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The quantitative behaviour of  the fl-function of the standard SU(3) Wilson action is studied with the help of a systematically 
optimized Monte Carlo Renormalization Group method. 

1. Introduction. Classical Yang-Mil ls  theory 
does not have a scale. A dimensionful parameter  
enters the theory only at the quantum level via the 
regularization-renormalization procedure. In the 
case of the lattice regularization this parameter  is 
the lattice unit a (or the cut-off ,r/a).  

The cut-off is an unphysical parameter  and the 
physical predictions should be independent of it. 
Having another (unphysical) parameter  in the the- 
ory - the bare coupling g - it can always be 
arranged that a specific quantity say, the mass 
gap, becomes independent of the cut-off. For this 
purpose the function g - - -g (a )  should be chosen 
appropriately. However, for a generic value of the 
cut-off the function g(a)  depends on the specific 
quantity which is kept fixed - there is no way to 
keep all the physical predictions unchanged as the 
cut-off is changed. It is only in the limit of large 
cut-offs (in the continuum limit) that a unique 
function g(a)  or a unique fl-function f l ( g ) =  
- a d g ( a ) / d a  can be defined. The .fl-function de- 
scribes the way the bare coupling should be tuned 
in order to keep all the physical predictions inde- 
pendent of the cut-off in the continuum limit. The 
fl-function is unique in this sense but not univer- 
sal: it is different in different (lattice) formula- 
tions. In particular, the fl-function depends on the 
lattice action chosen. Only the two leading terms 

i On  leave of absence from the Central Research Institute for 
Physics, Budapest, Hungary 

in its perturbative expansion are universal: 

f l ( g )  = - b o g  3 -  bag 5 + O(g7) ,  

with 

b 0 -  11N/(48~r2), b 1 = ~ ( N / 1 6 ~ r 2 )  2. 

For  large cut-offs (small bare coupling values) 

(1) 

these terms dominate and define a universal scal- 
ing behaviour, "asymptot ic  scaling". Outside this 
region, but still in the continuum limit, the scaling 
behaviour is described by the full, and in general, 
completely unknown fl-function. 

It  is basically important to reveal and under- 
stand the quantitative structure of the fl-function 
- a fact which is underlined by recent, sometimes 
confusing, developments in both SU(2) and SU(3) 
gauge theories with the standard Wilson action. 

The calculation of the glueball mass, string 
tension, etc., at different coupling values also gives 
the fl-function immediately. However, this is an 
extremely - and unnecessarily - difficult way to 
proceed. These quantities reflect long-distance 
properties even in the continuum. Their analysis, 
at least at the present state of the art, always 
includes subjective elements. Additionally, nobody 
is going to measure these quantities at large corre- 
lation lengths (say, at ~ - O(100), or larger) in the 
near future. Monte Carlo Renormalization Group 
(MCRG) methods seem to be much more promis- 
ing. 
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2. The ratio method In a recent paper  we advoc- 
ated two different M C R G  techniques which 
worked remarkably well in d = 2, asymptotically 
free spin models [1] ,1. .Both methods have the 
property that a systematic optimization method 
can be performed without changing the action. In 
this paper the SU(3) r - funct ion will be studied 
with the help of the " improved ratio method".  

The starting point of this method is simple and 
has already been discussed by Creutz earlier [3]: 
those ratios of Wilson loop expectation values 
from which the self mass (and corner) contribu- 
tions cancel, satisfy the homogeneous renormaliza- 
tion group (RG) equation and are candidates for 
the study of the r-function. There are two prob- 
lems, however. First, ratios composed of small 
loops are contaminated by lattice artifacts result- 
ing in a systematic error which increases linearly 
with f l ( - - 6 / g  2) [1]. Second, the matching predic- 
tion is distorted by finite size effects if the correla- 
tion length (as defined in an infinite volume sys- 
tem) is comparable or larger than the lattice size. 

The improved ratio method consists of the fol- 
lowing steps. First the basic ratios are formed as 

f ( i l , i 2 ; i3 , i4 )  = 

i 1 + i 2 = i 3 + i a , 

W ( i l , i z )  

W( i3 , i4 )  ' 

g( i l , i2;ia,i  4;is, i6;i7,is) 
W ( i l , i 2 ) W ( i 3 , i 4 )  

W ( i  5 , i 6 ) w ( i 7 , i 8 ) '  

il, + i 2 + i 3 + i 4 = i 5 + i 6 + i v + i8, (2) 

and so on. Here W(il , i2)  is the expectation value 
of a planar Wilson loop of size ia,i 2. Of course, 
non-planar loops can be included as well. Apart  
f rom lattice artifacts, these functions satisfy the 
R G  equation: 

f (2 i l , 2 i2 ;2 i3 ,2 i , ; f l ,L  ) = f (  i l , i 2 ; i3 , i4 ; f l ' ,L /2 ) ,  

(3) 

and a similar equation for the other functions. 
Here fl - / 3 '  = Afl(fl) is the change of the coupling 
constant required to increase the cut-off (or the 

,1 One of the methods discussed in this paper (optimization of 
the block transformation for a given fixed action) has also 
been suggested by Swendsen [2]. 

correlation length) by a factor of 2. The function 
A f t ( r )  is directly related to the integral of the 
inverse of the r - funct ion and carries the same 
information: 

f #  dx  = 2 In 2 

--A#x3/2flf~n¢i((6/X)'/2 ) V'6 (4) 

In eq. (3) the lattice volume is scaled together 
with the correlation length - a standard way to 
reduce the finite size effects in R G  studies. 

Any linear combination of the functions f ,  g . . . .  
defined in eq. (2) satisfies eq. (3) also. In the 
improved ratio method, the mixing coefficients are 
determined by the requirement of cancelling the 
lattice artifact corrections to eq. (3) systematically 
order by order in perturbation theory. At the tree 
level, the linear combination of two basic ratios is 
formed and the mixing coefficient is determined 
by requiring eq. (3) to be correct on the tree level 
(i.e. by requiring Aft = 0; there is no scale gener- 
ated, there is no shift in fl at the tree level). At the 
one-loop level the linear combination of three 
basic ratios is formed, and the two mixing coeffi- 
cients are determined by requiring Aft = 
132 In 2/(16¢r 2) ----- 0.579.. .  in eq. (3), which is the 
exact one-loop result (see eq. (4)), and so on. This 
procedure systematically eliminates the lattice 
artifacts in perturbation theory, which are relevant 
at large correlation lengths. Whether at moderate 
couplings non-perturbative lattice effects become 
important can be judged only through the con- 
sistency of the final results. 

A large number of systematically improved, 
mixed ratios can be obtained this way. These 
mixed ratios are then used in the actual MC 
analysis to determine A f t ( r )  via an equation anal- 
ogous to eq. (3) written for the mixed ratios. 

3. Numerical analysis. The ratio method requires 
a good quality measurement of different Wilson 
loop expectation values at fl and fl '  on a lattice L 4 
and ( L / 2 )  4 respectively. Of course, fl '  is not known 
a priori. (The purpose of the calculation is just to 
determine it.) In practice, MC measurements are 
done at several approximately chosen fl '  values 
and a linear extrapolation between adjacent values 
of fl '  is used. 
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A good statistics measurement  of all the p lanar  
Wilson loop expectation values up to a size 8 x 8 
at fl values 5.8, 6.0 . . . . .  6.6 on a 16 3 × 32 lattice 
was published recently by Barkai et al. [4]. By 
combin ing  their numbers  with our  measurement  at 
fl = 5.2, 5.4, 5.7 and  5.85, 6.0 on lattices half as 
large, we studied the f l - funct ion (Afl(f l ))  in this 
coupl ing constant  region. 

In  ref. [4] rectangular  loops with both  sides in 
the spatial direction were measured only. The 
number s  can be thought  of as being obta ined  on a 
164 lattice effectively. The Wilson loop values we 
obta ined  on the corresponding 84 lattices are given 
in table 1. At  fl = 6.0 all the Wilson loop values 
are larger on the 84 lattice than on the large lattice 
of ref. [4]. This is more than a 3 s tandard  deviat ion 
effect. This finite size effect is expected to become 
smaller as fl is decreased. By compar ing  our results 
at fl = 5.7 with those obta ined  on a 164 lattice 
earlier [6] we conclude that here the size depen- 

dence is less than or of the order of 10 -4 for the 
Wilson loops considered. For  this reason we 
included the fl = 5.6 results of ref. [4] in  our  analy-  
sis and did not  recalculate these loops on the 84 

lattice. 
Using the 10 different Wilson loops (1 x 1, 

1 × 2 . . . . .  4 × 4) we formed 84 basic ratios of the 
type defined in eq. (2). (On the large lattice one 
forms the analogous ratios from 10 loops of even 
size: 2 × 2, 2 × 4 . . . . .  8 × 8.) We used only those 
ratios where the total area of the loops in the 
numera to r  is different from (in our  no ta t ion  larger 
than)  those in  the denominator .  (Those ratios where 
the area in the numera to r  and  denomina to r  is 
equal change so slowly with fl that our  statistics is 
no t  enough to use them in the matching condi-  
tions.) 

The de terminat ion  of the tree level mixing coef- 
ficients requires a rather trivial, tree level per- 
turbat ive calculation. The one-loop calculat ion 

Table 1 
Wilson loop expectation values W( I, J) measured on 84 lattices for different values of fl by using the multihit method of ref. [5]. The 
loops were measured after every tenth pseudo heatbath sweep. The errors quoted in brackets are statistical errors corrected by the 
observed time correlations. The last row specifies the number of configurations analyzed at each value of/~. 

I J fl 

5.2 5.4 5.7 5.85 6.0 

1 1 1.29520 1.41613 1.64745 1.72404 1.78351 
(119) (179) (143) (81) (72) 

1 2 0.57341 0.69686 0.97290 1.07557 1.15480 
(185) (228) (224) (131) (105) 

1 3 0.25610 0.34488 0.58446 0.68399 0.76241 
(153) (177) (243) (163) (118) 

1 4 0.11357 0.17103 0.35241 0.43735 0.50570 
(98) (117) (206) (164) (107) 

2 2 0.11735 0.18169 0.39431 0.49354 0.57499 
(159) (215) (304) (191) (152) 

2 3 0.02464 0.04903 0.17084 0 . 2 ~  0.30727 
(80) (182) (217) (163) (211) 

2 4 0.00529 0.01404 0.07630 0.12388 0.16910 
(48) (88) (138) (123) (194) 

3 3 0.00233 0.00732 0.05725 0.10166 0.14545 
(80) (71) (136) (134) (213) 

3 4 0.00058 0.0092 0.02117 0 . 0 ~  0.07222 
(34) (41) (63) (90) (132) 

4 4 - - 0.00615 0.01620 0.03344 
- - ( 4 2 )  ( 8 1 )  (112) 

Configurations 32 32 64 48 64 
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Table 2 
Illustration of the improvement procedure for three basic ratios. Tree level and one-loop improved ratios are formed from the three 
basic ratios R1, R 2 and R 3. The mixing leads to a systematic improvement of the weak coupling behaviour of the observables 
considered. The last column shows the shift Aft for the listed ratios obtained in the weak coupling limit. 

Ratios Weak coupling Aft 

basic ratios R 1 = 14/(3,3)/W(2,4) - 0.158fl 
R 2 = W(1,1 ) W(3,3)/I4:(1,2) W(2,3) - 0.057fl 
R 3 = 14:(1,2)W(2,3)/14"(1,3) W(1,3) 0.046fl 

tree level improved ratios R13 = R x +0.688298 R3 0.582 
R23  = R 2 + 0 . 5 2 3 6 5 9  R 3 0 . 4 9 2  

one-loop improved ratios R123 = R 1 + 0.027917 R 2 + 0.702917 R 3 0.579 

w h i c h  is n e c e s s a r y  to  o b t a i n  t h e  o n e - l o o p  i m p r o v e d  

r a t i o s  h a s  b e e n  c o m p l e t e d  r e c e n t l y  [7,8]. T h e  

a g r e e m e n t  b e t w e e n  t he  t w o  i n d e p e n d e n t  c a l c u l a -  

t i o n s  (ref.  [7] a n d  ref .  [8]) m a k e s  i t  p r o b a b l e  t h a t  

t h e  r e su l t s  a re  f ree  o f  a l g e b r a i c  e r ro r s .  A l t h o u g h  

t h e  " z e r o  m o d e  p r o b l e m "  is n o t  t r e a t e d  c o r r e c t l y  

i n  t h e s e  p a p e r s  - i t  is a p r o b l e m  w h i c h  a w a i t s  

s o l u t i o n  - t he  e r r o r  i n d u c e d  b y  t h a t  goes  to  z e r o  

as  1 / L  4, a n d  is e x p e c t e d  to  b e  v e r y  s m a l l  ,2 

A h u g e  n u m b e r  of  d i f f e r e n t ,  t ree  level  a n d  

o n e - l o o p  i m p r o v e d  r a t i o s  c a n  b e  f o r m e d .  W e  

i n t r o d u c e d  s o m e  r e a s o n a b l e  cu t s  to  r e d u c e  t h i s  se t  

o f  o b s e r v a b l e s :  t h e  m i x i n g  c o e f f i c i e n t s  w e r e  

r e q u i r e d  to  b e  p o s i t i v e  ( to  a s s u r e  m o n o t o n i c  be -  

h a v i o u r  in  f l )  a n d  o f  t he  o r d e r  o f  1 ( to  a v o i d  t he  

d o m i n a n c e  o f  c e r t a i n  b a s i c  r a t i o s  in  t he  m i x i n g  

p r o c e d u r e ) .  T h i s  w a y  we u s e d  O ( 1 0 0 0 )  t r ee  leve l  

i m p r o v e d  a n d  0 ( 6 0 0 0 )  o n e - l o o p  i m p r o v e d  r a t i o s  

i n  t h e  ana lys i s .  T h i s  m i x i n g  p r o c e d u r e  is i l l u s t r a t e d  

i n  t a b l e  2. 

4. Results. F o r  t he  f i na l  a n a l y s i s  we c o n s i d e r e d  

t h o s e  s u b s e t s  o f  r a t i o s  w h i c h  g a v e  a m a t c h i n g  

p r e d i c t i o n  w i t h  a r e a s o n a b l y  s m a l l  s t a t i s t i c a l  e r ro r .  

T h e  e r r o r  cu t s  o f  t a b l e  3 we re  c h o s e n  in  s u c h  a 

w a y  as  to  le t  t he  m a t c h i n g  p r e d i c t i o n  o f  a l a rge  

n u m b e r  o f  r a t i o s  c o n t r i b u t e  to  t h e  f ina l ,  a v e r a g e  

Afl(f l) .  T o  c h e c k  t h a t  th i s  f i na l  p r e d i c t i o n  is n o t  

b i a s e d  b y  t he  o v e r w h e l m i n g  c o n t r i b u t i o n  o f  a few 

$ 2 A  similar zero mode problem occurs in the non-linear o 
model as discussed recently in ref. [9]. In this case one can 
check explicitly that the error induced by the naive treatment 
of the zero modes goes to zero rapidly when the lattice 
volume is increased. 

b a s i c  ra t ios ,  we  a l so  i n t r o d u c e d  a c u t  o n  t h e  n u m -  

b e r  o f  t i m e s  a g i v e n  b a s i c  r a t i o  is a l l o w e d  to  

a p p e a r .  T a b l e  3 s h o w s  t h a t  t h e  r e s u l t  is  i n s e n s i t i v e  

to  th i s  cut .  T h e  s t a b i l i t y  o f  t h e  p r e d i c t i o n s  is 

r e m a r k a b l e .  F o r  i n s t a n c e  a t  fl  = 6.4, 1541 o n e - l o o p  

i m p r o v e d  r a t i o s  g a v e  a m a t c h i n g  p r e d i c t i o n  

w i t h  a s t a t i s t i c a l  e r r o r  less  t h a n  0.075,  a n d  al l  

o f  t h e  1541 m a t c h i n g  v a l u e s  l ie in  t he  r a n g e  

Af l (6 .4 )c (0 .472 ,0 .515) [  O f  course ,  t he  n u m b e r s  a re  

Table 3 
The average shift Afl(fl) obtained from one-loop improved 
ratios. Shown are the results for two different cuts on the error 
of the matching predictions of an individual ratio (error cut), 
c I = 0.075(0.1) and c 2 = 0.1(0.15) for fl = 6.6, 6.4, 6.2 (6.0). The 
third and fifth columns specify the number of ratios analyzed 
in each case. Also given are the results for different cuts on the 
number of times a basic ratio is allowed to contribute (ratio 
cut). 

fl Error cut Ratio cut 

C 1 C 2 

Aft ratios Aft ratios 

6.6 0,558 2780 0.551 4461 oo 
6.4 0.492 1541 0.490 3020 
6.2 0.462 773 0.443 1815 
6.0 0.324 212 0.323 1230 

6.6 0.559 493 0.554 539 50 
6.4 0.492 414 0.490 487 
6.2 0.460 277 0.438 429 
6.0 0.323 170 0.335 394 

6.6 0.557 99 0.555 114 10 
6.4 0.492 94 0.491 96 
6.2 0.460 61 0.435 96 
6.0 0.328 50 0.351 90 
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correlated statistically - they are all composed  of  
the same 10 + 10 Wilson loop values at a given fl, 
but  the small fluctuations suggest that the sys- 
tematic errors are under  control.  

In  table 4 we summarize our  predictions ob- 
tained for the basic, tree level and one-loop im- 
proved ratios. Two different error estimates are 
quoted there. The first error estimate is the aver- 
age statistical error of  the individual matching 
values contr ibut ing to the average Afl(fl).  This is 
presumably  an overestimate, since averaging over 
many  ratio predictions should also improve the 
statistics. The error given in the brackets is the 
average fluctuation of  the matching predictions. 
This is presumably an underest imate of  the real 
error. Having only the final numbers  of  the mea- 
surement of  ref. [4], we could not  do more reliable 
error estimates. The average fluctuation of  the 
matching predictions obtained from different basic 
ratios is 3 -5  times larger than those of  the one-loop 
improved ratios - at least at the larger fl values. 
Around  fl = 6.0 the perturbative improvement  does 
not  seem to be effective any more. 

The available information on Afl(fl)  is sum- 
marized in fig. 1. The points related to T c were 
deduced f rom the results of  refs. [10] and [11], 
while those related to the string tension are taken 
f rom refs. [6] and [4]. We did not  include the string 
tension result of ref. [4] at fl = 6.6 since even a 
163 × 32 lattice is too small at this large value of  fl 
to extract the asymptot ic  slope of the static 
qua rk -an t iqua rk  potential.  Presumably the string 
tension extracted at fl = 6.4 is also influenced by 

Table 4 
Predictions for the average shift Afl(fl)  obtained from basic, 
tree level and one-loop improved ratios. The first error quoted 
is the average statistical error of the ratios analyzed, while the 
error in brackets gives the average fluctuations of the matching 
predictions. At fl = 5.8 only the basic ratios could be analyzed 
with reasonable statistical accuracy. 

fl One-loop mixing Tree level mixing Basic ratios 

6.6 0.56 + 0.06(0.02) 0.55 +0.07(0.02) 0.57 + 0.05(0.05) 
6.4 0.49+0.06(0.01) 0.47+0.07(0.02) 0.50+0.05(0.05) 
6.2 0.46 + 0.06(0.02) 0.42 + 0.08(0.03) 0.45 + 0.04(0.05) 
6.0 0.33 __+ 0.07(0.04) 0.34 + 0.07(0.05) 0.38 __+ 0.06(0.06) 
5.8 - - 0.41+0.09(0.07) 

0.5 

o l - loop  improved 
rat io test 

0.1 × String tension 

• Tc 

I ~ I ~ I , 
5.6 6.0 6.4 I'i 

Fig. 1. The average shift Aft as a function of fl obtained from 
the analysis of one-loop improved ratios (squares). (At fl = 5.8 
the basic ratios are used.) The error bars refer to the statistical 
error (thin bars) and the average fluctuations (thick bars) 
quoted in table 4. Also shown are the predictions for Aft 
obtained from the string tension (crosses) and the critical 
temperature (full points). 

finite size effects ,3. There is a recent high statis- 
tics measurement  for T¢ at N t = 2 ,  4, 6 and 8 
which indicates a very similar pat tern to that 
which we found in this paper  [12]. Some informa- 
t ion on Afl(fl) also exists f rom measurements  of  
fermionic observables ( ( ~ k ) ,  rap) in the quenched 
approximat ion [13], which shows the same qualita- 
tive behaviour. However,  the statistics for these 
observables is quite poor.  

Our  prediction 

Aft(6.6) = 0.56 + 0.06 (5) 

shows only a slight deviation from asymptot ic  
scaling for fl >~ 6.0 (see eq. (4)). What  we consider 

*3Measuring the long-distance part of the potential is a difficult 
task and at the present state of the art the extraction of a 
string tension is not free of subjective elements, as is dis- 
cussed in detail in ref. [4]. 
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m o s t  r e l e v a n t ,  h o w e v e r ,  is  t h a t  a q u a n t i t a t i v e  u n -  

d e r s t a n d i n g  of  t h e  r a t h e r  n o n - t r i v i a l  w a y  t he  

s t a n d a r d  a c t i o n  a p p r o a c h e s  c o n t i n u u m  s e e m s  to  

b e  e m e r g i n g .  T h i s  c l ea r ly  is n o t  in  a g r e e m e n t  w i t h  

t h e  p r e s e n t  s t a t u s  o f  g l u e b a l l  m a s s  c a l c u l a t i o n s  

[14] w h i c h  i n d i c a t e  a s y m p t o t i c  s ca l i ng  a l r e a d y  fo r  

f l >  5.1. 

W e  a re  i n d e b t e d  to  J u l i u s  K u t i  e t  al. fo r  c o m -  

m u n i c a t i n g  t h e i r  r e su l t s  p r i o r  to  p u b l i c a t i o n .  
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