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Companng optimmed Wilson loop ratios on 164 and 84 lattices, matching prethctlons are obtained at fl = 6 0 and 6 3 The 
static quark potential and stnng tension are also stuthed at these coupling constant values 

An increasmgly consistent picture of the 
cont inuum limit of SU(3) lattice gauge theory is 
emerging f rom recent Monte Carlo renormahza- 
tion group studies [1-4]. These results suggest 
scaling behaviour for fl > 5.7 with a non-tnvaal, 
non-perturbat ive fl-function. Asymptotic scaling 
seems to start only somewhat beyond fl = 6.0. 
These predictions are in qualitative consistency 
with recent potential, stnng-tension [5-12] and 
critical-temperature [13,14] determinations. 

It  is relatively easy to gwe reliable statistical 
error estimates m these calculations. It is, however, 
much more dLfficult to keep control over the 
possible systemattcal errors. In a recent paper [2] 
the fl-funcUon [more preosely Afl(fl)] was de- 
termined at fl = 6.0, 6.3 and 6.6 using a non-per- 
turbatively optimized block transformation in a 
M C R G  study [15] ,i. The systematical errors were 

:~1 A similar idea has been put forward and apphed to the 3d 
Ismg model recently by Swendsen [16] The basic tdea of 
an MCRG analysis is suggested by Ma and Swendsen [17] 
Wilson [18] studied the method in gauge theories 

estimated by  comparing the results of subsequent 
blocking steps and also by checking the effect of 
non-leading operators. In the present note we 
report  on a calculation of A f l ( f l )  at fl = 6.0 and 
6.3 obtained by the optimized ratio method [1]. 
Since the analysis was performed on the same set 
of gauge configurations as in the prevaous study, 
the results give an independent estimate of the 
systematical errors involved. The ratio test [19] 
relies on a high-precision measurement of Wilson- 
loop expectation values wluch can be used at the 
same time to study the quark-ant lquark potential 
and string tension. The results on these observ- 
ables will be discussed also. 

We analyzed 60 and 58 configurations at 
fl = 6.0 and 6.3 respectively. These 164 configura- 
tions were separated by 112 pseudo heat-bath 
sweeps. They were created on DAP machines in 
Edinburgh. The loop measurements were done on 
a CYBER 205 computer in Amsterdam. In order 
to reduce the statistical errors the "multi lut  
technique" of ref. [20] was apphed. Neither 
time-correlation measurements, nor buncbang the 
numbers  indicated any correlations between 
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subsequent configurations. Of course, we cannot 
exclude time correlations whose time scale exceeds 
0(5000) sweeps. 

The Wilson-loop expectation values and errors 
at fl = 6.0 and fl = 6.3 are summarized in table 1. 
Comparison with other high-statistics results [6] 
shows that the multitut techmque becomes quite 
effective for larger loops for which the statistical 
errors are reduced slgmficantly The fl = 6.0 data 
are in full consistency with those of ref. [9] 

The ratio test requires Wilson-loop expectation 
values on 84 lattices data at fl = 5.6, 5.7, 5.8 and 
5.9 were used hnearly interpolating to obtain 
expectation values at interlnediate fl values. The 
loops on the 84 lattices were calculated at CERN 
and the numbers were collected m ref. [21]. 

The starting pomt of the ratio test is the 
observation [19] that appropriate ratios of 
Wilson-loop expectation values are free of self 
mass and comer singularities, and, therefore, 
satisfy a homogeneous renormahzation group 
equation if the loops involved are large enough. 
In case of loops of relatively small size, the 
remaining lattice artifacts can be cancelled order 
by order m perturbataon theory [1,22]. By compar- 
ing ratios obtained on an 84 lattice with those 
composed of twice as large loops on a 164 lattice, 
an estimate of Afl(fl) is obtained. The function 
Afl(fl) gives the change of the couphng fl which 
corresponds to a change of the lattice unit by a 
factor of 2. 

The results on Afl(fl) obtained by using 
one-loop improved mixed ratios are summarized 
in table 2. The spread in the matchmg predictions 
(characterised by Aflmax - Aflmm ) iS small. On the 
basis of table 2 we conclude that 

Aft(6.0) = 0.36 + 0 03, 

Aft(6.3) = 0.45 ± 0.03 (1) 

Comparing these predictions with those obtained 
by M C R G  blocking [2] [Aft(6.0) = 0.35 ± 0.02 and 
0.34 ± 0.02, Aft(6.3) = 0.43 + 0.03] a new estimate 
of the systematical errors is obtained. 

The expectation values quoted in table 1 can be 
used to determine the potential energy of a pair 
of static quark-antiquark sources. The function 

Vr(R ) = - l n  [ (W(R,  T ) ) / ( W ( R ,  T -  1))] (2) 

Table 1 
Wdson-loop expectation values at fl = 6 0 and 6 3 

Loops Wilson-loop expectation values 

I J f l = 6 0  f l = 6 3  

1 1 0 593617(94) 0 622487(52) 
1 2 0 383437(147) 0 421953(86) 
1 3 0 252418(158) 0 291501(109) 
1 4 0 166949(145) 0 202325(111) 
1 5 0 110532(125) 0 140607(101) 
1 6 0 073194(101) 0 097755(84) 
1 7 0 048475(81) 0 067983(66) 
1 8 0 032090(65) 0 047289(57) 
2 2 0 189867(152) 0 229388(103) 
2 3 0 101181(128) 0 133662(100) 
2 4 0 055074(98) 0 079470(76) 
2 5 0 030188(69) 0 047575(58) 
2 6 0 016592(44) 0 028551(42) 
2 7 0 009120(27) 0 017153(30) 
2 8 0 005010(18) 0 010312(21) 
3 3 0 046832(101) 0 070118(87) 
3 4 0 022677(71) 0 038354(67) 
3 5 0 011151(43) 0 021284(48) 
3 6 0 005518(28) 0 011882(34) 
3 7 0 002733(16) 0.006648(22) 
3 8 0 001353(9) 0 003733(14) 
4 4 0 010031(52) 0 019758(51) 
4 5 0 004547(28) 0 010413(38) 
4 6 0 002084(18) 0 005546(24) 
4 7 0 000961(10) 0 002970(15) 
4 8 0 000444(5) 0 001593(9) 
5 5 0 001926(15) 0 005253(29) 
5 6 0 000825(9) 0 002692(19) 
5 7 0 000356(5) 0 001390(10) 
5 8 0 000154(3) 0 000720(6) 
6 6 0 000334(7) 0 001334(13) 
6 7 0 000136(4) 0 000667(7) 
6 8 0 000055(2) 0 000336(5) 
7 7 0 000052(2) 0 000326(5) 
7 8 0 000020(1) 0 000158(3) 
8 8 0 000007(1) 0 000074(2) 

gdves an upper bound for the true potential energy 
V(R) = l imr~ oo Vr(R). 

The corrections which are due to excited states 
lying above the q - ~  ground state, are expected to 
decay exponentially in T. The leading correction 
can be parametrized as 

Vr(R)  = V(R)  + a e  -hr. (3) 

Taking three subsequent values Vro_2(R ), 
Vro_ x( R ) and Vro( R ), the three unknown parame- 
ters of eq. (3) are deterrmned. By increasing T o up 
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Table 2 
One-loop improved ratio results Rattos, whose Aft prediction 
contaans a stat~stlcal error excetedmg the error cut are excluded 
from the analysis Aflmm(Aflmax) gives the smallest (largest) 
matching value m the set survwmg the statlsucal error cut 

number of 
statistical contributing 

fl error cut ratms average Aft Afire m Aflmax 

6 0 0 05 4455 0 356 0 334 0 389 

0 03 2253 0 356 0 343 0 377 

6 3 005 4113 0447 0434 0463 

0 03 2201 0 449 0 435 0 463 

to Tom,,,, ̀ = 7 (T  = 8 is strongly contaminated by 
finite size errors) the consistency of the fit can be 
checked. We found greater consistency this way 
than with other methods, e.g. fitting Vr(R) to a 
form linear in 1 / T ( T -  1). The method used to 
extrapolate in T was discussed and advocated m 
ref. [23]. Our prediction of the potential is plotted 
in figs. 1 and 2 at /3 = 6.0 and 6.3 respectively. The 
systematical errors from the T o dependence are 
within the statistical errors shown. 

The larger-distance part of the potential in figs. 
1 and 2 is not linear in R. Its behaviour is 
consistent with the form cR + c'/R + const, for 
large R, as is expected for a fluctuating flux tube 
[24]. The errors are too large, however, to allow a 
sensible three-parameter X z fit. 

Assuming that the long-distance part of the 
potential contains a - ~ , t / R  term [24] and 
subtracting this piece from the potential, the 
points R >1 2 are consistent with a linear fit giving 

ol/23 = 0.22 + 0.02, /8 = 6.0, 

ol/2a = 0 . 1 5  + 0.02, fl = 6.3. (4) 

The numbers in eq. (4) give (taking o 1/2 ~ 0.42 
GeV) a(fl = 6.0) = 0.10 5:0.01 fm and a(fl = 6.3) 
= 0.07 ± 0.01 fro. Our 164 lattice corresponds to 
a periodic box of size ~ (1.6 fm) 4 and ~ (1.0 fro) 4 
at fl -- 6.0 and 6.3 respectively. Asymptotac scaling 
predicts a(6.3)/a(6.0) = 0.71, which is consistent 
with eq. (4). Using the one-loop formula for A latt 
we obtain 

01/2 = (94 + 9)A latt, fl = 6.0, 

01/2 = (90 ± 12)A latt, fl = 6.3. (5) 
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We  should emphasize again that these predict ions 
were ob ta ined  by assuming that the long-distance 

par t  of the potent ia l  contains  a - -~r/R term 
Our  data  is consis tent  with this assumpt ion  but  
c a n n o t  really confirm it. Indeed it should be noted  

that  the a l ternat ive  in terpre ta t ion of a 1/R term 

as a per turba t lve  Coulomb effect [6] is also 
cons is tent  and  leads to a numerical ly  sirnllar 

coefl ioent .  
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