

2 = ,,” do (k)d$k)e-SGN 
nkdX* x x. X 

(9) 

(10) 

In l@. 9/10 k labels the nf/2 different fermion flavors (In 2 dimensions the 

number of flavors gets doubled in the continuum limit). We are interested 

in the behavior of the lattice model at finite u and zero temperature. We 

want to determine the threshold value for the chemical potential at which 

states with non-vanishing fermion number start being occupied. This 

threshold value will be related to the spectrum of the interacting model. 

In the continuum this spectrum is well known'. The fermion sector consists 

of a heavy fermionic state ml, 
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ml = u. 

and a sequence of bound states whose masses are given by 

-F s=n * 2nf 
2nf . ( II 

m =u 
n 0 ) ,n = 1,3, “f - 1 

(11) 

(12) 

with n being the number of fermions (antifermions) in the bound state and u. 

denoting the vacuum expectation value of the scalar field u. Assuming that 

at P, we create a low density non-interacting gas of particles, we expect to 

find a threshold value determined by that bound state that leads to the 

minimal energy per constituent. In the large nf limit, where the above mass 

relations are valid, we thus would expect to find for the threshold value. 

m 
2 

11O 

= mi* < = - 0 

II 0 
n 

Fig. 2: The threshold value u, normalized with the vacuum expectation value 
of the scalar field u. = <U> versus coupling g. The data points have been 
obtained from a measurement of the fermion number density on a 20 x 20 
lattice with nf = 12 flavors of fermions15. 



Thus we expect that at no multi-fermion bound states with n = nf fermions are 

created at rest. We have analyzed this question in a Monte Carlo simulation 

and determined !J, from points where the number density starts getting non- 

zero15. The simulations have been performed for the ease of nf = 12 fermion 

flavors in order to be able to compare numerical results with exact continuum 

results for the nf + m limit. 

In Ng. 2 we show a measurement of no/uo for various couplings g. We see 

that coming from the strong coupling region the ratio no/c', indeed approaches 

the expected value 2/n in the scaling region. For too small couplings, i.e. 

g < 0.35, we again observe deviations from this asymtotic value. This is 

probably due to finite temperature effects setting in for this small 

couplings. A detailed discussion of the Gross-Neveu model at finite n and 

finite temperature is given in Ref. 15 where also the chiral transition is 
10 studied in detail . Here we note that also in an interacting fermion model 

the behavior in the zero temperature limit follows our expectations as far as 

the onset of thermodyn~~cs is concerned. The value found for no is 

consistent with the idea that at no we start creating multi-fermion bound 

states. This can be checked explicitly by analyzing typical configurations 

contributing to the partition function close to no. 
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Fig. 3: A typical. configuration on the 20 x 20 lattice at g = 0.5 and 
u = 0.45 (Ng. 3a). Fig. 3b shows a projection of this configuration on the 
spatial axis (solid line) and the spatial distribution of the number 
density divided by nf/4 in this configuration (broken line). 
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In Fig. 3a we show a typical configuration at g = 0.5 generated for u 

slightly above 11,. The configuration clearly shows a kink-antikink which is 

the wave function for a multi-fermion bound state. In Fig. 3b we show a 

projection of this state on the spatial axis together with the spatial 

distribution of the fermion number density. In each edge of the kink- 

antikink wavefunction we find 6 fermions localized. Thus the state consists 

of n = nf = 12 states as expected. 

4. PROBLEM WITH FINITE DENSITY SIMULATIONS OF LATTICE QCD 

From the analysis of the free fermion model and the Gross-Neveu model we 

see that the finite density formulation of lattice field theories works well 

and is sensitive to the mass spectrum of the models. In the case of QCD we 

thus would expect to find a threshold value IJ, which is related to the 

creation of the lightest baryonic states, i.e. nucleons. Thus if we assume 

to create a low density non-interacting nucleon gas+ at u, we expect 

pO = mN/3 (14) 

Unlike in the GM+ we do not have a reliable numerical method to deal with 

the full interacting theory. We thus analyzed a limit where the influence 

of dynamical fermions is expected to be small and where we can compare 

numerical results with analytic (mean field) calculations. 

In Fig. 4a we show results for the baryon number density for QCD in the 

strong coupling limit (6/g2 = 0). These data have been obtained in the 

quenched approximation7. The existence of a threshold value is clearly 

visible. However, a comparison of the measured values for p, with known 

hadron masses in the strong coupling limit 
16 

shows that instead of being 

related to the nucleon mass, mN, p. is determined by 

=Ul ‘0 n 

= + tn [l +$c2 -2d) + /(c2-2d) +bc2-2d)'] (15) 

+In the absence of Coulomb repulsion bulk nuclear matter will be stable. 
Thus we would actually expect to find a somewhat smaller value for !.I~: one 
third of the nucleon mass minus the binding energy of nuclear matter. A 
priory there is no reason to expect this shift to be small. 
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withd=4,c=m+ and mx being the pion mass. The critical value 

seems to approach zero as the quark mass is lowered. Similar results hold 

for the chiral condensate which we show in Fig. 4b. 

313c 

Fig. 4: The baryon number density for the SU(3) gauge theory with staggered 
fermions of mass ma = 0.2, 0.5 and 1.0 versus chemical potential on a 
44 lattice (Fig. 4.a). Fig. 4b shows similar7results for the chiral 
condensate <ix> on lattices of various sizes . 

Some of this data has been obtained on fairly large lattices and using exact 

matrix inversion routines to calculate the fermion propagator. This seems 

to rule out that finite size problems or problems related to an insufficent 

algorithm for quenched calculations are responsibile for the unexpected 

result manifested by Eq. 15. It has been argued that the problems observed 

in quenched calculations are entirely due to this approximation8 which at 

present can not be ruled out. We performed, however, some calculations using 

a complex Langevin algorithm to incorporate dynamical fermions 
4,17 . This 

did not improve the situation for SU(3) although it performed well for a 

U(3) theory. It may, however, be that the complex Langevin algorithm which 

itself is not well founded fails for SU(3) gauge theory and more refined 

techniques may be necessary to deal correctly with the contribution of 

dynamical fermions. 

Beside the discussed problem of an unexpected small value for no the 

results shown in Fig. 4 also seem to have undesirable consequences for the 

pattern of chiral symmetry breaking at non-zero chemical potentia17. Like 

in similar calculations for SU(2) gauge theory" we observe that <xx> seems 
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to drop to zero as soon as the number density becomes non-zero. This 

suggests that at finite baryon number density chiral symmetry is restored. 

The phase diagram emerging from the analysis of quenched strong coupling 

QCD at u f 0, T = 0 is shown in Pig. 5. There we also show the expected 

result based on the relation u. = mN/3, with mN being the nucleon mass at 

strong coupling16. Pig. 5 also shows the result obtained from a mean field 

calculation 7 which agrees with the numerical data for large quark masses but 

then approaches a constant value for u. in the zero mass limit. The mean 

field analysis gives a first order phase transition from the vacuum phase 

(no fermions) to a densely packed state (maximum number of fermions per 

site). This may be interpreted as a state of bulk nuclear matter (see 

footnote+). 

Y 

1.0 1.5 

Pa 

Pig. 5: Phase diagram in the mass-chemical potential plane of the W(3) 
gauge theory with staggered fermions in the strong coupling limit. The data 
points show the threshold value where physical observables start deviating 
from their II = 0 values. Also shown is the expected critical line 
corresponding to the baryon threshold (- - -) and the pion threshold (----) 
which seems to describe the Monte-Carlo data. The dotted curve shows the 
result of a mean-field calculation discussed in Ref. 7. 
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5. CONCLUSIONS 

We have seen that the formulation of lattice models with non-vanishing 

chemical potential works well in the case of the free theory and the Gross- 

Neveu model. In these cases the effect of dynamical fermions can be 

included correctly in the numerical analysis and the lattice calculations 

could reproduce known continuum results. 

In the case of QCD the analysis of strong coupling lattice theory using 

quenched simulation techniques lead to unexpected results. It may be that 

these results are due to a failure of the quenched approximation and a 

correct implementation of dynamical fermions may resolve the present 

problems. To judge this we require a reliable algorithm that can simulate 

lattice models with complex actions. 
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