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The effective theory describing SU(4) lattice gauge theory at finite temperature and strong coupling is in-
vestigated via Monte Carlo methods. A first-order deconfining transition is found. Introducing dynamical
quarks leads to the disappearance of the transition at a large value of the quark mass, in agreement with

recent mean-field calculations.

The behavior of SU(N) lattice gauge theories at finite
temperature is an important theoretical question.'"> The
N =2 and 3 deconfining transitions are well understood, but
there has been some controversy as to the nature of the
deconfining transitions for N > 3.3~ In a recent paper’ we
found that such transitions were first order in the pure
gauge sector at strong coupling, and were destroyed by the
introduction of quarks of quite large mass. These con-
clusions were based on mean-field theory, which is not al-
ways reliable. It is thus desirable to test them via the
Monte Carlo method. In this paper we present numerical
simulations for the SU(4) case.® The N > 4 cases should
have a similar behavior.

Rather than treat the full SU(4) gauge theory, we start by
rederiving an effective theory of Wilson line variables at
strong coupling.>>7 This is accomplished by neglecting
spacelike plaquette variables (which is justified at strong
coupling) and then performing the group integrations over
the spacelike links. Thus although the original theory is de-I
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The group-measure factor M appearing in Eq. (2) is
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We include dynamical heavy quarks using the leading-
order term in a hopping-parameter expansion.>® This has
the effect of adding a term

h Jtr Wy +ce.=2h 3 cosl;(X)] “4)

to the effective action, where
h=2n,QK)" 5)

K being the Wilson hopping parameter, and n, the number
of flavors. Equation (4) breaks the Z (4) symmetry of Eq.
(2), which, as is well known, characterizes deconfinement.?
h acts as a symmetry-breaking external field.

A simple Metropolis algorithm was used, generating 6
configurations from the effective partition function Eq. (2),
with 10 hits per site and, for most of our data, Ny=7. In
Fig. 1 the average action (S) (normalized to 1 for 8’ — oo)
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fined on an N,x N3 lattice, the effective theory is defined
on an NgX NyXx N, lattice (N;=spatial extent, N,= ‘‘time”’
or temperature extent). The effective partition function is
given by’

Z(B)= fHdW? exp[ﬁ’ StuWs trWixo+;+c.c. , (¢))
B3 %1

where the integral is over the invariant group measure on
each site of the three-dimensional lattice, the W’s are the
Wilson line variables defined on each site X, the sum runs

over the links of the spatial lattice, and B'=2z (z,, is the
character coefficient of the fundamental representation in a
character expansion of the original lattice action). The
simulation is simplified by noting that the W’s can be di-
agonalized (only traces appear). Since W € SU(4), its
eigenvalues can be written in the form exp(if;),
Jj=1,...,4 with 4= —0,—6,—03;. In terms of the 0’s,
Eq. (1) can be written as*
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for the pure gauge theory (4 =0) is plotted versus 8’ in a
thermal cycle. The program was checked using strong- and
weak-coupling expansions for (§). There is clear hysteresis
between B'=0.146 and 0.155, indicatinig the presence of a
first-order transition.

The most interesting quantity is the Wilson line order
parameter characterizing quark confinement,’®
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which is related to the free energy of an isolated quark.
This is plotted in a thermal cycle in Fig. 2, showing a similar
hysteresis to (S). The dots are the result of mixed starts at
various values of B’, and show good agreement with the
thermal cycle. The coexistence of two phases at 8'=0.155
is quite evident from hot and cold starts (the points X and
O in Fig. 2). The behavior of the order parameter as a
function of the number of iterations on a 16° lattice (Fig. 3)
shows that these two phases are quite stable at 8,=0.155.
This value for 8. is in excellent agreement with mean-field
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FIG. 1. Average action, (s E;lz—(tr Wetr W;.+;+c.c.), plot-
ted vs B’. After an initial 200 sweeps at 0.1, 8’ was increased from
0.1 to 0.2, and then decreased back to 0.1, in steps of AB' =0.001,
with 50 iterations per step. The small-8’ and large-B8’ tails of the
curve are in good agreement with small-8’ and large-8’ expansions
for (§). This is for a 7° lattice with 10 hits/site, for which the ac-
ceptance rate was typically 20%.

theory (which gives 8;=0.16, Ref. 5). The effective theory
proved to be a very good approximation for N =3 with
N,=1.° We therefore predict, using the relation between
z10 and B [=1/(4g?)], that the full SU(4) pure gauge
theory has a first-order deconfining transition at g8.=0.148
for N;=1. The smallness of B, is consistent with our
strong-coupling approximation.

Of course one is ultimately interested in taking N,— oo
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FIG. 2. Thermal cycle for the order parameter %N,‘3

X <’27 tr W?l)’ obtained in exactly the same manner as for the
average action. The dots represent mixed starts, in which half of
the lattice was placed in the high-temperature phase and half in the
low-temperature phase. The points X and O, both at Bc’ =0.155, are
obtained from hot and cold starts, respectively, on a 163 lattice.
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FIG. 3. Order parameter of Fig. 2 vs iterations on a 163 lattice.
The upper line is a hot start, the lower a cold start.
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FIG. 4. Thermal cycle for the order parameter -‘1; Re(tr W) with
the external field (a) # =0.02, (b) &~ =0.06, and (c) 4 =0.08.



2988

and B.— 0 in accordance with asymptotic freedom. The
strong-coupling approximation (N,=1) is far from that lim-
it. We can therefore draw no definite conclusion as to the
nature of the transition in the physical, continuum limit.
However, it is possible that our overall picture remains at
least qualitatively correct.

Clearly the strong-coupling effective theory is not ade-
quately described by a four-state clock model.* This model
is known to have a second-order phase transition.>% 10

The effect of dynamical heavy quarks is to increase A
from zero. This causes the order parameter to be always
nonzero, although it may still have a discontinuity. Ther-
mal cycles for the order parameter are shown in Figs. 4(a),
4(b), and 4(c) for h=0.02, 0.06, and 0.08, respectively.
The critical temperature clearly decreases, since at h =0.02,
Be=0.15, and at # =0.06, B8.=0.143. There is virtually no
hint of any hysteresis at # =0.08, so for 2 > h.=0.08, the
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first-order transition disappears. [The value for 4. found in
Ref. 5 (0.047) is probably too small due to the shortness of
the series used to obtain it. A short expansion is not
enough to display a large latent heat.] Using the crude rela-
tion between h and a quark mass as given in Ref. 5, the
critical quark mass below which there is no longer a transi-
tion is (for ny=3) m.=4.3T,, where T, is the deconfining
temperature at k.. Thus the critical mass is quite large.
However, at small masses'"!? there might still be critical
behavior due to a chiral transition.

When this work was completed we received a preprint by
M. Gross and J. F. Wheater (Oxford University) containing
similar results for the pure gauge sector.
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