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Using Monte Carlo methods, we show that the finite temperature deconfinement phase transition in Z(3) lattice gauge 
theory is of first order by presenting evidence for the coexistence of the two phases in the transition region. A similar 
study for the Z(2) theory, however, failed to yield any such evidence, thus indicating the corresponding transition to be of 
higher order. 

Recent investigations of  t'mite temperature gauge 
theories using Monte Carlo methods on lattices, have 
yielded interesting results. The existence of  a decon- 
fining phase transition for SU(2) and SU(3) lattice 
gauge theories, known previously at strong coupling 
[1 ], has been shown to exist also for intermediate 
values of  couplings (2,3), which allowed an extrac- 
tion of  physical values for the transition temperature 
of the corresponding continuum theories using re- 
normalization group arguments. It is, o f  course, desir- 
able to understand more about the nature of  these de- 
confining phase transitions and the most natural ques- 
tion one would like to ask to this end is about the or- 
der of  the phase transition. Predictions about the or- 
der of the deconfinement phase transition in a host of 
pure lattice gauge theories have been made by Svetitsky 
and Yaffe [4]. They argue that due to the fact that 
the deconfinement phase transition can be charac- 
terized by the spontaneous breakdown of  a global 
symmetry,  i.e., the Z(N) centre symmetry for SU(N) 
groups, the critical behaviour of  SU(N) and Z(N) the- 
ories should be similar provided that the corresponding 
transitions are continuous. Relating the (d + 1)-dimen- 
sional gauge models at finite temperature to a d-dimen- 

sional spin model with the same global symmetry,  
they predict the order of  the phase transition in models 
with a global Z(3) symmetry to be first order, whereas 
in models with Z(2) symmetry,  the transition may be 
of  second order. On the basis of  Monte Carlo studies 
it has been recently claimed that the deconfinement 
phase transitions in SU(2) and SU(3) are indeed second 
and f rs t  order, respectively [5], basically using the 
sharpness of  the SU(3) transition as a criterion for its 
first order nature. However, we would like to emphasize 
that Monte Carlo simulations of  lattice gauge theories 
allow a clear distinction between discontinuous and 
continuous phase transitions. The coexistence of  two 
phases at temperatures around the critical temperature 
Tc, characteristic for a discontinuous phase transition 
can be shown in Monte Carlo runs at fixed temperature 
using different start configurations. This has been ob- 
served by Creutz et al. in their study of  Z(N) gauge 
theories at zero temperature [61. 

The aim of  our work is to see to what extent the 
order of  finite temperature phase transitions can be 
determined through a search for coexisting phases. 
We have studied Z(2) and Z(3) lattice gauge theories 
in three space dimensions for this purpose. The critical 
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behaviour of  these models is expected to be related to 
that o f  a 3-d Ising model and a 3-d three-state Potts 
model, which yield second and first order transitions, 
respectively [7]. Our analysis may, therefore, serve as 
a check of  some of  the basic predictions of  ref. [4]. 
Alternatively, combined with results such as those of  
ref. [5], our analysis may test the relevance of  the 
underlying global symmetry group for the order of  
the deconfinement transition. 

The thermodynamics of  Z(N) gauge theories in 
three space dimensions can be obtained from the par- 
tition function 

Z = tr exp(-/3/-/), (1) 

where the trace is to be taken over physical states [8, 
9] only,/3 = lIT is the inverse temperature and the 
hamiltonian H is given by [8] 

/-/ ~ ^ ^ ~+ 
= _ Cn,laCn+ls,vCn+v, p Cn,v̂+ 

plaquettes 

- 7 ~ l~n,u +h.c. (2) 
links 

Here the plaquettes and links are defined in a three- 
dimensional cubic lattice and the operators Rn, u and 
~'n,u, which are associated with a link joining neigh- 
bouring points n, n +/~ satisfy the following condi- 
tions 

/~n,u Cn,u = exp(-i2n/N)Cn,ul~n,u , 

^N = t i N  = I .  (3) Rn,u n,u 

The above Hamiltonian is self-dual for all N, the 
self-dual point being 3, = 1. Further, for N = 2 and 3, 
the cases o f  our interest, it is identical to the hamil- 
tonian of  the N state Potts model whose finite tem- 
perature behaviour has been discussed by Goldschmidt 
and Shigemitsu [9], using large N expansion. Fig. 1 
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Fig. 1. The chematic pha~ diagram for Z(2) and Z(3) lattice 
gauge theories at finite temperature in three space dimensions. 
The notation is explained in the text. 

shows their generic phase diagram for both Z(2) and 
Z(3), redrawn in our notation. These models have 
three different phases in which either only "electric" 
charges [9] or only "magnetic" charges or nothing is 
confined, labelled in fig. 1 as E, M, C, respectively. 
At zero temperature, self-duality predicts a phase tran- 
sition at 7c = 1, separating the phases E and M. At 
finite temperatures and 7 > 1, however, there is a 
deconfinement phase transition which separates the 
phases E and C. Due to the similarity of  this phase 
transition with what one has in SU(N) gauge theories, 
we will be interested in the following in the decon- 
finement transition of  electric charges. 

The problem of the evaluation of  the partition 
function, eq. (1), can be reformulated into that of  the 
calculation of  the partition function of  a Z(N) gauge 
theory defined on a (3 + l)-dimensional euclidean 
hypercubic lattice, using standard techniques [ 10,11 ]. 
For N = 2, 3 the partition function takes on a particu- 
larly simple form 

Z =  lim ~ exp( -ag  ~ ( 1 - R e U U U U )  
N~** {Un,la ) \ {Ps} 

- g ( a # , , )  {P~a} (I - Re UUUU)), (4) 

where a~ = 2/3/N~ and the couplingg(a~, 7) is given by 

g(aB, " ) ' ) = - ~ , n  (exp[ma,7/(m- l_)]_ +_ N_ - 1 ) ,  
exp[maaT/(m- 1)] - 1 

N = 2, 3 .  (5) 

In eq. (4) {Ps}, (P#} denote the set of  all plaquettes 
containing respectively zero or two links in the newly 
added inverse temperature direction and {Un, u } is 
the set of  all link variables in the (3 + 1)-dimensional 
lattice, taking on the values 

Un,u = exp(i27rk/N), k = 0, 1 ..... N - 1 . (6) 

The trace operation in eq. (1) restricts the Us in the 
/3 direction as below: 

U(n,1), 0 = U(n,N~3), 0 . (7) 

The confinement region of  electric charges is charac- 
terized by an order parameter which is zero in this 
regime and non-zero otherwise. For this purpose one 
uses the expectation value of  the thermal Wilson loop 
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(L(n))= k =1 U(n'k)'O ' (8) 

where (...)denotes thermal averaging: (X) = Z-1  tr X 

X exp(-/3/-/). As L(n) transforms non-trivially under 
global Z(N) transformations, a non-vanishing expecta- 
tion value signals a spontaneous breakdown of  this 
global symmetry. 

Using a 83 X 4 lattice, we have studied the above 
order parameter in the vicinity of  the deconfinement 
phase transition for both 2(2) and Z(3) lattice gauge 
theories. At zero temperature (/3 = ~ )  this transition 
occurs at the self-dual point "/c = 1 and has been shown 
to be first order [6]. For finite but low temperatures 
the phase boundary is still at 7c = I, as calculated in 
ref. [8], and the phase transition from the electric 
into the magnetic confinement phase is still expected 
to be of  first order. At sufficiently high temperature,  
however, we expect 7c > 1 and moreover, the Z(2) 
transition is supposed to be no longer of  first order 
but of  second order, whereas the one in Z(3) is still 
expected to be of  first order [4]. Therefore, we should 
always be able to find a region of  couplings and tem- 
peratures where one observes the coexistence of the 
deconfined phase ((L) > 0) and the confined phase 
((L) ~ 0) indicating a first order phase transition, ex- 
cept for the case when 7c > 1 for Z(2). 

In order to verify first whether for large enough/3 
one still has a first order transition at 7 = 1, we fixed 
7 = 1 and chose/3 = 0.75 for both Z(2) and 2(3). 
Using a standard heat bath algoritlun [12], we let the 
lattice evolve from ordered and random start configu- 
rations. Fig. 2a and 2b show the results of  this calcu- 
lation for the order parameter (ILl) for 2(2) and (Re 
L 3 ) for Z(3) ~ 1. One clearly sees that the system equili- 
brates quickly and exhibits a distinct two-phase behav- 
iour. We thus confirm the results of ref. [9] about the 
position of  the transition and also the naive expecta- 
tion that the transition continues to be first order [4]. 
We progressively decreased/3 in both the cases and 
found similar results as in fig. 2 for a substantial range 

*l Because of the exact Z(N) symmetry of the problem 
(I L I) for Z(2) and (Re L 3) for Z(3) is a convenient 
quantity to consider in Monte Carlo simulations on finite 
lattices [2,3]. Ilere L denotes an average of L(n) over the 
lattice after each iteration. 

10 t <IL(> 
,, . , . ,  .,,,.,,,.,,.-,.,,,.., ,., , . , , , . . , .  ,,,,,,,,.,,--,..,.,,.,.. ,..,,,- ,, .-,,., ,, 

"I' =1 

t 13 =0.75 
05 a) 

'" • , . , . , . ,  ,,.,., ,,'. ,.,, .,. ,, ,.. "" • -, , , :  . ,  , 

O[ - " ' . ' ,  . , ,  . . , . "  ,.- ..,. 

A i 3100 I I 6100 t t - ~ 0 ~ 
t 0 0  200 /*00 500 700 800 900 10 0 

No of i terat ions 

t < Rel_! > 10 • ' ,,,-,,........,,,,. ,, ".;,... ,." ,.,,.,,.,-...,. o..,, ,. , , , , . , , , , . . ,  ...,,, ,,, 

,1=1 

13:0 75 

100 200 300 t~O0 500 600 700 800 900 1000 
No. of  i terat ions 

Fig. 2. T h e  o r d e r  p a r a m e t e r  fo r  a r a n d o m  a n d  o r d e r e d  s t a r t  at  

"r = I and low temperature/3 = 0.75, i.e., (a) (ILl) for Z(2); 
and (b) (Re L 3) for Z(3). 

of/3, although the fluctuations in the random (con- 
finement) phase seem to become increasingly bigger 
as we lowered t3 still further. At 13 = 0.5 in the case of 
Z(2) and/3 = 0.65 in the case of  Z(3), we found that 
the coexistence of  the phases was no more to be seen 
at 3' = 1 ; instead both the ordered and random start 
soon approached each other and (ILl),  iRe L 3) was 
distinctly bigger than zero, as we show in figs. 3a and 
4a, respectively. Clearly, for these values of/3 and 7 
in the respective cases, one is in the deconfined phase 
(phase C in fig. 1) and the deconfining transition at 
these/3 values was no more at 3' = 1. To determine the 
3' at which the transition takes place, we fixed the/3 
value in each case and increased now 3'. In both the 
2(2) and 2(3) cases, we found that at 3' = 1.05 the 
system, when allowed to equilibrate from an ordered 
and random start, approached towards the random 
phase, with (I L I), (Re L 3) vanishingly small in each 
case, as shown in figs. 3e and 4d, respectively. Thus 
7 = 1.05 at/3 = 0.5 [/3 = 0.65] clearly correspondsal-  
ready to the confining phase for the Z(2) [Z(3)] theory. 
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Fig .  3.  T h e  e v o l u t i o n  o f  the order parameter  (ILl)  for the Z ( 2 )  

theory  from r andom  (dashed l ine)  and ordered (ful l  l ine) 
start conf igurat ions  at/3 = 0 . 5  a n d  (a )  "7 = 1 .0 ;  ( b )  7 = 1 . 0 2 3 ;  

(c )  3` = 1 . 0 2 5 ;  ( d )  3` = 1 . 0 3 ;  a n d  ( e )  3` = 1 . 0 5 .  
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Fig. 4.  S a m e  as  fig. 3, but for (Re  L 3) or" the Z(3)  theory at 

= 0 .65  a n d  (a) 3` = 1.0;  (b)  3` = 1 .03 ,  (c)  3` = 1 . 0 3 2 5 ;  a n d  (d)  3` 
= 1.05.  

In order to find out the phase transition point in 
each case, and check whether the transition is still 
of  first order on the boundary of  the phases E and C 
(fig. 1), we fixed/3 at the respective value used above 
and then varied 7 in very small steps in the range 1.0 
< 7 <  10.5. At each pair of13, 7 values, the behaviour 
of  the system evolving from an ordered and a random 
start was compared. We found a narrow region of 7 
values (A 7 ~ 0 .0025)  for the case of  tile Z(3) theory 
where one observes coexisting phases, as we show in 
figs. 4b and 4c for 7 = 1.03 and 1.0325, respectively. 
For the case of  Z(2), however, we found no such be- 
haviour for any 3' value. As we show in the three typ- 
ical runs near the transition point in figs. 3b, 3c and 

3d there were always very large oscillations in both 
the phases, but even if one averaged over the oscilla- 
tory behaviour, the mean <ILI> from the two start con- 
figurations approached each other, showing thus an 
absence of  any coexistence of  two phases *2 

The large fluctuations which one observes in the 
order parameter, as in figs. 3 b - 3 d ,  further indicate 
that the transition in the case of  Z(2) is perhaps of  
higher order. It is, of  course, not possible from these 

*2 We have performed the same exercise  at many  more  3` 

values in the range 1 < 7 < 1.05.  All the figures l ook  sim- 
ilar to figs. 3 h - - 3 d ;  only  the o ~ i l l a t i o n s  get smaller, as one  
moves  away  l ' rom 3' ~ 1 .025 .  
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data to determine whether it is indeed of second or- 
der, as claimed in ref. [4], although one can, in prin- 
ciple, check their prediction by calculating quantities 
such as the specific heat; a diverging peak (on finite 
lattices, one can see an increase in its height with in- 
creasing size of the lattice) at the transition point 
should be observed if the transition is of second order. 

We have shown the deconfinement phase transition 
in Z(2) and Z(3) lattice gauge theories, i.e., the transi- 
tion between the phases E and C of fig. 1, to be con- 
tinuous and of first order, respectively. As pointed 
out earlier, the implications of these results for SU(2) 
and SU(3) are quite interesting and it would thus be 
nice to see whether such coexistence of phases can 
also be found for the SU(3) theory which is also pre- 
dicted to have a first order transition on the basis of 
exactly the same arguments which predict the Z(3) 
transition to be of first order [4]. Though so far no 
evidence has been presented in the literature for co- 
existing phases in the case of SU(3) to support the 
claim that its transition is of first order, we under- 
stand that work is in progress and will be reported 
soon [5,13]. 

We thank T. Celik, P. Hasenfratz and H. Satz for 
discussions. 
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