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Using percolation theory to determine transition points, we show that strongly interacting bulk systems exhibit hadron- 
ic matter behaviour for densities 0.48 n o ~< n ~< 14.0 n o and quark matter behavior for n > 3.84 no, where n o = 0.17 fm -3 
is nuclear density. For 3.84 n o ~< n ~< 14.0 no, we find a coexistence region of the two phases. 

Possible phase transitions of  strongly interacting 
matter from a hadron to a quark state have in the past 
years received considerable at tent ion [1 ]. Recently 
Baym [2] suggested that this problem might be treated 
by percolation theory [3] and obtained some first esti- 
mates for "percolat ive" transit ion points. The aim of  
this note is to extend his considerations, showing that 
a percolation approach can provide both  an appealing 
qualitative picture of  the transitions in strongly inter- 
acting matter  and rather reasonable quantitative values 
tbr the transition densities. 

Hadrons are on one hand extended objects, on the 
other built-up of  strongly confined quark constituents. 
The interaction between quarks must provide the scale 
for both  the size of  hadrons and for the range of  had- 
ronic forces as seen e.g. in typical ("sof t"  or "small"  
PT") scattering and production experiments [4]. Let 
us use this to determine some hadronic size parameters. 
For simplicity, we assume quarks inside a hadron (e.g., 
the q - q  pair in a pion) as confined in an infinite square- 
well potential  of  radius RQ. If the same range also 
holds for the "sof t"  interaction force between to ha- 
drons, then the radius of  a hadron as seen in a scatter- 
ing experiment is 2RQ; at a separation distance r 
<~ 2RQ, the quarks in each of the collision partners can 
be close enough to interact; for r > 2RQ, this is impos- 
sible (see fig. 1). Hence the volume of  a hadron is given 
by V H = 8 VQ, if VQ = 4nR ~/3 is the size of  the con- 
finement sphere or hadronic "core".  

We can now easily distinguish different density re- 
gions. For a many hadron system of  density n =-N/V 

r < 2RQ 

Fig. 1. Hadronic collision. 

1 / VH, we have a hadron gas with interactions only 
during collisions - so we expect at equilibrium a free 
gas ofhadrons. However, when the density becomes 
high enough to have arbitrarily large subsystems of  
clusters of  hadrons in simultaneous interaction, then 
we shall speak of  hadronic matter. Although hadronic 
matter  thus provides a connected mult ihadron system, 
the quarks involved are in general still associated to a 
given hadron, as illustrated in fig. 2: all but  one of  the 
quarks shown are at distances r > 2RQ from the anti- 
quarl~ x. We are therefore not yet  in a density regime 
corresponding to "delocalized" [2] quarks; this is 
reached only when the hadronic cores VQ themselves 
form an interconnected cluster, since with overlapping 

Antiquark x 

Fig. 2. Hadronic matter. 
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Fig. 3. Quark matter. 

cores (see fig. 3) one can no longer connect quarks to 
specific hadrons. In this case, we speak of  quark mat- 
ter. Summarizing, we distinguish three density regimes: 
a free hadron gas if  there is on the average no overlap 
of  hadronic volumes, hadronic matter  if  in the thermo- 
dynamic limit there are infinite clusters o f  overlapping 
hadrons, but not of  their cores, and finally quark mat- 
ter if there are infinite core clusters. 

Let us now recall the basic question asked by  perco- 
lation theory [3]. If we put conducting spheres into an 
arbitrarily large box,  allowing overlap, at what density 
of  spheres will current be able to flow ? Numerical 
studies [5] indicate that this "percola t ion"  will occur 
when the fraction 0.28 of  (three-dimensional) space is 
covered by spheres, or - equivalently - when the sum 
of the sphere volumes makes up 34% of  space. 

Since the onset of  current flow also signals the onset 
of  infinite cluster formation,  the connection between 
percolation and the different density patterns of  
strongly interacting matter  becomes evident. We thus 
find the beginning of  the hadronic matter  region at 
the percolation density 

n H = 0 ,34/V H , (1) 

for hadron size spheres. With a hadronic radius (R H 
= 2RQ of  l fm VH j = 0.24 fm - 3 ,  so that we expect 
hadronic matter  formation at densities 

n~>n H = 0 . 4 8 n  o , (2) 

where n O = 0.17 fm - 3  is nuclear density. Similarly, 
core percolation starts at 

nQ = 0.34/VQ = 2.72/V H , (3) 

so that for densities 

:t ~> nQ = 3.84 n 0 , (4) 

we expect quark matter  formation. 
It appears physically reasonable that in both cases 

there will be a coexistence regime beyond the percola- 
tion point. Thus, for n < n i l ,  we have only a hadron 
gas, but slightly above n = n H both hadronic matter 
and hadron gas; similarly, just above n = r/Q we expect 

both hadronic and quark matter.  To obtain estimates 
for the sizes of  these coexistence regions, we may con- 
sider "inverse" of  "vacuum bubble"  percolation. Re- 
ducing the density of  hadronic or quark matter  will 
eventually lead to the formation of  "matterless" bub- 
bles of  a certain size, and we may ask at what density 
these will form an infinite connected cluster. 

If we fill a box of  size V with N spheres of  size VH, 
allowing overlap, then 

[( ~ V H )/V] N (5) 

is the fractional volume not covered by spheres. At the 
percolation point for hadronic matter,  29% of  space is 
covered, so that 

[ ( V - V H ) / V ] N  ~ 0.71 (6) 

is the fraction remaining empty.  Writing for large V 

(1 V H / v ) N  ~ e x p [ - ( N / V ) V H J  

= e x p ( - n  H VH) : 0.71 , (7) 

we recover the percolation density (1). Applying the 
same argument to the formation of  vacuum bubbles of 
size VH, we obtain 

[ ( V - V r t ) / v ] N  ~ 0 .29 ,  (8) 

for the fraction of  space covered by the vacuum bub- 
ble percolation point. This yields, arguing as in eq. (7) 

h H ,-~ 1.24/V H = 1.75 n o , (9) 

as the highest density at which the vacuum can still 
form an infinite cluster of  size V H bubbles. - Similar- 
ly, VQ or core-sized vacuum bubble percolation ceases 
at 

nQ = 1.24/VQ = 9 .92/V H = 14.0 n o . (10) 

We thus obtain the picture shown in fig. 4 for the tran- 
sition of  strongly interacting matter  from hadron gas to 
quark matter.  

In closing we note that for a hard sphere hadron gas 
[6], solidification sets in at 0.74 of  close-packing den- 
sity. With the parameters chosen here, this yields. 

nc H = 0.77 n o ,  (11) 

as the critical density for the phase transition from ha- 
dron gas to hadron solid. For a gas of  quarks confined 
in square-well potentials [7] the phase transition from 
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Fig. 4. Strongly interacting matter as a function of density; 
no = nuclear density. 

bound  to unbound  const i tuents  occurs at 0 .4 /VQ;  

with  V H = 8 VQ this implies 

nc Q = 4.5 n o , (12) 

for the critical densi ty,  above which the quarks can 
move freely wi th in  mat ter .  The results o f  the percola- 

t ion picture thus agree rather well wi th  o ther  models  

also const ructed to provide a single descript ion o f  

strongly interact ing mat te r  on b o t h  sides o f  the tran- 

sition point .  
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