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The critical parameters of the SU(3) deconfiiement phase transition are determined on lattices of sizes 123 X 5 and 
163 X 6 points which allows an analysis close to the continuum limit. We find a drastic inprovement in the scaling behavi- 
our of the critical temperature measured in units of AL: on the 163 x 6 lattice we find a value of Tc/AL = 65.5 f 1 at p 
= 5.93 f 0.01. 

1. Introduction. Strong evidence has been found 
for the existence of a first order deconfining phase 
transition in pure gauge lattice QCD [l-3] . In order 
to translate the values for the critical temperature 
and the latent heat from the lattice units to the phys- 
ical ones, one needs an independent measurement 
of a physical dimensionful quantity on the lattice. 

Typically, one takes the value of the slope of a 
linearly rising q-q potential, i.e. the string tension. 

In principle the critical temperature (r,) and the 
string tension can be measured at different values of 
the coupling constant (/3 = 6/g2) provided that the 
measurement is performed in a region of /3 where 

both quantities follow the scaling law implied by the 
asymptotic freedom: 

aAL = exp r-6 n28 t j+ In (6 v2P)] . (1) 

While the old measurement of the string tension 
showed a rough agreement with such a law [4], the 
latest more precise results show drastic deviations for 
values of fl between fl= 5.4 and /3 = 6 [2,3 1. There- 
fore, in order to take advantage from the knowledge 
of the string tension closer to the continuum limit, 
one has to push the measurements of T, to the cor- 
responding values of /3. Actually, the values of T, at p 
larger than 5.7 may serve for a more accurate analysis 
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of the scaling violations themselves. 
The analysis of the deconfinement transition at 

large fl involves the use of lattices with a sizeable time 
direction: in this paper we present our results for lat- 
tices of 123 X 5 and 163 X 6 points. We will discuss 
the implications of our results for the thermodynam- 
ics of those systems and their relevance for the anal- 
ysis of the scaling behaviour of lattice QCD. 

2. Gluon thermodynamics. The dynamics of lat- 
tice QCD at finite temperature can be obtained from 
the following partition function: 

Zp =jn dUx @exp 
x,c( ’ 

(-0?(1 -?,ReTrUp)), (2) 

where the U, ~ are the usual link variables on an 
asymmetric lattice of size Nz X NT [7] and Up is the 
product of links around a plaquette. The temperature 
of the system is related to the finite extent of the 
system in the time direction: 

Ta = l/NT, (3) 

where a is the lattice spacing. 
Characteristic of a first order phase transition is 

the presence of discontinuities in thermodynamical 
quantities as the energy density which is related to the 
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existence of a latent heat. At the critical temperature 
two different phases can coexist and they can be mon- 

itored by the value of the natural order parameter of 
the transition, the expectation value of the thermal 
loop defined as: 

(4) 

which is related to the free energy Fq of a static quark: 

L -exp (-Fq/T). (5) 

In the confined phase one expects L = 0, while a 
nonzero value is expected in the deconfined one: for 
a first order phase transition L has a discontinuity at 
the transition point. Similarly, the discontinuity in 
the energy density leads to a latent heat Ae which 
can be expressed in terms of the space-like (P,) and 
time-like (P,) average plaquette *l . In fact in the most 
general case where different coupling constants are 
defined for the space and the time plaquettes, the 
energy density reads +2 : 

a4 = 18 [g-2(P, - P,) + c;(P - P,) + c;(P - PJ] , 

(6) 
where CL, cb are related to the derivative of the cou- 
plings with respect to the lattice spacing in the time 

direction and P is the corresponding average plaquette 
for a symmetric lattice. The latent heat is given by 
the difference of the energy density in the two phases. 

For an accurate estimate of the latent heat Ae one 

would need the knowledge of the space-like and the 
time-like plaquettes measured at the critical tempera- 
ture both in the confined and in the deconfined phase. 
Given the large amount of computer time required 
by the analysis of the large lattices we are considering, 
we could not search for the value of the critical tem- 
perature defined through the value of /3 where the 
two phases coexist. For a fixed lattice size we scan 
a discrete set of values of /3 which allows us to estab- 
lish a small window where the phase transition occurs. 

As a consequence, our estimate of the latent heat 
will be only an approximate one : 

*’ A plaquette is said to be time-like if it contains two time- 
like links and space-like otherwise. 

*’ For details on the finite temperature formalism on euclide- 
an see ref. [7]. 

Ae/T,4 =3NJ+(P,+-P;)-fl-(Pi -P;)], (7) 

where the plus (minus) indicates the value taken at 
the larger (smaller) p. The actual size of the terms re- 
lated to the coefficients ck and c: in eq. (6) is known 
to be of the order of ten percent what makes our ap- 
proximate estimate of eq. (7) rather good. 

In order to get a reasonable precision on the value 

of fl where the transition occurs we scanned with 

steps of Afl = 0.03 on the 123 X 5 lattice and of Afi 
= 0.02 on the 163 X 6 which roughly corresponds to 
a temperature window of 2A, units in both cases. 
We give the values of the real part of the thermal loop 
modulo a Z(3) rotation averaged over fifty sweeps at 
the values of fl which determine the “critical window” 
in fig. 1 for the 123 X 5 lattice and in fig. 2 to the 
163 X 6: in total we run for 2000 sweeps at each fl 
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Fig. 1. The real part of the thermal Wilson line on a 1 23 X 5 
Lattice versus the number of Monte Carlo sweeps for p = 5.82 
(solid curve) and p = 5.79 (broken curve). 
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Fig. 2. The real part of the thermal Wilson line on a 163 X 6 
lattice versus the number of Monte Carlo sweeps for p = 5.94 
(solid curve) and p = 5.92 (broken curve). 
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Table 1 
Summary of Monte Carlo results for the average plaquette 
(P), the difference of space- and time-like plaquettes (AP) 
and the real part of the thermal Wilson line [Re(L)]. The 
number in brackets indicates the error in the last digit. 

P NT 

5.19 5 
5.82 5 
5.92 6 
5.94 6 

- 

P AP IQ(L) 

0.4336(3) 0.00008(6) 0.11(2) 
0.4274(l) 0.00039(6) 0.32(2) 
0.4155(2) O.OOOOl(4) 0.06(2) 
0.41250(8) 0.00014(4) 0.238(8) 

value. The values of the plaquette, of the’ difference 
between space and time plaquettes and of Re(L) aver- 
aged over the last 1500 sweeps for N, = 5 and over 

the last 1000 sweeps for N, = 6 are reported in ta- 
ble 1. The critical temperature can be calculated in 
terms of AL units assuming the validity of eq. (1); we 
get: 

Tc/AL = 68.5 f 1 (N, = 5), 

T&l, = 65.5 f 1 (NT = 6). (8) 

The corresponding values for the latent heat are: 

AE/T~ = 3.1 f 0.4 (N, = 5), 

Ae]T; = 2.7 + 0.7 (N, = 6), (9) 

where a correction factor has been included because 
of the finite size of our lattice [S] More explicitely 
the deviation from the behaviour of an ideal gas in 
an infinite volume is calculated to amount to a factor 
1.37 and 1.23 for lattice sizes of 123 X 5 and 163 
X 6 respectively: one divides by these factors the naive 
values which can be obtained from the table 1 to- 

gether with eq. (6) to obtain the values reported in 
eq. (8). The comparison with preexisting results is 
summarized in the first four columns of table 2: the 
fact that the dimensionless ratio Tc/AL does not stay 
constant confirms that previous calculations were not 
performed in a region where the asymptotic scaling 
of eq. (1) is valid. Most of the violations occur be- 
tween p = 5.5 and fl= 5.8 while our results between 
5.8 and 5.9 seem to indicate an approach to the scaling 
regime. As far as the values of AE/(T,)~ are concern- 
ed, one should keep in mind that, besides the statis- 
tical errors quoted in eqs. (8), one has also an addi- 
tional systematic error coming from the finite lattice 
size which is not accounted by the correction factor 

that we calculated. For, on a lattice with finite space 
dimensions the sharpness of the transition between 

the two phases is smoothed because of phase flips 
even only slightly below or above the critical temper- 
ature, We believe that this effect tends to reduce the 
measured value of the latent heat with respect to the 
one obtained with infinite space dimensions. 

3. Scaling violations. The scaling violations for the 
string tension in units of AL follow a path similar to 
the one of the critical temperature: actually, some of 

the recent measurements at fi = 6 compared to the 
results at /I? = 5.4 and /3 = 5.7 indicate even larger devia- 
tions from the asymptotic scaling law eq. (1). This 
results in a variation of the ratio T,/u~/~ which, with 
the present data, ranges between 0.55 and 0.7 over 
the region from p = 5.5 to fl= 6. This corresponds to 
a variation of T, in physical units between 220 and 
280 MeV and of Ae between 1 and 2 GeV/fm3. A 
great source of uncertahity in these numbers comes 
from the determination of the string tension from 
Wilson loop expectation values. In particular, sublead- 

Table 2 
Critical Parameter of the deconfinement phase transition obtained on lattices with different extent in time direction (NT). The 
different entries are explained in the text. The data in column 2,3 and 4 for N, = 2, 3,4 are taken from T. Celik et al. quoted in 
ref. [3]. 

NT 

2 
3 
4 
5 
6 

6/g’ A/T,4 T&L TCIAeff TcIAeff 
- 

5.11 * 0.01 3.65 r 0.15 78 r 3 _ _ 

5.55 * 0.01 3.9 * 0.2 86+ 1 17.5 65 
5.70 + 0.01 3.7 + 0.5 76+ 1 18.6 63 
5.79 - 5.82 3.1 * 0.4 68.5 + 1 18.6 60 
5.92 - 5.94 2.7 f. 0.7 65.5 * 1 18.8 60 

I_~ - 
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ing terms in the behaviour of the q-q potential at 
medium distances may influence the extraction of 
the term which is linearly increasing. The determina- 
tion of the critical temperature seems to us affected 

by systematic errors which are under better control 
and allow for a cleaner analysis of scaling violations. 
These appear to be sufficiently small in the range be- 
tween fl= 5 8 and fl= 5.9 to be explained by the pres- 
ent estimates of the perturbative corrections of order 
l/b to the asymptotic behaviour of eq. (1) [9] ; those 
for 0 between 5.4 and 5.8 seem too large to support 

such an explanation. 
Indeed nonperturbative phenomena play an impor- 

tant role in the same fl region where they give rise to 
the peak in the plaquette-plaquette correlation. On 
the other hand, there is a kind of universal character 
in the pattern of scaling violations in units of A, 

which suggests that they can be simultaneously re- 
duced by a suitable redefinition of (3. A possible choice 
has been already used in the past for the nonlinear 

sigma model and consists in defining an effective /I 
in terms of its perturbative relation to the average 
plaquette [lo] : 

Peff = 2/(1 - 13 (Tr UP)). 00) 

With this definition the new /3 will follow the fluc- 
tuations of the average plaquette in the crossover re- 
gion. The new ratios in terms of A,, defined by the 
eq. (1) by replacing fl by /3eff are given in the fifth 
column of table 2. The scaling violations are now 
down to a perturbative size over the whole range of fl. 

A standard explanation of the peak of the pla- 
quette-plaquette correlation in the crossover region 
relies on the analysis of the phase structure of the 
theory in the enlarged coupling constant space which 
includes the coupling related to a term in the action 
containing the plaquette made of links in the adjoint 

representation @,). The behaviour in the crossover 
region is then explained as due to the influence of a 
first order phase transition line which ends near to 
the pa = 0 axis. Using a “universality” hypothesis for 
different lattice actions and some arguments based 
on the loop equations. Makeenko and Policarpov [ 111 
have found an effective fl which should reduce the 
scaling violations for the Wilson action. The scaling 
in this variable corresponds to the naive scaling of 
eq. (1) along a line in the (/3,/3,) plane which moves 
further away from the first order transition line with 
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respect to the /3, = 0 line. By using their variable we 
get the results shown in the last column of table 2. 
The calculation of ref. [ 1 l] can be further improved 

by the knowledge of higher order (l/N) corrections 
evaluated in ref. [ 121. 

The improvement found by using an effective fl 
value suggests that the naive scaling of eq. (1) might 
be more precocious if the simulations were perform- 

ed directly in the @,/3,) plane. However, the most 
important result for us remains the sizeable reduction 
of the scaling violations close to fi = 6 for the Wilson 

action. This strongly indicates that our calculations 
are sufficiently near the continuum limit to make us 
confident on the validity of our estimates of the crit- 
ical parameters of pure gauge lattice QCD. 

The updating procedure used for our Monte Carlo 
program was the heat bath method of Cabibbo and 
Marinari [ 131. The total amount of computer time 
spent was about 180 CPU hr on the CDC 87 5. 

The idea of studying the critical properties closer 

tc the continuum limit originated in a discussion with 
G. Parisi. We thank him and H. Satz for discussions. 
We thank the DD division at CERN and in particular 
Herbert Lipps for the great support given to us for 
the realisation of this calculation. 
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