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Comparing optimized Wilson loop ratios on 164 and 8* lattices, matching predictions are obtained at 8= 6 0 and 6 3 The
static quark potential and string tension are also studied at these coupling constant values

An increasingly consistent picture of the
continuum limit of SU(3) lattice gauge theory 1s
emerging from recent Monte Carlo renormaliza-
tion group studies [1-4]. These results suggest
scaling behaviour for 8 > 5.7 with a non-trivial,
non-perturbative 8-function. Asymptotic scaling
seems to start only somewhat beyond 8 = 6.0.
These predictions are in qualitative consistency
with recent potential, string-tension [5-12] and
critical-temperature [13,14] determinations.

It is relatively easy to give reliable statistical
error estimates 1n these calculations. It 1s, however,
much more difficult to keep control over the
possible systematical errors. In a recent paper [2]
the B-function [more precisely AB(B)] was de-
termined at 8 = 6.0, 6.3 and 6.6 using a non-per-
turbatively optimized block transformation in a
MCRG study [15] ¥.. The systematical errors were

#1 A similar 1dea has been put forward and apphed to the 3d
Ising model recently by Swendsen [16] The basic idea of
an MCRG analysis 1s suggested by Ma and Swendsen [17]
Wilson [18] studied the method 1n gauge theones

estimated by comparing the results of subsequent
blocking steps and also by checking the effect of
non-leading operators. In the present note we
report on a calculation of AB(8) at 8= 6.0 and
6.3 obtained by the optimized ratio method [1].
Since the analysis was performed on the same set
of gauge configurations as in the previous study,
the results give an independent estimate of the
systematical errors involved. The ratio test [19]
relies on a high-precision measurement of Wilson-
loop expectation values which can be used at the
same time to study the quark-antiquark potential
and string tension. The results on these observ-
ables will be discussed also.

We analyzed 60 and 58 configurations at
B = 6.0 and 6.3 respectively. These 16 configura-
tions were separated by 112 pseudo heat-bath
sweeps. They were created on DAP machines in
Edinburgh. The loop measurements were done on
a CYBER 205 computer in Amsterdam. In order
to reduce the statistical errors the “multihut
technique” of ref. [20] was applied. Neither
time-correlation measurements, nor bunching the
numbers indicated any correlations between
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subsequent configurations. Of course, we cannot
exclude time correlations whose time scale exceeds
0O(5000) sweeps.

The Wilson-loop expectation values and errors
at B =6.0 and B = 6.3 are summarized 1n table 1.
Comparison with other high-statistics results [6]
shows that the multihit techmque becomes quite
effective for larger loops for which the statistical
errors are reduced sigmficantly The 8= 6.0 data
are 1n full consistency with those of ref. [9]

The ratio test requires Wilson-loop expectation
values on 84 lattices data at 8 =5.6, 5.7, 5.8 and
5.9 were used hnearly interpolating to obtain
expectation values at intermediate 8 values. The
loops on the 84 lattices were calculated at CERN
and the numbers were collected 1n ref. [21].

The starting pont of the ratio test is the
observation [19] that appropnate ratios of
Wilson-loop expectation values are free of self
mass and corner singularities, and, therefore,
satisfy a homogeneous renormalization group
equation 1if the loops mmvolved are large enough.
In case of loops of relatively small size, the
remainng lattice artifacts can be cancelled order
by order 1n perturbation theory [1,22]. By compar-
ing ratios obtained on an 8* lattice with those
composed of twice as large loops on a 164 lattice,
an estimate of AB(B) is obtained. The function
AB(B) gives the change of the coupling 8 which
corresponds to a change of the lattice unit by a
factor of 2.

The results on AB(B) obtamned by using
one-loop improved mixed ratios are summarized
1n table 2. The spread in the matching predictions
(characterised by AB,,,, — ABp,) 1s small. On the
basis of table 2 we conclude that

AB(6.0)=0.36+0 03,
AB(6.3)=0.45 £ 0.03 (1)

Comparing these predictions with those obtained
by MCRG blocking [2] [AB(6.0) = 0.35 + 0.02 and
0.34 + 0.02, AB(6.3)=0.43 + 0.03] a new estimate
of the systematical errors 1s obtained.

The expectation values quoted in table 1 can be
used to determune the potential energy of a pair
of static quark-antiquark sources. The function

Vr(R)=—In[{W(R,T))/(W(R,T—1))] (2)
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Table 1
Wilson-loop expectation values at =60 and 6 3

Loops Wilson-loop expectation values

1 J B=60 B=63

1 1 0593617(94) 0622487(52)
1 2 0383437(147) 0 421953(86)
1 3 0252418(158) 0291501(109)
1 4 0166949(145) 0202325(111)
1 5 0110532(125) 0 140607(101)
1 6 0073194(101) 0097755(84)
1 7 0048475(81) 0 067983(66)
1 8 0 032090(65) 0047289(57)
2 2 0189867(152) 0229388(103)
2 3 0101181(128) 0133662(100)
2 4 0 055074(98) 0 079470(76)
2 5 0 030188(69) 0047575(58)
2 6 0016592(44) 0028551(42)
2 7 0009120(27) 0017153(30)
2 8 0 005010(18) 0010312(21)
3 3 0046832(101) 0070118(87)
3 4 0022677(71) 0038354(67)
3 5 0011151(43) 0021284(48)
3 6 0005518(28) 0011882(34)
3 7 0002733(16) 0.006648(22)
3 8 0001353(9) 0003733(14)
4 4 0 010031(52) 0019758(51)
4 5 0004547(28) 0010413(38)
4 6 0002084(18) 0 005546(24)
4 7 0 000961(10) 0002970(15)
4 8 0000444(5) 0001593(9)

5 5 0001926(15) 0005253(29)
5 6 0 000825(9) 0002692(19)
5 7 0 000356(5) 0001390(10)
5 8 0 000154(3) 0 000720(6)

6 6 0000334(7) 0001334(13)
6 7 0 000136(4) 0 000667(7)

6 8 0 000055(2) 0 000336(5)

7 7 0000052(2) 0 000326(5)

7 8 0 000020(1) 0 000158(3)

8 8 0 000007(1) 0000074(2)

gives an upper bound for the true potential energy
V(R)=limy_, V+(R).

The corrections which are due to excited states
lying above the q—q ground state, are expected to
decay exponentially in 7. The leading correction
can be parametrized as

Vy(R)=V(R)+ae T (3)
Taking three subsequent values Vr _,(R),

Vr,-1(R) and V7 (R), the three unknown parame-
ters of eq. (3) are determuined. By increasing T;, up
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Table 2
One-loop improved ratio results Ratios, whose AB prediction
contains a statistical error excegding the error cut are excluded
from the analysis AB,,,,(ABmax ) g1ves the smallest (largest)
matching value 1n the set surviving the statistical error cut

PHYSICS LETTERS

number of
statistical  contnbuting
B error cut  ratios average A OB, ABma
60 005 4455 0356 0334 0389
003 2253 0356 0343 0377
63 005 4113 0447 0434 0463
003 2201 0449 0435 0463

t0 Ty max = 7 (T = 8 is strongly contaminated by
finite size errors) the consistency of the fit can be
checked. We found greater consistency this way
than with other methods, e.g. fitting V(R) to a
form linear in 1/7(T — 1). The method used to
extrapolate in T was discussed and advocated 1n
ref. [23]. Our prediction of the potential is plotted
in figs. 1 and 2 at 8 = 6.0 and 6.3 respectively. The
systematical errors from the T; dependence are
within the statistical errors shown.

The larger-distance part of the potential in figs.
1 and 2 is not linear in R. Its behaviour 1s
consistent with the form cR + ¢’ /R + const. for
large R, as is expected for a fluctuating flux tube
[24]. The errors are too large, however, to allow a
sensible three-parameter x? fit.

Assurung that the long-distance part of the
potential contains a — %#/R term [24] and
subtracting this piece from the potential, the
points R > 2 are consistent with a linear fit giving
0%a=022+0.02, B=60,

6% =015+002, B=63. (4)
The numbers in eq. (4) give (taking 0!/% = 0.42
GeV) a(B8=6.0)=0.10 + 0.01 fm and a(B8 =6.3)
= 0.07 £ 0.01 fm. Our 16* lattice corresponds to

a periodic box of size ~ (1.6 fm)* and ~ (1.0 fm)*
at B = 6.0 and 6.3 respectively. Asymptotic scaling
predicts a(6.3)/a(6.0) = 0.71, which is consistent
with eq. (4). Using the one-loop formula for Al
we obtain

0,1/2 — (94 + 9)Alatt’
01/2 = (90 + 12)A]a",

B=6.0,
B=63. (5)
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Fig 2 The potential at §=63
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We should emphasize again that these predictions
were obtained by assumung that the long-distance
part of the potential contains a — 57 /R term
Our data 1s consistent with this assumption but
cannot really confirm 1t. Indeed 1t should be noted
that the alternative interpretation of a 1/R term
as a perturbative Coulomb effect [6] 1s also
consistent and leads to a numencally similar
coefficient.

We thank the NIKHEF-H for providing time
on the Cyber 205 computer m Amsterdam and
W.M. van Leeuwen for his help with this machine
This work was supported in part by SERC grants
NG 11849 and NG 14703.

References

[1] A Hasenfratz, P Hasenfratz, U Heller and F Karsch,
Phys Lett 143B (1984) 193

[2} KC Bowler, A Hasenfratz, P Hasenfratz, U Heller,

F Karsch, RD Kenway, H Meyer-Ortmanns, I
Montvay, G S Pawley and D J Wallace, CERN prepnnt
TH 3952 (1984), Nucl Phys B257 [FS14] (1985) 155

[3] R Gupta and A Patel, Caltech, preprint CALT-68-1142
(1984,

R Gupta, G Guralnik, A Patel, T Warnock and
C Zemach, Caltech prepnnt CALT-68-1143 (1984)

[4] AD Kennedy,J Kuti, S Meyer and BJ Pendleton, Phys
Rev Lett 54 (1985) 87, Santa Barbara prepnint NSF-ITP-
85-11 (1985)

[5] F Gutbrod, P Hasenfratz, Z Kunszt and I Montvay,
Phys Lett 128B (1983) 415,

370

PHYSCIS LETTERS

28 November 1985

A Hasenfratz, P Hasenfratz, U Heller and F Karsch,
Z Phys C25 (1984) 191
[6] D Barkai, KJM Monarty and C Rebb, Phys Rev D30
(1984) 1293
[7]1 T Stack, Phys Rev D29 (1984) 1213
[8] S Otto and J D Stack, Phys Rev Lett 52 (1984) 2328,
53 (1984) 1028 (E)
[9] Ph de Forcrand, unpublished,
see also M Flensburg and C Peterson, Phys Lett 153B
(1985) 412
[10] Ph de Forcrand and C Roisnel Phys Lett 137B (1984)
213
[11] Ph de Forcrand, G Schierholz, H Schneider and
M Teper, DESY prepnint 84-116 (1984)
[12] A Sommer and K Schlling, Z Phys C, to be published
[13] T Celik,J Engels and H Satz, Phys Lett 129B (1983)
323,
J Kogut, M Stone, HW Wyld, WR Gibbs,
J Shigemitsu, S H Shenker and D K Sinclair, Phys Rev
Lett 5D (1983) 393,
F Karsch and R Petronzio, Phys Lett 139B (1984) 403
[14] AD Kennedy,J Kuti, S Meyer and BJ Pendleton, Phys
Rev Lett 54 (1985) 87
[15] A Hasenfratz, P Hasenfratz, U Heller and F Karsch,
Phys Lett 140B (1984) 76
[16] R H Swendsen, Phys Rev Lett 52 (1984) 2321
{17] SK Ma, Phys Rev Lett 37 (1976) 461,
R H Swendsen, Phys Rev Lett 42 (1979) 859
[18] K G Wilson, 1n Recent developments 1n gauge theones,
eds G ’t Hooft et al (Plenum, New York, 1980)
[19] M Creutz, Phys Rev D23 (1981) 1815,
RWB Ardill, M Creutz and KJ M Monarty, Phys Rev
D27 (1983) 1956
[20] G Pansi, R Petronzio and F Rapuano, Phys Lett 128B
(1983) 418
[21] See A Hasenfratz and P Hasenfratz, comps , Wilson loop
expectation values 1n SU(3) (1984)
[22] F Karsch and U Heller, Nucl Phys B251 [FS13](1985)
254
[23] N A Campbell, C Michael and P E L Rakow, Phys Lett
139B (1984) 288
[24] M Luscher Nucl Phys B180 (1981) 317



