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THE INFLUENCE OF QUARKS ON THE SU(3) RECONFINEMENT PHASE TRANSITION 
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CERN, Theory Division, 1211 Geneva 23, Switzerland 

We discuss the influence of quarks on the first order deconfinement phase 
transition present in pure SU(3) lattice gauge theory. Strong coupling con- 
siderations as well as Monte Carlo simulations on a 8' x 2 lattice indicate 
that this transition weakens rapidly with decreasing quark mass and dis- 
appears below a critical mass of the order of GeV. 

1. IN~ODUCTION 

The existence of a finite temperature deconfining phase transition in a 

gauge theory is a long standing conjecture. For pure lattice gauge theories 

its existence has been proved analytically 1,2 and Monte Carlo calculations with 

SU('2) and SU(3) gauge groups have demonstrated convincingly that this phase 

transition survives the continuum limit 3-6 . These Monte Carlo results show a 

clear first order phase transition for pure SU(3) gauge theories 7.8 in accor- 

dance with theoretical expectations 
9,lO 

. They also yield quantitative estimates 

for the critical temperature and latent heat 
7,8,11,12 

of the transition which 

are important parameters in judging the feasibility of producing gluon matter 

in laboratory experi~nts. 

Of course (assuming that QCO is the correct theory), these experiments 

would deal with the complete theory: gauge and quark fields in interaction. 

While in many spectroscopical problems the effect of (virtual) quarks is be- 

lieved to be small, in the case of the deconfinement phase transition it is 

expected to be relevant and qualitative. Indeed there are several indications 

that fundamental matter fields may destroy the phase transition present in the 

pure gauge sector of lattice gauge theories 
13-17 : in pure SU(N) lattice gauge 

theories the deconfinement phase transition is related to the spontaneous break- 

down of a global Z(N) symmetry of the pure gauge action. The nature of this 

phase transition can be analyzed by relating the finite temperature SU(N) 

theories to effective three-dimensional spin models with a global Z(N) 

symmetry'. In particular, in the case of SU(3) this led to a successful pre- 

diction of a first order phase transition. Similar considerations indicate that 

SU(N) gauge theories in the presence of fundamental matter fields are closely 

related to Z(N) spin models in the presence of an external field14. This 

suggests the disappearance of the deconfinement transition in the presence of 
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arbitrary heavy quarks, if the transition was second order originally, or below 

a critical quark mass, or if the transition was firstrorder in the pure gauge 

theory. 

Thus in the absence of a global symmetry which allows to distinguish between 

different states of matter,the existence of a deconfinement phase transition 

becomes a quantitative rather than a qualitative problem governed by the rele- 

vant number of flavours and quark masses entering the QCD Lagrangian. 

To clarify the fate of the first order deconfining phase transition present 

in pure SU(3) gauge theories, an explicit calculation in the full theory is 

needed. In the following section we will discuss a first quantitative analysis 

of this problem both in the strong coupling limit of lattice QCD17 and by per- 
16 

forming a Monte Carlo simulation on a 83 x 2 lattice . Section 3 contains our 

conclusions. 

2. DECONFINEMENT IN THE PRESENCE OF VIRTUAL QUARKS 

2.1 General considerations 

The inclusion of fermions in the Euclidean lattice formulation of gauge 

field thermodynamics 
18.19 

follows closely the zero temperature formalism. On 

a lattice of size NixNb with lattice spacing a temperature T and volume V are 

given by l/T = NGa and V = (Noa)'. The Euclidean partition function ZE can be 

expressed in terms of bosonic link variables U l SU(N) alone, which obey 

periodic boundary conditions. In the case of ;;'quark flavours we have 

ZE = I II dUx ~ exp{Seffl, 
links ’ 
x,!J 

(1) 

where the effective action 

S 
eff 

= SG + SF 

contains the gluonic contribution 

SG = 1 
g2 plaqi?ettes 

(Tr U 
x,!J x+u,""x+v,II x,\) 

U + lJ+ + cc) 

(2) 

and a fermionic part resulting from the integration over the fermionic field 

variables 

SF = fi: Tr Rn(1 - KfM). (4) 

In the case of j/ilson fermions the fermionic matrix M is given by 
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M 
u xy = (' - Qjx 1-I 6x,y_u + (1 + Yu)$ 1J 6x,y+u , , . 

where U 
x,FI 

zij+ 
(x,x*)r!J = (' - 26xr,N~~H,~)ux,u 

due to the antiperiodic boundary 

conditions for fermions in the temperature direction. The quark masses mf 

enter the partition function through the hopping parameter Kf, which in the 

naive continuum limit is given by Kf = (8 + Zmfa)-'. 

The relevance of quarks for the problem of the existence of a finite tempe- 

rature deconfining phase transition in QCD becomes obvious from the close rela- 

tion between deconfinement and the spontaneous breaking of a global Z(N) sym- 

metry realized in the gluonic part of the effective action. The gluonic action 

SC is invariant under the global Z(N) transformation 

u+ 
(x,x,) 34 

-+ zu + 
(x,xq),4 ’ 

x, fixed, z l Z(N), 

However, Wilson loops which are closed due to the periodicity of the Euclidean 

lattice in the temperature like the thermal Wilson line 

NB 
L;= II u-+ 

x =1 (x,x#$).4 

transform non-trivially under the above transformation. As these kind of loops 

contribute to the fermionic part SF of the effective action, the global Z(N) 

symmetry gets explicitly broken due to the presence of quarks. Only in the pure 

gauge theory the expectation value of the thermal Wilson line <Tr L;> is an 

order parameter which allows,us to distinguish between a Z(N) symmetric and a 

spontaneously broken phase. As <Tr L;> also describes the free energy of a 

static quark in a gluonic heat bath 

<Tr L;> x e-'9" (8) 

the appearance of spontaneous symmetry breaking clearly corresponds to the de- 

confinement phase transition. In the presence of quarks <Tr L;> is no longer 

an order parameter, i.e., <Tr L;> # 0 for all temperatures. Nonetheless a sin- 

gularity in <Tr L;> may still signal a phase transition. Probably the most 

direct way to search for a non-analyticity of the partition function is to look 

for a discontinuity in the plaquette expectation values 

<p> = <1 - ARe Tr U 
+ + 

x,u"x+H,""x+",p"x,"> 



47oc F. Karsch / The &Y(3) Deconfinement Phase Transition 

or one of its derivatives with respect to g-*. The expectation value <P> is 

directly related to the latent heat 12 18 and the free energy density . A jump 

in <P> like in <Tr L;> would therefore signal a first order phase transition. 

To study the influence of quarks on the first order phase transition observed 

in pure SU(3) lattice gauge theory we have to deal with the contribution of SF 

to the effective action. Unfortunately, an expansion of SF in terms of the 

hopping parameter Kf leads to a highly non-local form of the effective action 

as Wilson loops of arbitrary length contribute. As the contribution of the long 

path becomes increasingly important for larger Kf, this approach seems to 

be extremely difficult for light quarks. In the case of heavy quarks (small 

Kf), however, the expansion can be truncated after a few terms 20 andtheproblem 

of performing a trustworthy calculation in the presence of heavy quarks becomes 

manageable. Unfortunately, it also becomes irrelevant for physics; the ha- 

dronic world contains three light quark species. 

There is, however, an exception to the conclusion above. It might happen 

that all important changes in the nature of the deconfinement phase transition 

occur already for heavy quarks, that the first order phase transition is 

destroyed and smoothed out already at a mass value which is large. 

To lowest order in the hopping 

has the form 

S eff 
= Sg + 2nf(2K)NB $ (Tr L; 

X 

parameter (for NS ( 3) the effective action 

+ Tr Li) (10) 

where we have taken all fermion masses to be equal, Kf E K. The thermal Wilson 

line thus provides an explicit Z(N) symmetry breaking term in the effective 

action similar to an external magnetic field in spin systems with a field 

strength H = 2nf(2K)NN. Before we analyze the influence of this symmetry break- 

ing term on the deconfinement phase transition in a Monte Carlo calculation, 

let us discuss what one obtains in the strong coupling limit. 

2.2 Strong coupling limit 

It is generally expected that in the pure gauge sector, the deconfinement 

phase transition is due to long range fluctuations in the thermal Wilson line 

while spatial degrees of freedom do not show critical behaviour in the transi- 

tion region"l'. It is therefore suggestive to rewrite the partition function 

in terms of this variable and try to integrate out those variables which do 

not lead to long range fluctuations. In a strong coupling expansion this can 

be done systematicallyg~10*21 and leads in lowest order to the following approx- 

imation to the SU(3) partition function in the presence of quarks 
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zE = I $ dL;exp {6' 1 (Tr L;*Tr Lz+~ + cc) + H C (Tr L; + Tr Li)) 
3,a. t 

(lla) 

with 

8' = (J/6 I 

H = 2nf(2K)N5 . 

(lib) 

(llcl 

This is a three-dimensional spin model for the thermal Wilson line in an external 

field H. The phase diagram of this strong coupling approximation can be studied 

in a meanfield approach17. Substitutinq Tr L;, Tr Lz by the mean value 

M = <Tr L;> = <Tr L$, 12) 

13) 

which can be taken to be real, leads to the mean field free energy 

FMF = 
-RnZMF- 66' cTr L;>,$ + (126'M - 2H) <Tr Lz>~ 

with 

'MF 
= IdU exp{-6!3'M(Tr U + Tr lJ+)) (14) 

and 

<Tr U>M = & JdU Tr U exp{-66'M(Tr U + Tr U+)>. (15) 

The expectation value of the thermal Wilson line M is determined self-consis- 

tently by minimizing FMF. For H = 0 this leads indeed to a discontinuity in 

M as a function of 6' thus indicating a first order phase transition in the pure 

SU(3) gauge theory as expected 
22 . However, as can be seen in Fig. 1, this tran- 

sition gets weakened rapidly in the presence of an external field H. The jump 

in the mean value M decreases rapidly with increasing H and disappears already 

for a critical field 

H, = 0.059. (16) 
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FIGURE 1 

M versus the coupling 8' for various values of the external field H, The 
solid (broken) lines correspond to stable (metastable) solutions of the mean 
field equation. 

Although these strong coupling results may only be indicative for the conti- 

nuum limit of lattice QCD, it is tempting to relate the critical field H, 

found in this strong coupling calculation to actual physical quantities. An 

appropriate relation between the hopping parameter K and the quark mass m 

for small values of K is 2K = exp(mqq)15. 
q 

This allows us to determine thecritical 

quark mass below which the deconfinement phase transition disappears in units 

of the critical temperature T, = (N6a)-' 

m /T 
cl c = In (Hc/2nf). (17) 

In the case of three quark flavours, which is most relevant for QCD, this leads 

to a large critical quark mass 

mq = 4.6 T,.. (18) 

2.3 Monte Carlo calculations 

Let us now turn to the Monte Carlo results obtained for a SU(3) theory with 

quarks using the effective action Eq. (10)16. The lattice size was taken to be 

83 x 2. On this lattice the pure W(3) gauge theory (H z 0) exhibits a first 

order transition at @(-6/g') = 5.11 7*8 with large discontinuities 

AL = 1.01 f 0.05 (19al 

Ap = 0.034 2 0.005 (19b) 
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in the thermal Wilson line and plaquette expectation values 7,8,12,16 . Our 

aim was to determine the critical line of first order transitions in the (H,B) 

plane, which starts at (0.0,5.11). To achieve this a value of B (~5.11) was 

fixed then H was tuned in trying to locate two metastable co-existing states, 

signaling a first order transition. At every point (H.3) two runs were made 

starting from ordered or random configurations and performing 2500-4000 itera- 

tions. In the critical region we observed two metastable states with occasional 

phase flips between them. Figure 2 shows the results for the thermal loop 

expectation value and the average plaquette at B = 5.0 as a function of fi. 
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Fig, 2a 

FIGURE 2 

Fig. 2b 

The thermal loop expectation value (a) and the average plaquette value (b) as 
a function of JFT at 6 = 5.0. 

A clear signal for a first order phase transition can still be seen at H = 0.021. 

However, compared to the corresponding quantities at H = 0 [Eq. (19)], the 

jump is already reduced by a factor of 2. Figure 3 shows the same quantitites 

at 6 = 4.9 where the discontinuities become even smaller. 
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The same as Fig. 2 but at 6 = 4.9 
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In Fig. 4 we show the jump AL and Ap as a function of B and H which suggests 

that the line of first order transitions ends somewhere around 

(H,,B,) = (0.055,4.85) . (20) 

Fig. 4a Fig. 4b 

FIGURE 4 
The jump in the expectation value of the thermal Wilson line (AL) and the 
average plaquette value (Ap) as a function of H,(a) and B,(b). 

It is remarkable how well the critical field H, found in the Monte Carlo cal- 

culations agrees with the strong coupling result, Eq. (16). This might indicate 

that our Monte Carlo simulations still reflect strong coupling rather continuum 

behaviour. However, recent results obtained on a 83 x 3 lattice 
23 seem to lead 

to a similar value for H,. Let us therefore assume that our results resemble 

continuum physics and use H, to determine a critical quark mass below which the 

first order deconfinement phase transition disappears. Our value for H, is ex- 

tremely small describing heavy quarks. The u,d and s quarks can be thought to 

be degenerate on this scale. Thus, with nf = 3 we get K 2 0.05 for the critical 

hopping parameter. The value for massless quarks is around Kc s 0.2 in this 

region of coupling constantsz4. Using as a crude estimate for the quark mass 

$({ - k) = emqa - ’ 
we find 

m /T 
q c 

= 4.2 , (22) 
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This shows that the critical quark mass below which the deconfinement transition 

disappears seems to be large*. 

3. CONCLUSIONS 

We have studied the fate of the first order deconfinement phase transition 

of SU(3) lattice gauge theory in the presence of quarks. Strong coupling cal- 

culations, as well as Monte Carlo simulations, indicate that this transition 

disappears already for quite heavy quarks. Of course, these results do not 

exclude the possibility that in the physically interesting case of three light 

quark flavours, the system remembers the phase transition in the heavy quark 

sector by showing a large peak in the specific heat for instance. However, 

to study these effects considerably more work is necessary as long loops in 

the fermion determinant will contribute to the effective action. 
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