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Abstract: 
The naive way of introducing finite fermion density on the lattice leads to quadratic divergences even for free fermions. The problem is discussed 

and a simple solution is suggested in this paper. 

The exciting problems of cosmology and heavy ion collisions [1] call for the introduction of finite 
temperature and particle density in (non-perturbative) QCD studies. The investigation of QCD under 
extreme conditions has a special flavour. Rather than attempting to explain and quantitatively derive 
old, well-known experimental data, we deal with a subject unexplored in laboratory experiments, and 
the results derived from QCD might influence future experiments. 

There is a straightforward way of introducing finite temperature in lattice calculations. The con- 
tinuum prescription for the partition function in terms of a functional integral can be taken over directly 
on the lattice. The partition function is defined as 

Z = f DUe D6 D45 exp{-SE(U, 6, 4~)} (1) 

on a lattice, which is finite along the fourth (temperature) direction: Nt3a = 1/T is finite. The gauge and 
fermion fields satisfy periodic and antiperiodic boundary conditions, respectively. 

The lattice approach proved to be powerful in determining the critical temperature and other 
thermodynamical quantities of pure gauge QCD [2, 3]. 

On the other hand, the introduction of finite particle density is hindered by the problems of defining 
the chemical potential on the lattice in a satisfactory way [4]. The naive generalization of the continuum 
prescription leads to quadratic divergences even for free fermions: in the continuum limit (a ~ 0) the 
energy density e is proportional to (#/a) 2 instead of the correct finite result e - p 4  (for massless 
fermions), with # being the chemical potential. 

Let H be the Hamiltonian of the system and N some conserved quantity. In the following, we shall 
take N to be the fermion number, the generalization is straightforward. The partition function is given 
by 

Z = e -~a = Tr e - / 3 ( H - / ' i N )  . (2) 

Going to functional integral representation, the presence of a non-zero chemical potential implies a new 
term in the Lagrangian: # times the fourth component of the current the space integral of which gives 
the conserved quantity N. 

Let us take free fermions in the continuum. The action is 
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/3 

f (½~(x) y. O.O(x) + m q~(x) O(x) +/z f (x )  "Y4 [/](x)) d4x 

o 

(3) 

with the usual antiperiodic boundary conditions along the fourth direction. The energy density is 
defined as 

1 8 
e - In Z[ t3~, nxea, (4) 

V Off 

and is given by the following integral when T ~ 0 :  

4 f (p4 + i/z) 2 
e - (27r)4 d4p (p4+ i/z)2 + p2 + m2.  (5) 

e is a (mass) 4 quantity. By power counting, the integral is quartically divergent. There is a trivial part, 
the vacuum energy at # = 0. By subtracting this term we get: 

f [   2+m2 1 4 "(P4 + i/z) 2 + p2 + 8 (277.)4 d4p m2 (p~=0) . (6) 

The integral is finite (not quadratically divergent) as it should. By performing the p4 integral first, two 
poles are encountered in the P4 plane both for /z  # 0 and # = 0 (fig. 1). The difference is zero, . except 
when both poles lie on the lower half plane for # # 0. This gives a 0 function: 

or 

4 f  e = (-~)4 7r d3pO(tz- V-pT + m2) ~/pZ + m z, 

el,,,: 1 /xa 
= 47/.2 

(7) 

which is the correct result. 
The naive generalization of this prescription would lead to the lattice action 

S = ~  {~ ~'. ( ~  y,. ~b~+,z - ~7~+~z 7~,~b~)+ma~b~ + ~ a ~ y4 ~,x}, 
x 

(8) 

® ® 
~=0 

Fig. I. 
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and yields the following result for the energy density (T ~ 0) 

1 
8 = a - 4  -- ~ d4q  

- - , r r  

E~=a sin 2 qj + (ma)  2 

3 

(sin q4- i/za) 2+ 2j=l si n2 qj + (ma) 2 

-- a - 4 { / z  = 0 } .  (9)  

What was a potential problem before, is present here explicitly: e is quadratically divergent 

e - ( l /a)  2/x 2 • (10) 

The problem is not related to the species doubling implied by eq. (3). The 16-fold degeneracy can be 
removed by Wilson's prescription, but the problem discussed above, remains. Replacing the current 
~Jx')14~Jx by a point-split form does not help either. In order to obtain a finite result, non-covariant 
counterterms should be introduced in eq. (3). Although their presence is understandable (there is no 
Euclidean symmetry for/z # 0), it would be an awkward way to proceed. 

What is the reason that no similar problems occurred in the continuum formulation? The key to 
understanding is the observation that in the Euclidean formulation of thermodynamics the chemical 
potential acts like the fourth component of an imaginary, constant vector potential. In continuum QED, 
for instance, the chemical potential is introduced exactly as a photon field: 

e~b~%,A~Abx - i/xgj~y4tO x . (11) 

For this reason an expansion in powers of /z is equivalent to inserting external, zero momentum 
photon lines to the amplitude. For instance, the contribution of order #2 to the thermodynamic 
potential g2 = -(/3V) -a In Z is proportional to 

'u = ~ ~ , ~ , ~  =4 

k=O k=O 

This graph is proportional to the (potentially quadratically divergent) photon mass renormalization 
which, however, is zero in a gauge invariant formulation at zero temperature (or, due to the plasmon 
effect, finite at finite temperature). Similarly, the finiteness of contributions of the order /z ~ to the 
amplitude F ("'") (n and m being the number of external photon and electron lines, respectively) follows 
from the renormalizability of the amplitude F ("÷z'"°. Although I factors of the electromagnetic coupling 
constant e are replaced by the chemical potential/z and l factors of wave function renormalization are 
also absent, the missing factors for charge and wave function renormalizations just cancel. This is again 
the consequence of gauge invariance.* 

In eq. (3) this Abelian gauge invariance is violated:/z does not enter like the fourth component of a 
gauge field on the lattice. The correct solution is 

{ aA } 1 / a , a - -  ^ - -  
S = a 3 ~ ,  ma(kxG + ~ (~x3,j~O~÷~ - q~x+s39~0~) + ~(e 0~74G+4 e-"aG÷a'/,~G) (12) 

x = 

* The importance of this generalized gauge invariance in the renormalization of theories with finite chemical potentials is emphasized by Baluni 

[Sl. 
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Expand this form in terms of a#. The first term is the kinetic term. The second term is the point-splitted 
current. However, there are higher order extra contributions-just  the appropriate non-covariant 
counterterms we discussed before. Of course, we shall not expand in #a  - like we do not expand U,~ in 
terms of A,,~. 

By this prescription, in eq. (9) in the integrand (sin q4- i~)2 is replaced by sin2(q4- i#) like in the 
continuum theory, and performing the q4 integration we get 

77 

f b (13) 1 d3qO(e ~a b ~ / ~ + 1 ) ~ / ~ + 1  ea4 2,1r3 
-- "rr 

with 

3 

b 2= ~ sin2 qj. (14) 
j = l  

Therefore, we see from eq. (13) that in every corner of the Brillouin zone the q4 integration leads in the 
a ~ 0  limit to the expected, correct result for the momentum cut-off - 0 ( p ~ - ~ / q 2 +  m2), and the 
resulting energy density is 16 times the usual finite energy density of free fermions at zero temperature. 

Using Wilson fermions, the degeneracy is removed and the factor 16 disappears for any r # 0 as it 
should (0 < r -< 1 is the usual arbitrary parameter in the Wilson action). 

Equation (12) can be immediately generalized to the case of QCD. At finite temperature and 
chemical potential the Wilson action with one flavour has the form 

3 

S = a 3 ~ ~b~ - K ~ [ ~ ( r  - wj)U~,j~+~ + ~÷/(r  4- Tj)U~+j~b~] 
x j = l  

where the gauge fields U are periodic, while the fermion fields ~b, ~ are antiperiodic along the 
"temperature" direction. The prescription is very simple: the hopping parameter K, related to the 
quark propagation by one lattice unit along the positive (negative) imaginary time axis is replaced by 
e~,aK(e-,,aK). 

Considering the thermodynamic potential at finite temperature, there are quark paths wrapping 
around the lattice in the imaginary time direction. Only these paths can lead to chemical potential 
dependence-f rom ordinary closed paths the # dependence cancels. This is understandable: ordinary 
loops describe virtual pair creation and annihilation, and the chemical potential of quarks and 
antiquarks is of opposite sign. It follows that it is not advisable to study this system at zero temperature 
exactly, even if we want to discuss the effect of the finite particle density alone. The hopping parameter 
expansion (and related iterative methods) breaks down in this case. This fact can also be seen from the 
explicit result for the energy density of free quarks. At zero temperature e is proportional to 
0(/,t - m (K)), and this distribution cannot be expanded in terms of the hopping parameter. No similar 
problem occurs at finite temperature. 
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