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The practical application of MCRG requires the flow lines to reach the renormalized trajectory after a small number of 
blocking steps. It is suggested to use optimized block transformations in order to shift the fixed point and the renormalized 
trajectory closer to a given action. In asymptotically free theories, perturbation theory can be used to find the improved 
block transformations. Another MCRG method, the improved ratio method, is discussed also. The methods are tested on 
d = 2, asymptotically free spin models. 

Monte Carlo renormalization group (MCRG) is a 
powerful technique for the study o f  the critical prop- 
erties of  spin and gauge systems [ 1 - 5 ]  * 1. In this 
paper, improved MCRG methods will be discussed 
which, although they are more general, will be formu- 
lated in the specific context  o f  asymptotically free 
theories. The methods are tested here on d = 2 spin 
models, but  all the steps are immediately generalizable 
to d = 4 gauge theories ,2 

Consider an O(N) spin model  on a periodic,  square 
lattice. The part i t ion function is given by  the standard 
action 

2 

A(s)  = -/3 s ,  Sn+;, , 
~ = 1  

(1) 

a s  

z =fDs FI di(1 -Sn2)exp [ -A( s ) ]  . (2) 
n 

The basic quanti ty we are interested in is the/3- 
function o f  the theory.  This function describes the re- 

1 On leave of absence from the Central Research Institute 
for ,Physics, Budapest, Hungary. 

,1 A pedagogical discussion is also given in ref. [6]. 
,2 The results of this paper - together with some preliminary 

results for d -- 4 SU(3) gauge theory - have been presented 
at the Lattice Coordinating Meeting (CERN, December 
1983). 
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lation between the bare coupling constant/3 and the 
value of  the cut-off, and it has a well-defined meaning 
in the vicinity o f  the ultraviolet fixed point,/3 = oo 
The/3-function gives the way asymptotic scaling is ap- 
proached, it connects numerical studies with pertur- 
bation theory,  reveals the existence o f  possible phase 
transitions, and so on. In the MCRG approach, not 
the/3-function itself, but a related quant i ty  A/3 = A~/3), 
is determined,  which gives the change o f  the coupling 
/3 ~/3 - A/3(/3), when the (dimensionless) correlation 
length (or the cut-off) is decreased by  a factor o f b .  
Here b is the basic change of  scale in a single renorma- 
lization group (RG) step (b = 2 in the following). At 
the couplings/3 and/3' =/3 - &/3(/3) the model  has 
identical long-distance properties,  only the (dimen- 
sionless) correlation length ~ differs by  a factor of  2. 

Consider a specific block transformation,  where 
the block spin/a n (/~2 = 1) is constructed as some kind 
of  average from the 4 spins o f  the 2 X 2 block £: 

liQ =lt~(si, i E block ~) .  (3) 

The interaction between the block spins is described 
by  a new action A '0 t ) ,  which, in general, will contain 
all kinds o f  interactions. A'(10 can be represented as a 
point in a multidimensional space o f  different coupling 
constants. It is expected that the RG transformation 
defined by eq. (3) has a fixed point somewhere in the 
/3 = oo hyperplane of  this multidimensional space and 
a single renormalized trajectory (RT) starts from this 
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Table 1 
Three-level perturbative coefficients of the block correlations 
(see eq. (9)) using the P = 0o block transformations given in 
eq. (4). 

Lattice BlocNng aNN aDI aNNN 
size step 

64 × 64 0 0.249939 0.318188 0.363136 
1 0.162549 0.218690 0.271767 
2 0.137073 0.190322 0.243512 
3 0.127501 0.177596 0.224678 
4 0.113629 0.154199 0.168479 
5 0.059385 0.083494 - 

32 × 32 0 0.249756 0.317822 0.362402 
1 0.161815 0.217234 0.268811 
2 0.134117 0.184583 0.231339 
3 0.115331 0.155989 0.170175 
4 0.059827 0.083984 - 

16 X 16 0 0.249023 0.316369 0.359450 
1 0.158864 0.211507 0.256649 
2 0.121959 0.163045 0.176818 
3 0.061574 0.085938 - 

8 × 8 0 0.246094 0.310706 0.347339 
1 0.146763 0.190290 0.202009 
2 0.068359 0.093750 - 

point  [3,4,6] (fig. 1). An impor tan t  point  to men t ion  
is that  the posi t ion o f  the fixed point  and of  the RT 
is not  universal; it depends  on  the details o f  the block 
t ransformat ion  in eq. (3). 

c31~ 

. lb . , - ,  

czl3 

S 6 RT 

~ ' " 2  3 
1× ol 

.~ ~ ~1-1 

Fig. 1. The fixed point lies in the # = ** hyperplane of the multi- 
dimensional coupling constant space, c 2 , c a .... are the next- 
to-nearest neighbour, diagonal, ... couplings of the block spin 
actions. The standard action is represented by the points of 
the c2 = Ca = ... = 0 axes. The RT attracts the flow lines start- 
ing from the neighbourhood of the fixed point. 

Starting with the standard action at a given/3 value 
(~ is large), the effective actions obta ined after a few 
RG steps will move along the RT. The same will 
happen  i f  we start at some other  coupling/3' .  By tun ing  
/3' it can be arranged that  those points  o f  this second 
sequence which lie on  the RT coincide with the corre- 
sponding points  o f  the first sequence,  bu t  one step 
behind (fig. 1). Then the models  defined by  the stan- 
dard act ion at/3 and/3' are identical concerning their 
long-distance propert ies,  while their  correlat ion 
lengths differ by  a factor o f  2. Therefore,  A/3(/3) =/3 -- 
/3'(/3) is the relat ion we are looking for. 

At every blocking step the linear size o f  the lattice 
is reduced by a factor o f  2. If the RT is far f rom the 
standard act ion and m a n y  blocking steps are required 
in order to match  the two sequences o f  points  in the 
mul t iparameter  space of  fig. 1, the procedure would  
require a prohibit ively large starting lattice. Or, saying 
differently,  i f  we can perform on ly  an insufficient 
n u m b e r  o f  RG steps then  no consistent  matching will 
be possible (the matching o f  the different block spin 
expecta t ion values would give different A/3 values). 
This is i l lustrated in fig. 2 for the case o f  the exactly 
solvable O ( N ) N ~  model  ,3  using the simple block 
t ransformat ion  *4 

sil + si2 + si3 + si4 
1~ = ilsi 1 + si~ + sia+ si4 I1' i1 '  i2 '  i3 '  i4 E block £.  (4) 

As can be seen in fig. 2, the procedure breaks down 
completely  at large correlat ion lengths. There is a sig- 
nif icant  deviat ion betwee n the predicted and the ex- 
act value o f  z~6, and the deviation increases l inearly 
with/3. 

A possible solut ion is to use an improved act ion 
which lies closer to the given RT [3,4,7].  There is an- 
other  possibil i ty,  however:  search for an improved 
block transformation whose fixed point  and RT lie 
close to the standard action , s .  This procedure offers 
several advantages, especially in the case o f d  = 4 
gauge theories. There is no need to simulate a c o m -  

,3 In this figure, and everywhere in the following, • ~ ~/N for 
the O ( N ) N ~  model. 

,4 A RG study of the O (N) ,N~  o., model using the block 
transformation in eq. (4) is given in ref. [7 ]. In this paper 
the effect of improving the action is also discussed. 

~:s A similar idea has been put forward by Swendsen i8], in 
ref. [9] a systematic study of the Ising model is given along 
these lines. 
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Fig. 2. The matching predictions o f  this figure were obtained for the s tandard O(n),  N ~ *% action using the simple block trans- 
format ion in eq. (4). A#(#) is the  change oft3 resulting in reducing the  correlation length by a factor o f  2. The exact  result in the  
con t inuum limit is Aa = (2~r) -1 In 2 (without  corrections),  ~(#) is the  correlation length. The  curve "1282 versus 642 , 4 /3  blocking, 
NN"  refers to a matching,  where the  nearest-neighbour block correlation after 4 RG steps on a 128 × 128 lattice was compared 
to that  after 3 RG steps on a 64 X 64 lattice, and so on.  

plicated action, given the configurations one can ex- 
periment easily with different block transformations, 
a lot o f  effort is invested already into studying the 
standard action, and so on. Additionally, the method 
seems to work well. In asymptotically-free theories 
one might use perturbation theory to f'md improved 
block transformations - just as was done previously 
in searching for improved actions [3,4,7,10]. 

Without some improvement, the error in A/3 in. 
creases linearly with/3. This feature is easy to under- 
stand. In the matching procedure, block spin correla- 
tion functions (obtained after k and (k - 1) RG steps, 
starting from a lattice o f  size L X L and L/2 X L/2  
respectively) are compared• For large/3 these block 
correlation functions can be evaluated in perturbation 
theory. On the tree level this leads to the matching 
equation 

1 - c / /3  + 0(1//3 2) = 1 - c ' / / 3 '  + 0(1//~2), (5) 

giving 

A/3 --/3' --/3 = [(c -- c')/c]/3 + O(1) .  (6) 

The contribution (c - c')/3/c in z~ is an error: tree- 

level perturbation theory should give A/3 = 0 (c = c ' ) ,  
since a non-trivial scale is generated only at the one- 
loop level. In this context '~tree-level improvement" 
is a procedure to minimize (c - c ') /c in the matching 
conditions. This is true also in other methods, like the 
ratio method we discuss later. For block transforma- 
tions this requirement is the same as that o f  starting 

• • I close to the Ftxed point (since c = c at the fLxed point). 
As an example, consider the following one-param- 

eter family o f  block transformations ,6 :  the probabil- 
ity that the £th block spin takes the value p~ is 

exp [PP~(sil +si2 +Si 3 +Si4)]  , 

i l ,  i2, i3, i 4 E block £ ,  (7) 

where p 2 = I,  and P is a free parameter. F o r P ~  ~ w e  
get back eq. (4)• We shall use perturbation theory to 
find the value o f  Pwhich  gives a fixed point and RT 
lying closest to the standard action for large/3. 

Actually, P is not completely free. W.hen/3 --* o, 

~:6 This block t ransformat ion  is easy to generalize to gauge 
theories as is discussed by Swendsen [6]. 
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then P ~ oo also is required, otherwise the block spin 
configuration completely "forgets" the content o f  
the original configuration, and no fixed point is ex- 
pected to occur. P = c/3 is a consistent choice, where c 
is a constant, which should be determined. 

Tree-level perturbation theory gives, for the block- 
spin-block-spin correlation function after the kth 
RG step on an L × L starting lattice: 

P(n;/3, P, L)(k) = F(n;/3, P = oo, L)(k ) 

- ( 2 / P ) ( 1 / 4  + 1/4 2 + ... + 1 / 4 k ) ,  (8)  

and the tree-level requirement z~ =/3 - /3 '  = 0 deter- 
mines the constant c in the relation P = c/3: 

4 k [a(n; L/2)(k_I) --a(n;L)(k)] (11) 

It is reassuring that for k 1> 3, e is only weakly depen- 
dent on k and n (the type of  correlation considered). 
In our analysis we choose the value 

where P(n;/3, P = oo, L)(k ) is obtained by using the 
block transformation eq. (4) and it has the general 
form 

['(n;~,P=oo, L)(k) = 1-(N-1)a(n;L)(k) / /3 .  (9) 

The numbers a (n ;L)6:) are given for n = (0, 1), (1,1), 
(0, 2) for different lattice sizes L in table 1 * 7. The 
matching condition reads 

I"(n;/3, P, L)(k) = V(n;/3', P, L/2)(k_l), (10) 

,7 A part of this table is given in ref. [4]. 

Using this value of  P, or(n; L/2)(k_l) -- ot(n;L)(k) is 
small even for k - 1 = 2, showing that with this im- 
proved block transformation we get close to the fixed 
point after two RG transformation steps. 

The matching results obtained by using this tree- 
level improved block transformation are given in figs. 
3 and 4 for the O(N)N__,~. and 0 ( 3 )  models, respec- 
tively. In fig. 3 4/3 was obtained by matching the 
nearest-neighbour (NN) correlations (n = (0, 1)) start- 
ing on a 322 versus 162 lattice. In the continuum limit 
o f  the O(N)N~.~ standard model the/3-function con- 
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0.5 1.0 1.5 2.0 p 

Fig. 3. The matching predictions for the standard O(N), N ~ ,~, model using optimized block transformations. The disagreement 
between the NN and I)I matchings below/3 ~ 0.5 indicates that this region is outside the scaling region and no unique t~-function 
can be defined. 
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Fig. 4. Matching predictions for the 0(3) standard model. At 
large correlation lengths the procedure breaks down if the 
simple block transformation of eq. (4) is used. The improved 
block transformation gives consistent results with the two- 
loop asymptotic #-function (solid line) in this region. In the 
case of optimized blocking the NN and DI matchings are con- 
sistent well within the statistical errors, except at # = 0.9, 
where we could not measure the DI matching with our statis- 
tics. 

rains one term only, and Aft = In 2/2rr without higher 
order corrections. The 3/2 (= three steps on 322 ver- 
sus two steps on 162) and 4/3 results are almost iden. 
tical and give the correct result. Below Aft = 0.5 (~ ~< 
few lattice units), Aft is different for the NN and DI 
(n = (1, 1)) matchings indicating that this region is 
outside the continuum limit akeady. 

As is shown in fig. 4 the unimproved matching 
procedure breaks down for large fl in the 0 (3 )  model 
also, as we expected. The improved block transforma- 
tion gives results which are consistent with the asymp- 
totic value Aft = In 2/27r at large/3 and predicts a non- 
trivial fl-function at intermediate couplings. For ex- 
ample at fl = 1.35 (g ~ 1 few lattice units), Aft = 0.19 
+ 0.01, consistently from the NN, DI and NNN corre- 
lation functions. 

Let us remark that the deviation o f  the fl-function 
from its asymptotic value at intermediate couplings 
seems to explain the apparent "scaling violation" ob- 
served for the mass gap of  the standard action [ i 1 ]. 

Presumably, the mass gap scales correctly in the re- 
gion ~/> few lattice units, but the fl-function cannot 
be replaced by the leading perturbative terms there. 
A more quantitative statement would require a syste- 
matic measurement o f  the fl-function with good sta- 
tistics, which is beyond the scope of  this paper. 

At the end let us discuss another matching method 
which we call the ratio method. Like the previous 
method it also has the property that the necessary 
tree-level improvement can be done easily, without 
changing the action. 

Consider the ratio f (n 1, n 2;fl, L)  = (SoSn l ) fl / 
(SoSn2)#. The wave function renormalization factors 
cancel and f satisfies the homogeneous RG equation 
in the continuum limit, if n 1 and n 2 are large enough 
to avoid lattice artifacts. We get the matching condi- 
tion: 

f ( 2 n  1, 2n2; fl, L) = f ( n  I , n2; fl', L / 2 ) ,  (13) 

where - in order to minimize the finite size effects 
- t h e  left- and right-hand sides o f  this equation are 
evaluated on a lattice o f  size L X L and L/2 X L/2 re- 
spectively , a .  This method breaks down for larger 
correlation lengths for the same reason as the block 
procedure: three-level perturbation theory for eq. 
(13) gives a non-zero (and, in general, not small) 
(c - c')/c, in the notation o feq .  (6). A simple way to 
avoid this problem is to take an appropriate linear 
combination o f  two ratios in such a way that Aft = 0 
is obtained in tree-level perturbation theory. A large 
number o f  tree-level improved (or "mixed") ratios 
can be obtained in this way. 

In fig. 5 the matching predictions are given which 
were obtained from different, tree-level improved, 
ratios at selected fl values in the O(N)N~,  model. We 
investigated 66 different mixed ratios o f  which the 
first 10 and the last 6 are shown in fig. 5. The num- 
bering 1 -66  is arbitrary. The ratios 6 1 - 6 6  contain 
correlations at longer distances, therefore the effect 
o f  lattice artifacts is expected to be smaller for them 
than for the ratios 1-10 .  To give two examples the 
no. 1 result was obtained by matching 

f((2,  2), (2, 0); fl, L) + 2.32284f((4,2) ,  (2,2);  fl, L)  

*8 An analogous ratio test was considered for Wilson loops in 
ref. [12] without the volume adjustment ofeq. (13) and 
without the treeqevel improvement discussed in the follow- 
ing. 
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with 

f ( (1 ,  1), (1,0);/~', L/2) +2.32284f(2 ,  1), (1,1);/3',L/2), 

while the no. 66 result was obtained by  matching 

f((8,4) ,  (8,2);/3, L)  + 0 .653535f((8 ,  2), (4 ,4) ; /3 ,L)  

with 

/(14, 2), (4, 1);/3', L/2) 

+ 0.653535 C((4, I) ,  (2,2); /3 ' ,  L/2). 

The mixing coefficients 2.32284, ..., 0.653535 were 
determined from the requirement o f  tree-level im- 
provement,  as we discussed above. At/3 = 2.049 (~ 
105) and at/3 = 1.045 (~ ~, 102) the ratio test repro- 

duces the exact result within ~2% error. At/3 = 
0.5011 (~ ~ 4) the matching is less consistent already, 
while at/3 = 0.2466 (strong coupling) no matching is 
found anymore.  The comparison o f  the L = 16 and L 
= 32 results show an observable, but  small f'mite size 
effect. 

In fig. 6 the results o f  a single matching from/3 = 
1.90 (~ ~- 102) to/3'  is shown for the O(3) model. 
Those ratios are plot ted whose statistical errors are 

O(NIN... spin model, improved o 322 vs 16 z 
ratios • 16 z vs S l 

N°of ratio 11=0.2t,66 I)=0.5011 p=O.604k 11=1.045 p=2.049 
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Fig. 5. Matching predictions for the O(N), N--* ~, model obtained by using the improved ratio method. 
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Fig. 6. A single matching for the 0(3) model from # = 1.90 I~ 
(~ ~ 102) to #' = # - ~/3 using the improved ratio method. 
The vertical line is the two-loop perturbative prediction. 
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acceptably  small. A l though i t  is clear that  for a serious 

s tudy a statistically improved measurement  is neces- 

sary, the m e t h o d  seems to work  well  even on small 

lattices. 
For  b o t h  methods ,  one- loop per tu rba t ion  theory  

would  help significantly to understand the remaining 

systematic  errors. For  the ratio me thod  this calcula- 

t ion  is cer ta inly  feasible b o t h  for d = 2 spin and d = 4 

gauge theories.  

The authors  are indebted  to R.H. Swendsen for 

very useful discussions. 
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