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We determine expectation values of Wilson loops and correlations of Polyakov loops on lattices of size 10 X 163 and 8 
X 163 at/3 values 2.25 and 2.375. Utilizing a recently proposed method to reduce the variance of loop expectation values, 
we are able to measure loops up to 6 X 6. We find A L = 0.0151 +_ 0.0006x/'~ at 13 = 2.375. 

Recent measurements o f  the string tension in SU(3) [1,2] have revealed that the so far accepted ratio AL/X/~ 
= 0.006 -+ 0.002 [3] has to be considered as a lower bound and presumably to be corrected upwards by a signifi- 
cant amount.  It seems that one has underestimated two aspects: (a) the asymptotic domain for large Wilson loops 
o f  size R × T, i.e. T ~ ~ and large R, may not have been reached in the calculations, and (b) finite size (Ns) and 
finite temperature (Art) effects (on lattices o f  size N t X N])  may be larger than considered. 

On one hand it appears to be extremely hard to investigate Wilson loops large with regard to the correlation 
length in the accessible scaling region (e.g. 4 × 4 or 5 × 5 at values 4/g 2 ~ 2 .25 -2 .4  for SU(2)). On the other hand 
there is only sparse information on the t'mite temperature dependance o f  the string tension. Usually one assumes 
that determination o f  the dimensionless string tension a2• from Wilson loops gives the result at zero temperature 
whereas the determination via correlations o f  thermal (Polyakov) loops gives the values for non-zero temperature.  
Polyakov loop calculations o f  the conventional type have been restricted to N t ~< 6; the result is exponential ly 
damped like exp(-NtRa2K ) which so far prohibited to obtain reliable signals at larger values o f N  t (cf. ref. [4]). 

Recently Parisi et al. [ 1 ] suggested to measure these correlations with the help of  modified thermal loop oper- 
ators. The essence o f  this suggestion is to reduce the statistical noise by  substituting the link operator  by an ex- 
pression giving the same mean values with less variance. The newly introduced operator  contains the products of  
the other links along the six plaquettes bordering the original link. The technique has been applied to spin models 
some time ago [5]. 

We briefly recapitulate the formalism extending it to operators which contain both the usual link variables U 
and the so-called modified ones defined by 

gx, =_(fdUx,, Ux,uexp(g_2 Ux,uX?x,u+h.c.)) ( fdVx,uexp(g_2 Vx,uX?x,u+h.c. ) )  1 ,  tr tr (1) 

where X?x, u denotes the sum of  the ordered products of  the other three links around the bordering plaquettes,  i.e. 

Ux,uX?x, u = ~ Up. (2) 
P~ link (x,u) 

We call ~" a modified link variable and Xx, u the neighbourhood o f  Ux, u ; note that usually X is not an element o f  
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the group. Let us discuss the expectation value of AUiB where A and B contain link variables other than U i. 
Utilizing the identity 

fdUd V Uexp {g-2 tr [(U+ V)X~ ] + h.c.} = f  dUd V V exp (g-2 tr [(U + v)xt] + b.c.}, (3) 

one finds 

C40iB>= [z-Xf(/~JidU/)dUidViAViBexp{g-2tr [(U+V)iXit]+h.c. + other terms} 1 

= I z - l f ( ] ~  d U ] ) d U i d  ViAUiBexp{g-2 tr [(U+ V)iX~i]+ h.c. + other terms}l 

× ( f  dViexp(g-2tr ViX~i +h.c.)) -1 

=z-l f([[d~)AUiBexp(g-2trUXti  +h.c.+otherterms)=(AUiB), (4) 

provided neither A nor B contain U i or modified link variables whose neighbourhood contains U i (any link vari- 
able may be integrated only once!). 

This possibility to substitute Uby  U'generalizes obviously to characters and products o f  characters o f  operators 
and has therefore a wide range o f  possible applications. Since U is already the result o f  an averaging process one 
expects a significant decrease in the variance of  the operator expectation values at least as long as the correlation 
length is o f  the order of  the lattice spacing. Parisi et al. [ 1] applied this method to the measurement o f  correla- 
tions of  thermal loops with spatial distance 2 and above. In the present work we exploit the possibility to mix 
link variables with modified link variables in the operators to determine both correlations o f  Polyakov loops and 
rectangular Wilson loops up to size 6 × 6 (see fig. 1). In parallel we also measure the expectation values o f  the old 
operators for comparison of  the efficiency. 

The gauge group is SU(2). For practical reasonswe approximate it by its 120-element icosahedral subgroup ~". 
It is well known that this approximation is reliable for 4/g 2 - /3  < 6 [6]. For SU(2) one may evaluate (1) explic- 
itely to obtain 

g = XI2(/3X)/XlI(/3X ) , X -= (det X) 1/2 , (5) 

where I1,12 are the modified Bessel functions. For given 13 this ratio is tabulated to be used in the subsequent 
measurements. We work with lattices o f  size 10 × 163 and 8 X 163 at t3 = 2.25 and 10 X 163 at/3 = 2.375. Some 
of  our results may be compared with those o f  ref. [4] for lattice size 6 × 163. 

Equilibrium configurations are obtained by preparing first N t X 83 configurations in equilibrium after 500 MC 
iterations, copying them to N t × 163 and performing another 400 iterations. Then we measure during the next 
400 iterations: correlations o f  thermal loops for each configuration, Wilson loops in the old way every 5th config- 
uration (i.e. on a total o f  80), Wilson loops with the new method every 25th configuration (i.e. a total o f  16). The 

Nt 
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R 
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Fig. 1. (a) Thermal loops constructed from modified link 
variables (bold fines), (b) a Wilson loop of size R X T construct- 
ed from 4 link variables and 2R + 2 T -  4 modified link variables. 

177 



Volume 138B, number 1,2,3 PHYSICS LETTERS 12 April 1984 

program is a mult ispin coded version o f  that  given in ref. [7] .  

Before we discuss the  results let us compare  the t ime requirements  o f  the new me thod  and its eff ic iency wi th  

regard to the  decrease o f  variance wi th  that  o f  the  classical me thod .  For  lat t ice size 10 X 163 the measurement  o f  

all rectangular Wilson loops wi th  1 ~<R, T~<5 t o o k  18.25 s (all values are for a CDC 7600)  wi th  the standard 
me thod ,  roughly a factor  5 less than the  t ime required for the new me thod ,  that  is 80 s for the de te rmina t ion  o f  

loops wi th  4 ~<R, T ~< 6. For  Polyakov loops the corresponding numbers  are 0.03 and 2.15 respectively.  The t ime  

for one  MC update  was 7.6 s (46 tts per link). Comparison o f  results, where they  have been determined b o t h  ways,  

show agreement  wi thin  the errors wi th  standard deviations via the new method  typical ly  smaller by factors 5 - 1 0  
for the  rectangular loops and 1 0 - 2 0  for the thermal  loop correlat ions.  Since these statistical errors depend on  the 

CP t ime  by  square-root law the new method  wins by  a factor  5 - 1 5  (in CP t ime)  in the case o f  large f luctuat ions.  

The free energy o f  a static charge-ant±charge pair may  be obta ined  f rom the correlat ion o f  thermal  loops 

N t - 1  

L(x) = tr  [ ' I  Ux+iu~, (6) 
i=0 

i.e. the  static potent ia l  

VNt(R ) = - N t l  log ( (L (0 )L(R) )  - ( / , (0))2) .  (7) 

For  a critical t empera tu re  T c = 4 3 A  L [8] the  values N t = 10, 8, (6) correspond to tempera tures  0.35 T c, 0 . 4 3 T  c, 

(0.58 Te) at/3 = 2.25 and 0.48 Tc, 0.59 Tc, (0.79 Tc) at/3 = 2.375.  
Another  way  to est imate the  potent ia l  is f rom ratios o f  e longated (T>> R)  Wilson loops [9] 

V T, T-1 (R)  = - l o g  [W(T, R)/W(T - 1, R)]  . (8) 

Table 1 
Values for the static potential obtained from elongated Wilson loops and correlations of thermal loops. The data for lattice size 
6 X 163 axe from ref. [4]. 

13 n t n s 10X 163 8X 163 6X 163 

vntl nt-t (ns) Vlo(ns) vntl nt-i (ns) Vs(ns) V6(ns) a) 

2.25 

2.375 

5 1 0.460_+0.003 0.462_+0.005 0.463_+0.004 0.464±0.002 0.459_+0.002 
5 2 0.764±0.010 0.768_+0.003 0.766_+0.012 0.766_+0.002 0.748±0.010 

+0.103 0.986-+0.041 1 .033_+0.014 0.962±0.023 5 3 0.988 _+ 0.038 1.073 -0.050 

+0.129 +0.068 - 1.132_+0.078 
6 4 1.218_0.123 1.046_0.040 - 

5 1 0.368 ± 0.002 0.389 ± 0.001 - - 0.382±0.002 
5 2 0.589 e 0.007 0.590 e 0.001 - - 0.563-+ 0.002 
5 3 0.720±0.013 0.730±_0.010 - - 0.668-+0.010 
6 4 0.832 ±0.036 0.845 e 0.010 - - 0.738e0.014 
6 5 0.920_+0.061 0.918±0.020 - - - 

6 6 0.968 ± 0.099 0.939 +0.028 _ _ _ 
-0.022 

7 - 0.953 +0.033 _ _ _ 
-0.025 
+0.076 

8 - 1.018 -0.043 - - - 

a) Data from ref. [4]. 
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In table 1 we compare the values for the potential  defined in (7) and (8). Let us mention that without  the variance 
reducing method o f  ref. [ 1 ] it would have been hardly possible at all to measure the Polyakov loop correlations at 
lattices with N t = 10. We find surprisingly good agreement between the values obtained from the two different 
definitions o f  V. For 13 = 2.25, where we have values for N t = 10 and N t = 8 we find no significant difference be- 
tween them, the first indication o f  temperature dependance may be seen from the comparison with results from 
ref. [4] for N t = 6. 

Estimating the string tension from the asymptotic slope at t3 = 2.25 we average over the four (from 10 X 163 

and 8 × 163) values V(3) - V(2) and obtain a2K = 0.254 + 0.040, at t3 = 2.375 a linear fit to V(3), V(4) and V(5) 

gives a2K = 0.104 + 0.009. The potential  for 13 = 2.375 exhibits for R ~> 6 a tendency to flatten faster than one 
naively expects from finite size periodici ty;  a fit with a sum of  exponentials accounting for the periodicity is not 
satisfactory. A possible explanation may be an underestimation o f  the errors: at larger distances the correlation 
might need a very high number o f  iterations in order to build up correctly. Much longer runs could clarify the si- 
tuation. 

We compare the values for the string tension with the Creutz-type estimates from ratios of  almost quadratic 
Wilson loops, 

x(R, T) : - l o g  [W(R, T)W(R - 1, T -  1)/W(R, T -  1) W(R - 1, T)] . (9) 

The new method allows to obtain reliable values at 13 = 2.25 up to X(4, 4), i.e. including 4 X 4 loops and at t3 = 
2.375 up to ×(5,5). The values for the next larger loop size are already o f  the order of  the errors. In fig. 2 we show 
the dependance on the loop size and find a clear signal that most o f  the prior determinations have not obtained the 
asymptotic  regime. We see from the figure that the estimate for a2K for large R is more refiable for ~ = 2.375 than 
for/3 = 2.25, where no asymptotic  saturation is observed. 

Let us discuss scaling by comparing ratios a(2.25)/a(2.375) obtained in several ways. 
(i) I f  one tries to change the scale of  a for the potential  values V(2) to V(5) at/3 = 2.375 such that they agree 

with the shape o f  the potential  at/3 = 2.25 we obtain rough agreement for 

a(2.25)/a(2.375)  = 1.65 + 0 .15 .  (10) 

(ii) Comparison o f  the "asymptot ic"  slopes gives 

a(Z.ZS)/a(2.375) = 1.56 + 0 .25 .  (11) 

This value might well be smaller due to the discussed uncertainty of  the string tension at/3 = 2.25. Asymptot ic  
scaling as predicted from lowest-order RG gives 
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Fig. 2. Values of x (/, l) for different values of l compared to 
the estimates of the asymptotic values from the potential 
slopes (shaded region): (a) # = 2.25, (b) # = 2.375. 
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a(2.25)/a(2.375) = 1.37 [1 + O(g2)] . 
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(12) 

Although this might imply a slight violation of asymptotic scaling we think that one also could blame the ques- 
tionable value o f a 2 r  at the smaller t3 value. From the reliable value ofa2• at 13 = 2.375 we obtain 

A L = (0.0151 + 0.0006)X/'k", (13) 

larger than previously published values * 1 
The method proposed by Parisi et al. [1] to reduce the variance in measurements of thermal loops is well apt 

for rectangular Wilson loops too. The improvement is roughly a factor 5 - 1 5  in overall gain ( 2 - 4  in the statistical 
errors) when the correlation length is of the order of the lattice spacing. Correlations of thermal loops may in this 
way be measured even for lattices with N t = 10, and Wilson loops for R, T larger than usual up to now. Earlier 
determinations of the string tension at the onset of  the scaling regime might not have been extracting the correct 

asymptotic slope. 

One of us (CBL) wants to thank the CERN TH-division for the kind hospitafity granted in summer 1983 when 
most of the discussed numerical work was done. 

,1 Having completed this paper we became aware of ref. [10] where an even larger value is obtained with the conventional method, 
and of ref. [ 11 ] where correlations of thermal loops for SU(2) are determined with the new method too. 
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