
Volume 79B, number 3 PHYSICS LETTERS 20 November 197b 

EQUATION OF STATE FOR HADRONIC MATTER 

F. KARSCH and David E. MILLER ’ 
Department of Theoretical Physics, University of Bielefeld, Fed. Rep. Germany 

Received 3 July 1978 

An exact equation of state for a relativistic quantum gas model of hadronic matter is derived using analytical methods. 
Our results are shown to be an extension of the quantum gases through the inclusion of the hadronic mass spectrum p(m). 

The statistical description of a system of strong- 
interacting particles results in regarding the formed 
resonances as particles in a way similar to the statisti- 
cal bootstrap model [ 1,2] and to the dual resonance 
model [3,4] with the mass spectrum in the large m 
limit of the type 

p(m) = cma exp{bm} , (1) 

where a, b, c are constants. The thermodynamical 
properties of hadronic matter are basically developed 
out of the theory of interacting quantum gases [5], 
where the interactions are replaced by an ideal gas 
containing the basic hadrons of mass m. and their 
resonances or intermediate states [6] expressed through 
p(m). The structure of the ideal relativistic quantum 
gases [7] in invariant phase space [8] may be described 
in the grand canonical ensemble by the grand partition 
function Z@, V, A) where /I is the inverse temperature, 
V the spatial volume and A is the relativistic fugacity. 
The properties of A in a relativistic Bose-gas model 
have been investigated [9] and extended to a system 
with a mass spectrum [lo]. 

In the present work we shall rewrite Z(p, I’, A) for 
a simple relativistic Bose-gas model in invariant phase 
space with a mass spectrum in the form 

Z@ V, A) = exp -sj-d”fi 
1 

Xf d mm3p(m)ln(l-Ae-mflf) 

m0 

’ Heinrich-Hertz Fellow 1977-78. 

(2) 

From this equation we are immediately able to get the 
thermodynamical functions, in particular, we shall 
consider the pressure p and the particle density n in 
the thermodynamic limit as 

(3b) 

By using the results of (2) we evaluate these thermo- 
dynamical quantities as 

p =$ Jdrpdm(G- 1)3/z m4p(m) 
exp{mflt} -A 2 (44 

1 m0 

Am - 
n=-- dt s s 

2n2 1 m. 

dm t(t2 - 1)1/z m3p(m) 
exp(mpt} -A . (4b) 

In the following discussion we shall show how it is 
possible to reduce the problem of the inversion of these 
equations of the solution of a well-known problem in 
singular integral equations the Hilbert problem [ 111. 
This method was first applied by Leonard [12] in 
order to solve for the fugacity A of the ideal quantum 
gases. Not long thereafter it was extended by Nieto 
[13] to find the fugacity and therefrom the equation 
of state for the ideal relativistic quantum gases. 
Although in the following work we shall only carry out 
the explicit derivation of the equation of state for a 
hadronic Bose system in the thermodynamic limit, 
there is no further mathematical difficulty in working 
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out the same procedure for the hadronic Fermi system. 
However, the hadronic Fermi system presents diffi- 
culties in the determination of the mass spectrum. 
Furthermore, it is possible to include for the Bose gas 
the additional expressions arising from the zero mo- 
mentum term relating to the Bose-Einstein conden- 
sation. We also remark that another approach to the 
equation of state of a hadronic system in a “correla- 

tion” volume has been discussed by FrC and Page [ 151 
in the investigation using the statistical bootstrap 
equation with A = 1. 

Now we reformulate the expressions (4a, b) for the 
solution of A using the formulation of the Hilbert 
problem [ 111. First we define the transformation to 

the new variables as x = exp {mot} and y = t, for which 
we write (4a, b) as 

p = F,(A)/6n2fl, n = F,(A)/~R~, Pa, b) 

where the functions F,(a) with 01 replacing p or y1 are 
given by the integrals 

F(A)=A J dx >* x(x-A)’ (6) 

with A * = exp {mo/3}, the lower limit. The explicit 
forms off,(x) are given as 

0) 

fp(x) = j- dy (t2 - 1)3’2 m4dm>/v , 
1 

(7a) 

b(x 
f,(x) = s dy t(t2 - 1)1/2m3p(m)/y , 0) 

1 

where the upper bound of integration b(x) is written 
as (In x)/moo and the function m (x, y) is given by 
(lnx)/Pv. Following Leonard [ 12 ] we define the 
function P(x) of the complex variable s as 

P(s) = 1 - F,(s)/6n2@ , (8) 

which has a branch cut on the real axis [A *, -) and a 
zero at s = A. From the structure of the Hilbert pro- 
blem we use the Plemelj formula [l l] to find the 
limiting values of P(s) above and below the branch 
cut as 

P*(s) = 1 - Pr {Fp(s)/6s2/3p3 T inf,(s)/6n2pp, (9) 

where “Pr” refers to the principle value. From this 
formula we find that the ratio P’(s)/P-(s) in the inter- 
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angle is fo!nd to be 
val [A*, 00 1s expressed by exp {ai@,( where the 

Op(s) = arctan{nf,(s)/(F,(s)- 67r2pp)} (10) 

The essential structure of the Hilbert problem is to 
find this function Pin terms of P’/P- by knowing 
only the limiting values on the branch cut. This mathe- 
matical problem may be uniquely solved as soon as the 
behaviour of Op(s) on the cut together with all the 
singularities of P(s) are known. 

The examination of the asymptotic behaviour of 
the functions fp and Fp shows that 

lim tan Op(s) = 0 , (114 
s+A * 

lim tan Op(s) = (rrb/P) (1 - b//3) . (1 lb) 
s+m 

The equation (1 la) is identical to that found by Nieto 
[13] for the relativistic gas. However, the limit in (1 lb) 
differs from his for finite fl and b when p # b. In our 
case we find for the chosen branch of the arctangent 
the following limiting conditions on the angles: 

lim Op(s) = -7~) 
.-A* 

(12a) 

lim Op(s) = h (b/(3) , Wb) 
S’-= 

when -n/2 < h (b/p) < 0 and limp-b h (b//3) = 0. 
Furthermore, we have the conditions that P(A) is zero 
and that P(s) diverges for large s. Because A is the only 
singular point of P(s), we find accordingly the well- 
defined solution of the Hilbert problem as 

P(s) = cs exp W(s)) 1 Wa) 

@p(x) r(s)=fldxx~. * (13b) 

The equality of the two forms of P(s) in the equations 
(8) and (13a) enables us to determine the constant c 
together with A through the examination of P(s) and 
its first derivative at s = 0. This solution yields as a 
result for A in the form 

1 
--I- 

‘^dxfp(x) 1 1 _=--- -Lrdx@p(x),x2. 
6rr2Pp A* x2 A A* rAS 

(14) 

The substitution of (7a), after we have taken the inverse 
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of our above variable transformations, into the left 
hand side of (14) gives us the solution for A as 

1 r+l dx--_ - @P(X) 

i=A* rrA* X2 s 

1 - 
+------- dmm2p(m)K#n), 

2&p2p 
s 
m0 

(15) 

for which we have used the integral representation 
[ 141 for the modified Bessel functions of the second 
kind K,(x). 

Similarly we may repeat the entire calculation for 
the particle density n to find another solution for A as 

1 _L+r, dx- 
m @,(x) 

i-A* nAe X2 s 

+-L= 
s 

2n2nB Mo 
dm m2p(m)K2(m0), 

whereby O,(x) is defined analogously with (10). 
For the equation of state we bring together (15) 

and (16) while solving for l/A so that, 

(&--:-)S dm m2p(m)K2(mi-? 
m0 

= 2?r/3 i dx (O,(x) - 0P(x))/x2 . 
A* 

(17) 

We can immediately see that the absence of the right 
hand side of (17) gives back the usual classical ideal 
gas equation of state. Thus the integral over these 
angles, when finite, expresses both the non-ideal cha- 
racter of the relativistic quantum gases and the proper- 
ties of the hadronic system through p(m) as seen from 
(7a,b), (10) and (llb). 

The specific nature of Bose effects have been 
studied previously by Engels et al. [ 161 for the statis- 
tical bootstrap model where their relative importance 
as well as the solution of this generalized model has 
been discussed. The effect of Bose-Einstein clustering 
[9] in hadronic matter has been considered. For the 
case a = -3 Bose-Einstein condensation has been 

found to take place [17] at a temperature under the 
ultimate (Hagedorn) temperature. 

Furthermore, we notice from our equation of state 
(17) that in the limit fl-+ b the properties vary de- 
pending upon a. For a > -512 we have from the diver- 
gence of the mass spectrum integral in equation (17) 
simply the ideal gas solution. At a = -5/2 we have the 
limiting case of a logarithmic divergence. The interesting 
case for a < - 5/2 has the mass spectrum integral finite 
making the correction on the right hand side of (17) 
important. In all cases the limit of high temperature 
and low density gives back the basic ideal gas structure. 
However, it is clear that for the explicit examination 
of the Bose-Einstein condensation we must include 
the zero momentum term when a < -S/2. 

We want to thank H. Satz and R. Hagedorn for dis- 
cussions and for criticism of the manuscript. One of us 
(D.E.M.) would like to acknowledge the financial 
support of the Heinrich-Hertz-Stiftung. 
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