
Volume 125B, number 4 PHYSICS LETTERS 2 June 1983 

CHEMICAL POTENTIAL ON THE LATTICE 

P. HASENFRATZ and F. KARSCH 
CERN, Geneva, Switzerland 

Received 9 March 1983 

The naive way of introducing chemical potential on the lattice leads to quadratic divergences even for free fermions. 
Starting from the analogy between the chemical potential and the fourth component of an abelian gauge field, a simple 
solution is proposed. For Wilson fermions it leads to a trivial modification of the hopping parameter of quarks propagating 
along the imaginary time direction. 

The exciting problems of  cosmology and heavy ion 
collisions [1] call for the introduction of  finite tem- 
perature and particle density in (nonperturbative) 
QCD studies. There is a straightforward way of  intro- 
ducing a finite temperature in lattice gauge theory cal- 
culations and the lattice approach proved to be power- 
ful in determining the critical temperature [2] and 
other thermodynamical quantities of  pure gauge QCD 
[3,4]. There are also preliminary attempts at taking 
into account the effect of  quarks [5]. 

On the other hand, the introduction of  finite parti- 
cle density is hindered by the problems of defining the 
chemical potential on the lattice in a satisfactory way. 
The narve generalization of the continuum prescrip- 
tion [6,7] leads to quadratic divergences even for free 
fermions: in the continuum limit (a ~ 0) the energy 
density e is proportional to (,u/a) 2 instead of  the cor- 
rect finite result e ~ p4 (for massless fermions), with 
/a being the chemical potential. 

The naive generalization of  the continuum pre- 
scription gives rise to the action 

S = a3 ~x (rnafJx ~x +/la~x74~x 

4 

+-  ~ (~x'r.~x+;,- ~x+~.~x) , (1) 
2 u=l 

where the field ff is antiperiodic along the imaginary 
time (-~ inverse temperature) axis: ff(x,x4) = 
--J/(x,x4+N3); N3 fixes the extent of  the euclidean lat- 

tice in this direction such that T =/3 -1  = (N~a) -1  
yields the temperature of  the thermodynamic system. 

The energy density is defined as 

e = - V -1 ~ In Z/~/3l~u=fixea, (2) 

where 

Z = / I-] dffx d f x  exp ( -S )  (3) 
x 

is the partition function of  the system. After subtract- 
ing the vacuum contribution and taking the zero tem- 
perature (t3 ~ ~)  limit, we obtain 

e = a _ 4 (  1 
- -  4rr4 

~r 223=1 sin2q/+ (ma)2 

X -*r f d4q (sin q0 -- i/'ta)2 + ~23=lsin2qj + ( m a ) 2 -  ) 

- a - 4  { /a  ~- 0 ) .  ( 4 )  

It is easy to check that this expression is quadrati- 
cally divergent [~(/.t/a) 2] in the continuum limit. The 
problem is not related to the species doubling implied 
by eq. (1). The 16-fold degeneracy can be removed by 
Wilson's prescription, but the problem discussed 
above, remains. Replacing the current ~x74t~x by a 
point-split form does not help either. In order to ob- 
tain a finite result, non-covariant counterterms should 
be introduced in eq. (1). Although their presence is 
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understandable (there is no euclidean symmetry for 
/a ~ 0), it would be an awkward way to proceed. 

What is the reason that no similar problems occur- 
red in the continuum formulation? The key to under- 
standing is the observation that in the euclidean for- 
mulation of  thermodynamics the chemical potential  
acts like the fourth component  of  an imaginary, con- 
stant vector potential .  In continuum QED, for 
instance, the chemical potential  is introduced exactly 
as a photon  field. For  this reason an expansion in 
powers of/~ is equivalent to inserting external, zero 
momentum photon lines to the amplitude. For 
instance, the contr ibut ion of  order/.t 2 to the thermo- 
dynamic potential  ~2 = -(/3V) -1  in Z is proport ional  
to 

This graph is proport ional  to the (potential ly quadrat- 
ically divergent) photon mass renormalization which, 
however, is zero in a gauge invariant formulation ,1 
at zero temperature (or, due to the plasmon effect, 
finite at finite temperature).  Similarly, the finiteness 
of contributions of  the order/a l to the amplitudes 
F (n'm) (n and m being the number of  external photon 
and electron lines, respectively) follows from the 
renormalizabili ty of  the amplitude I "(n+l'm). Although 
l factors of  the electromagnetic coupling constant e 
are replaced by the chemical potential  ~t and l factors 
of  wave function renormalization are also absent, the 
missing factors for charge and wave function renor- 
malizations just cancel. This is again the consequence 
of gauge invariance ,2 

In eq. (1) this abelian gauge invariance is violated: 
/a does not enter like the fourth component  of  a gauge 
field on the lattice. The correct solution is 

3 
S = a3 ~ ( ma~x t~ x + 1 ~  (~xW ~x+i- ~:¢+i3̀ j ~x) 

x \  2/=1 

+ ½(eUafx3"4 ~x+4 -- e-Uafx+?43"4 ~ x ) ) .  (s) 

I:1 On the lattice this problem is discussed in detail in ref. [8]. 
,2 The importance of this generalized gauge invariance in the 

renormalization of theories with finite chemical potentials 
is emphasized by Baluni [7]. 

By this prescription, in eq. (4), in the integrand 
(sin q4 - i/1) 2 is replaced by sin2(q4 - i/a) like in the 
continuum theory,  and performing the q4 integration 
we get 

ea 4 = 2n 3 f d3q 

× 0 [e ua - b - (b 2 + 1)1/21 b/(b 2 + 1) 1/2 , (6) 

with 

3 

b 2 = ~[~ sin2qj . (7) 
/=1 

Therefore we see from eq. (6) that in every corner of  
the Brillouin zone the q4 integration leads in the a -+ 0 
limit to the expected, correct result for the momen- 
tum c u t - o f f ~ 0  [/~ - (q2 + m2)1/2], and the resulting 
energy density is 16 times the usual finite energy den- 
sity of  free fermions at zero temperature. Using Wilson 
fermions, the degeneracy is removed and the factor 16 
disappears for any r =/= 0 as it should (0 < r ~< 1 is the 
usual arbitrary parameter in the Wilson action). 

Eq. (5) can be immediately generalized to the case 
of  QCD. At finite temperature and chemical potential  
the Wilson action with one flavour has the form ,3 

3 

U ~ A + ~x+;(r + 3"/) x,x+j *x] 

- K[eUafx(  r - "/4) Ux,x+4 ~x+2~ 

+ e-Uat~-x+4(r + 3'4) Utx,x+~t~xl) 

2 ~  ~ (1 - N  -1  Re tr UUUU), 
+ g2 plaquettes 

(8) 

where the gauge fields U are periodic, while the fer- 
mion fields f ,  ~b are antiperiodic along the "tempera- 
ture" direction. The prescription is very simple: the 
hopping parameter K, related to the quark propaga- 

,3 We write down the action on a symmetric lattice. For 
finite temperature considerations it might be convenient to 

introduce different lattice spacings in time and space direc- 
tions. For details see ref. [3]. 
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tion by one lattice unit along the positive (negative) 
imaginary time axis is replaced by e tsaK (e-~'aK). 

Considering the thermodynamic potential at finite 
temperature, there are quark paths wrapping around 
the lattice in the imaginary time direction. Only these 
paths can lead to chemical potential dependence - 
from ordinary closed paths the/2 dependence cancels. 
This is understandable: ordinary loops describe virtual 
pair creation and annihilation, and the chemical po- 
tential of quarks and antiquarks is of opposite sign. It 
follows that it is not advisable to study this system at 
zero temperature exactly, even if we want to discuss 
the effect of the finite particle density alone. The hop- 
ping parameter expansion (and related iterative meth- 
ods) breaks down in this case. This fact can also be 
seen from the explicit result for the energy density of 
free quarks. At zero temperature e is proportional to 
0(/1 - m (K)), and this distribution cannot be ex- 
panded in terms of the hopping parameter. No similar 
problem occurs at finite temperature. 

The above way of introducing a chemical potential 
into the lattice action of QCD leads to a quite natural 
extension of the calculational scheme for thermody- 
namic quantities in terms of a hopping parameter 
expansion. 

We thank C. Bernard, R.V. Gavai, B. Lautrup, H. 
Satz and I.O. Stamatescu for discussions. 

References 

[1] For recent reviews, see: Q. Shafi, in: Proc. Intern. Conf. 
on High energy physics (Lisbon, 1981) ed. J. Dias de 
Deus; 
L. Van Hove, in: Quark matter formation and heavy ion 
collisions, eds. M. Jacob and H. Satz (Bielefeld, 1982). 

[2] L.D. McLerran and B. Svetitsky, Phys. Lett. 98B (1981) 
195; 
J. Kuti, J. Polonyi and K. Szlachanyi, Phys. Lett. 98B 
(1981) 199; 
J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. 
101B (1981) 89; 
K. Kajantie, C. Montonen and E. Pietarinen, Z. Phys. C9 
(1981) 253. 

[3] J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. 
B205 [FS5] (1982) 545. 

[4] A. Billoire, G. Lazarides and Q. Shafi, Phys. Lett. 103B 
(1981) 450; 
C.B. Lang and C. Rebbi, Phys. Lett. l15B (1982) 137; 
I. Montvay and E. Pietarinen, Phys. Lett. 115B (1982) 
151. 

[5] J. Kuti and J. Polonyi, in: Proc. Johns Hopkins Work- 
shop on Current problems in particle theory 6 (Florence, 
1982); 
J. Kogut et al., Phys. Rev. Lett. 48 (1982) 1140; 
J. Kogut et al., Phys. Rev. Lett. 50 (1983) 393; 
J. Engels, F. Karsch and H. Satz, Phys. Lett. l13B (1982) 
398; 
J. Engels and F. Karsch, The deconfinement transition 
for quenched SU(2) lattice in QCD with Wilson fermions, 
CERN preprint TH. 3481. 

[6] M.B. Kislinger and P.D. Morley, Phys. Rev. D13 (1976) 
2771; 
B.A. Freedman and L.D. McLerran, Phys. Rev. D16 
(1977) 1130, 1147, 1169; 
J.I. Kapusta, Nucl. Phys. B148 (1979) 461. 

[7] V. Baluni, Phys. Rev. D17 (1978) 2092. 
[8] B.E. Baaquie, Phys. Rev. D16 (1977) 2612. 

310 


