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Abstract 

How reliably neurons convey information depends on the extent to which their activity is affected by stochastic 
processes which are omnipresent in the nervous system. The functional consequences of neuronal noise can 
only be assessed if the latter is related to the response components that are induced in a normal behavioural 
situation. In the present study the reliability of neural coding was investigated for an identified neuron in the 
pathway processing visual motion information of the fly (Lucilia cuprina). The stimuli used to investigate the 
neuronal performance were not exclusively defined by the experimenter. Instead, they were generated by the fly 
itself, i.e. by its own actions and reactions in a behavioural closed-loop experiment, and subsequently replayed 
to the animal while the activity of an identified motion-sensitive neuron was recorded. Although the time course 
of the neuronal responses is time-locked to the stimulus, individual response traces differ slightly from each 
other due to stochastic fluctuations in the timing and number of action potentials. Individual responses thus 
consist of a stimulus-induced and a stochastic response component. The stimulus-induced response component 
can be recovered most reliably from noisy neuronal signals if these are smoothed by intermediate-sized time 
windows (40-100 ms). At this time scale the best compromise is achieved between smoothing out the noise and 
maintaining the temporal resolution of the stimulus-induced response component. Consequently, in the visual 
motion pathway of the fly, behaviourally relevant motion stimuli can be resolved best at a time scale where the 
timing of individual spikes does not matter. 

Introduction 

Even when navigating through hectic everyday traffic we usually 
take it for granted that we will be able to respond appropriately in 
most situations and tlius arrive safely at our destination. In many cases, 
this ability requires fast behavioural decisions which, notwithstanding, 
have to be sufficicntly reliable. Such decisions are inevitably preceded 
within the organism by a series of processing steps. First, the outside 
world has to be perceived by the sensory system. Then the relevant 
features of the stimuli have to be extracted in the nervous system 
from the activity profile of the sensory neurons before the appropriate 
motor programs can be initiated to execute the final behavioural 
reactions. Apart from the fact that all these processing steps may 
take a considerable amount of time, they do not follow completely 
deterministic rulcs, and thus may lead to a somewhat unpredictable 
outcome of the whole sequence of information processing. Con- 
sequently, behavioural responses have only limited reliability. This 
indeterminacy may be a consequence of noisy sensory input (e.g. 
photon noise: Bouman et al., 1985), synaptic noise (e.g. Allen and 
Stevens, 1994), or the stochastic opening and closing of ionic channels 
underlying neuronal activity (Hille, 1992). Thus, when a given 

stimulus is presented repeatedly to a neuron, its responses are by no 
means identical but may vary quite a lot. It is not uncommon that 
the variance of these stochastic neuronal response fluctuations is 
almost as large as the average response amplitude (e.g. Tolhurst et al., 
1983; Vogels et al., 1989; Miller et al., 1991; Britten et aZ., 1993). 

How does the nervous system cope with the detrimental con- 
sequences of its various noise sources? Experimenters usually try to 
eliminate noise from the neuronal response traces in order to increase 
the reliability of their inferences about stimulus-response relationships 
by averaging the individual responses to many stimulus presentations. 
However, in real life an animal can hardly ever employ this strategy. 
As humans do in daily traffic, an animal often has only one chance 
to react correctly. Hence, in order to understand how the nervous 
system is able to mediate behavioural responses in real time, it is 
essential to take into account the functional consequences of the 
limited reliability of neural signals. 

Of course, the absolute noise level on its own does not tell much 
about how reliably information is encoded by a neuron. Rather, how 
well a neuron can convey information depends in an intricate way 
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on the relationship between the amplitude of the noise and that of 
the stimulus-induced response component ('SIRC'). In a normal 
behavioural situation the animal's own actions and reactions have 
immediate consequences on its sensory input. Therefore, the SIRC is 
not simply the consequence of an external source but is determined, 
at least to a large extent, by the animal itself. Hence, in order to 
assess the functional significance of neuronal noise, the noise has to 
be related to the stimulus-induced responses as are elicited by 
behaviourally relevant stimuli, i.e. stimuli that are similar to those 
experienced by an  animal in a normal behavioural situation. 

The relationship between stochastic and stimulus-induced response 
components may greatly depend upon the temporal resolution with 
which the neuronal responses are taken into account. For instance, if 
responses are smoothed by temporal integration within a time window 
of a given size, both the noise as well as the SIRC may decrease, 
though to a different extent depending on the size of the integration 
window. On which time scale neuronal activity in a particular system 
conveys most in formation cannot be decided solely by inspecting 
neuronal responses, but can only be inferred if the constraints are 
known that are imposed by the computational task of the system. 

In the present account the precision of neural coding is analysed 
in the context of visual orientation behaviour of the fly. Flies are able 
to exhibit perfectly visually controlled flight manoeuvres which can 
be analysed both under free-flight conditions (Land and Collett, 1974; 
Wagner, 1986; Kimnierle et al., 1996) as well as with a flight 
simulator under well defined laboratory conditions (Reichardt and 
Poggio, 1976; Heisenberg and Wolf, 1984; Egelhaaf et al., 1988; 
Egelhaaf and Borst, 1993a). In order to be able to perform these 
flight manoeuvres, the animals have to stabilize their course against 
disturbances, such as a gust of wind. Deviations from a straight flight 
course lead to a characteristic optic flow on the eyes which contains 
a strong rotational component. This rotational component is evaluated 
in the fly's nervous system and transformed into compensatory 
steering movements which stabilize the flight course. 

Visual interneurons in the third visual neuropil which are specifically 
tuned to the optic flow generated on the eye during visual orientation 
behaviour are readily accessible to experimental analysis (for review 
see: Hausen, 198 1; Egelhaaf et al. 1988; Hausen and Egelhaaf, 1989; 
Egelhaaf and Borst, 1993a). In particular, one of these neurons, the 
so-called H1-cell. can be recorded from for extended periods of time. 
The H1-cell responds best to coherent motion in large parts of the 
visual field and plays a role in tuning other visual interneurons to 
particular types of optic flow (Hausen, 1981; Hausen and Egelhaaf, 
1989). Since the activity of this neuron can be manipulated in a well 
defined way by appropriate visual stimulation, the reliability of 
neuronal responses contingent upon a given stimulus can be assessed. 
Hence, as has bcen shown in previous studies (Gestri et al., 1980; 
Ruyter van Stevcninck and Bialek, 1988, 1995; Bialek et al. 1991), 
the H1-cell lends itself well to an experimental analysis of how 
precisely a stimulus can be encoded by a neuron. In contrast to these 
studies, we analysed in the present account the consequences of 
neuronal noise for the representation of behaviourally relevant stimuli 
by the H1-cell. By 'behaviourally relevant', we mean that the stimuli 
used in the electrophysiological experiments were generated in 
previous behavioural experiments with a flight simulator by the fly's 
own actions and reactions while it tried to stabilize its flight course 
in a similar way as in natural flight. With this approach we try to 
answer two specific questions. (i) How precisely do neuronal responses 
represent behaviourally relevant information? (ii) What is the time 
scale on which the stimulus-induced response component can be 
recovered most reliably from the noisy neuronal signals? 

Materials and methods 
Preparation and electrophysiology 
For electrophysiological experiments female blowflies (Lucilia 
cuprrna) were obtained from stocks raised by CSIRO, Canberra 
(Australia). The animals were anaesthetized briefly with COP and 
mounted, ventral side up, with wax on a small piece of glass. The 
legs were amputated and the head was tilted about 30" ventrally and 
waxed to the thorax. The head capsule was opened from behind and 
the trachea and air sacs covering the brain were removed to gain 
access to the posterior part of the third visual neuropil. To avoid 
desiccation of the brain, the head capsule was supplied with Ringer 
solution (for composition, see Hausen, 1982). The experiments were 
performed at room temperature (19-22°C). 

Tungsten electrodes were used for extracellular recording of H1- 
cells Their tips were sharpened electrolytically and insulated with 
varnish. They had resistances between 2 and 8 M a .  Recorded signals 
were amplified by standard electrophysiological equipment. Spikes 
were transformed into pulses of fixed height and duration. Signals 
were fed to a 486-PC through an analogue-to-digital converter of an 
YO-card (2801A, Data Translation, Marlboro, MA). The temporal 
resolution amounted to 5 ms. Controls were performed to ensure that 
every spike was counted. 

Visual stimulation in the experiments using behaviourally 
relevant stimuli 
Two CRT screens (Tektronix 608, Wilsonville, OR) were used for 
visual stimulation. The stimulus pattern was generated at a frame 
rate of 183 Hz by an image synthesizer (Picasso, Innisfree, Cambridge, 
MA). Monitors were placed symmetrically at an angle of 45" with 
respect to the long axis of the fly and perpendicular to the horizontal 
plane of the animal. The centres of the screens were placed at angular 
horizontal positions of +55" or-55" (right and left screen respectively) 
and at an angular vertical position of 0". The horizontal and vertical 
extent of the screens amounted to 70" and 55" respectively. The 
stimulus pattern consisted of a vertical black and green square-wave 
grating with five periods per screen. The mean luminance was 44 c d  
m2, the contrast 0.92. The time dependent displacements of the 
stimulus gratings that were used as motion stimuli in the electrophysio- 
logical experiments were obtained in a previous behavioural analysis 
where tethered flies flying in a flight simulator were allowed to 
influcnce their visual input by their own actions and reactions. This 
was accomplished by measuring the torque responses of the tethered 
flying fly with a torque compensator and feeding them back to the 
image synthesizer, thus, allowing them to affect the displacements of 
the stimulus pattern in a similar way as in a natural situation. An 
intended turn of the fly in one direction induced a displacement of 
the pattern in the opposite direction with a velocity proportional to 
the torque signal. During part of each behavioural closed-loop 
experiment an external motion bias was added to the pattern displace- 
ment induced by the fly's torque signal. In an open-loop situation 
this bias would have displaced the stimulus pattern with a constant 
velocity. The motion bias was superimposed, to test how well flies 
can stabilize their flight path against external disturbances. The 
analysis of the behavioural responses and corresponding motion traces 
is presented elsewhere (Warzecha, 1994; Warzecha and Egelhaaf, 
1996). It had been established that the dynamics of the torque meter 
and associated electronic system do not significantly affect the 
dynamics of the pattern displacement (Warzecha and Egelhaaf, 1996). 
The torque signals were stored in the memory of a computer for later 
data analysis and for replay of the same stimuli in subsequent 
electrophysiological experiments. In order to investigate the responses 
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responses to an identical motion trace, the stochastic signal fluctuations 
are eliminated and the spike frequency histogram is obtained (Fig. 1, 
bottom diagram of left column). This spike frequency histogram is 
assumed to represent the SIRC. The average response of the direction- 
ally selective H1-cell is strongly modulated by the profound fluctu- 
ations in the velocity of the stimulus. As long as the pattern moves 
in the ccll’s preferred direction, the neuronal response follows, to 
some extent, the retinal slip speed with a phase shift (see also Bialek 
et al., 1991). It should be noted that the time course of the response 
does not only depend on the velocity but also on its higher temporal 
derivatives (see Egelhaaf and Reichardt, 1987; Egelhaaf and Borst, 
1993b). In any case, the neuronal responses are to some degree time- 
locked to the stimulus. Of course, there is a time shift between 
stimulus and response which was determined by cross-correlating the 
velocity and the corresponding SIRC. The cross-correlogram has its 
maximum at 60 ms (Warzecha and Egelhaaf, 1996). 

The velocity fluctuations and the fluctuations in the SIRC are 
reflected in the corresponding power spectra. An example is illustrated 
in Figure 2. In the power spectrum of the velocity trace the lowest 
frequencies that can be determined within the analysed time interval 
of 10.24 s predominate. The remaining power is distributed mainly 
among frequencies up to about 5 Hz with a slight increase between 
1.5 and 3.5 Hz. In the power spectrum of the corresponding cellular 
response there is considerably less power in the very low frequency 
range. Instead, frequency components around 2.5, Hz prevail. The 
power spectra of the other velocity and response traces used in the 
experiments of the present study exhibit similar features, in particular, 
with respect to the decline towards high frequencies. 

of the H1-neuron to these stimuli, two typical motion traces generated 
by different flies weie selected arbitrarily and presented in subsequent 
experiments to threc cells between 30 and 60 times. Each motion 
trace consisting of two sections lasted for 37.5 s, only 29.35 s of 
which were included in the determination of the transinformation 
(Figs 3-5). The first part of the neuronal response within each section 
was excluded from the analysis to avoid transient effects. For 
calculating the power density spectra (Fig. 2) only the last 10.24 s 
of each section were analysed. This interval length was chosen 
because it corresponds to a number of data points amounting to an 
integral power of two which is required for the Fast-Fourier algorithm. 
Between consecutivc presentations of the same stimulus the grating 
remained stationary while individual response traces were stored on 
the PC. Data acquisition and evaluation were carried out with a 486 
PC. The programs were written in ASYST (Keithley Instruments, 
Taunton, MA). 

Results 

Stimulus-induced and stochastic signal fluctuations 

In the present account it was intended to find out how well the H1- 
cell, a spiking neuron in the fly’s visual motion pathway, encodes 
behaviourally relevant motion stimuli and to what extent the repres- 
entation of such stimuli is affected by stochastic signal fluctuations. 
Therefore, the H1-cell was stimulated by motion traces that were 
generated in a previous behavioural experiment by a tethered flying 
fly in a flight simulator under closed-loop conditions. This procedure 
is illustrated in Figure 1. At first, spontaneous turning responses of 
the tethered fly were recorded with a torque meter, processed in a 
computer and subsequently fed back to displace the stimulus grating. 
The pattern, thus, moved to the left when the fly tried to turn to the 
right and vice versa. Then a disturbance was added for a given time 
interval to the visual input signal generated by the fly’s spontaneous 
actions. In an open-loop situation, this disturbance would have 
displaced the stimulus pattern with a constant velocity in one direction. 
Following this interval, the disturbance was switched off again. 
Although on average flies compensate an external disturbance such 
as the motion bias to a large extent, the individual motion traces are 
characterized by pronounced velocity fluctuations. These fluctuations 
are very large compared to the mean slip speed (for a more detailed 
analysis of these fluctuations and their origin see Warzecha, 1994; 
Warzecha and Egelhaaf, 1996). As a consequence, it is hardly possible 
to discern on the basis of individual motion traces whether or not 
these were generated while an external motion bias was added to the 
visual input. This suggests that the time course of the retinal image 
motion is mainly characterized by the fly’s own actions and reactions. 

Typical motion traces generated by the fly under closed-loop 
conditions were replayed to the animal many times while recording 
the activity of the H1-cell. The diagram in the left middle part of 
Figure 1 depicts consecutive individual responses of the neuron to 
subsequent presentations of such a motion trace. Although the stimulus 
was the same for each response trace and the response traces reveal 
an overall similarity. they are not identical but show some variability. 
Hence, neuronal responses consist of two components, one that is 
induced by the stimulus and free of accidental events as well as 
another component that is not under the control of the experimenter. 
The latter component comprises all true stochastic signal components 
but also those which are not locked to the stimulus and, nonetheless, 
might be due to some unknown deterministic source. Since these can 
hardly be disentangled, they will be collectively referred to in the 
following as ‘stochastic response component’. By averaging many 

How reliably do individual responses represent the stimulus- 
induced response component? 

The SIRC is a construct of the experimenter for analytical purposes 
and does not contain stochastic components. It is, of course, not 
available to the animal. Rather, all information conveyed by a neuron 
has to be decoded by the postsynaptic neuronal machinery from the 
individual response traces in real time. The decoding mechanisms, 
therefore, have to cope with noise that may conceal the stimulus- 
induced response. For the animal this will lead to the problem of 
how to decide to what extent a given response represents a given 
stimulus. In the first step of the present analysis it will be investigated 
by calculating the so-called transinformation: how well the informa- 
tion contained in the SIRC is represented by the individual responses. 
Quite generally, the transinformation is a measure of how well a 
given signal can be predicted on the basis of another signal. 

According to information theory (Shannon and Weaver, 1949), the 
information content of a given signal amplitude si is related to the 
dyadic logarithm of the reciprocal value of its probability of occurrence 
p(si). The average amount of information conveyed by all the different 
signal levels (‘information capacity’, I) is then given by the sum of 
the information conveyed by each signal level times that signal level’s 
probability of occurrence 

1 = P(si) . log2 [l/~(si)l = -z p(si)l . log2 [P(si)l (Eq. 1) 

As mentioned above, the transinformation is taken in the first step 
of our analysis as a measure of the information that is actually 
transmitted by individual response traces about the SIRC. For instance, 
if the individual response traces are affected by only small stochastic 
fluctuations, the SIRC can be predicted on their basis with a high 
degree of reliability. Conversely, if the individual responses are not 
much correlated with the corresponding stimulus-induced signal, the 
latter can hardly be predicted on the basis of an individual response 
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FIG. 1. Generation of behaviourally relevant motion traces and corresponding neuronal responses. Upper right: Behavioural closed-loop situation. The fly is 
tethered to a torque compensator (not shown) which makes it possible to measure the fly’s instantaneous torque. In contrast to free flight, the torque signal 
generated by the Hy does not lead to turns of the animal that normally would induce retinal image displacements. Rather, the visual consequences of self-motion 
are simulated by feeding the torque signals into a computer and transforming them into image displacements on two CRT screens (only one is shown). The 
image displacerncnts are assumed to be proportional to the torque. In addition to the self-induced image displacements, an additional motion bias can be added 
to the fly’s visual input. Upper left: time course of a velocity trace generated in the behavioural closed-loop situation. For the duration indicated by the black 
bar underneath the velocity trace an external motion bias with a constant velocity of 44“/s was added to the pattern displacements induced by the fly’s own 
torque. Lower right: the motion was replayed in a subsequent electrophysiological experiment to a fly while recording the activity of an H1-cell in the right 
half of the brain. Middle left: six consecutive unaveraged neuronal responses to identical stimulation with the motion trace shown above plotted underneath 
each other. The occurrence of a spike is indicated by a small vertical line. Lower leji: stimulus induced response component (SIRC) as obtained by averaging 
40 individual responses to identical stimulation. The black bar underneath the response trace indicates the time when in the behavioural closed-loop experiment 
the external motion bias was added to the fly’s own torque signal. 

trace. In the latter case the transinformation will therefore be smaller 
than in the first example. Hence, the transinformation is related to 
the conditional probability of a particular level of the SIRC given a 
particular amplitude of an individual response p(silri). The transin- 
formation ( r )  i s  then given by the formula (Shannon and Weaver, 
1949; Eckhorn and Popel, 1974) 

T = CC p(si , rj) . log2 b(silrj)/p(si)] (Eq. 2) 

with p(si , rj) representing the joint probability of a given level si of 
the SIRC and a particular amplitude rj of the individual responses. If 
the SIRC can be predicted with absolute certainty on the basis of an 
individual response, p(silrj) = 1 and Equation 2 reduces to the 
information capacity given in Equation 1 ,  implying that the complete 
information of the stimulus-induced response is conveyed by each 
individual response. 

To derive the probability distributions that are required to calculate 

the transinformation conveyed by individual response traces about 
the SIRC, the following steps were employed. (i) Individual responses 
were determined by counting spikes in consecutive 5 ms time 
windows. (ii) The sample average of many individual responses 
served as an estimate of the SIRC. (iii) The transinformation can be 
expected to depend on the temporal resolution chosen for the analysis. 
In order to investigate at what time scale most information can be 
obtained from individual responses about the SIRC, the analysis was, 
therefore, performed by integrating the individual responses within 
time windows between 5 and 640 ms. These integration windows 
were shifted in time steps of 5 ms along the response traces. (iv) To 
obtain the probability distributions required for calculating Equation 
2, both the stimulus-induced response with a time resolution of 5 ms 
as well as the individual responses evaluated with differently sized 
time windows had to be subdivided into discrete response classes. 
These classes were chosen to have a width of 10 spikesls. Since 
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FIG. 2. Power densit! spectrum of (A) the velocity of a motion trace as was 
generated by a fly in a behavioural closed loop experiment and (B) of the 
stimulus-induced component of the corresponding neuronal response. Power 
spectra were calculatcd by a Fast-Fourier algorithm and normalized to a total 
power of 1. The data shown in (B) represent the mean of the power spectra 
obtained from two flies. The corresponding SIRCs are based on 30 and 40 
individual response traces respectively. Signals within two time intervals of 
10.24 s each were taken into account. This interval was chosen because it 
corresponds to a number of data points amounting to an integral power of 
two, which is required for the Fast-Fourier algorithm. Whereas, the power 
spectrum of the velocity trace assumes its highest values at very low 
frequencies, the SIRC has its most prominent frequency components between 
2 and 3 Hz. High frequency components have only little power in both the 
velocity trace and thc SIRC. 

this choice of the size of the subdivisions is rather arbitrary, the 
transinformation uas also calculated for activity classes of 5 and 20 
spikes/s as a control. (v) For each H1-cell that was analysed, the 
whole ensemble 01 individual response traces obtained by repeatedly 
presenting the same motion trace was subdivided into two sets. Every 
second sweep was selected for one set while the remaining sweeps 
constituted the othcr set. For each set a separate SIRC was determined 
and used for calculating the transinformation on the basis of the 
individual response traces that constitute the other set. In this way, 
two transinformation values were obtained for each H1-cell and each 
time window. The mean of these corresponding pairs of values will 
be referred to below. This procedure of splitting up the data into two 
sets was necessary because otherwise each individual response would 
have been correlated with the SIRC simply because it is part of 
the latter. 
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Fig. 3. Transinformation conveyed by individual neuronal responses about the 
SIRC as a function of the time window used for integrating the individual 
responses. Different line styles illustrate the result of varying the exact 
procedure to calculate the transinformation. The thick solid line connecting 
the filled circles has been obtained by determining the SIRC on the basis of 
spike counts within consecutive 5ms windows. Spike counts for individual 
responscs as well as for the SIRC were subdivided into activity classes of 10 
spikes/a to obtain the probability distributions for calculating the 
transinformation. To test how the shape of the curve depends on the temporal 
resolution of the SIRC or the size of the activity classes, these parameters 
were varied (lower dashed line: temporal resolution of SIRC - 10 ms, size of 
activity classes - 10 spikeds; dotted line: temporal resolution of SIRC - 20 
ms, sizc of activity classes - 10 spikeds; solid thin line: temporal resolution 
of SIRC - 5 ms, size of activity classes - 5 spikeds; upper dashed line: 
temporal resolution of SIRC - 5 ms, size of activity classes - 20 spikes/s). 
Note that the leftmost data point of each line coincides with the size of the 
time window used for calculating the corresponding SIRC (e.g, 584 hit/s for 
the thick solid curve). Each of the curves was normalized to the information 
capacity of the corresponding SIRC. Lines connect mean values for the 
transinformation obtained from three flies and a total of 130 individual 
response traces of 29.35 s duration each; error bars denote corresponding' 
SEMs. For details of the analysis see text. 

It should be noted that the transinformation is a highly non-linear 
measure of how well a given signal can be predicted on the basis of 
another signal. This non-linearity is particularly obvious for a two- 
alternative-forced-choice situation. If, for instance, an observer decides 
correctly in 90% of all cases, the transinformation he/she conveys 
about the signal decreases to about 50% as compared to the transin- 
formation obtained with 100 % correct performance. This relation 
should be kept in mind when the following data are interpreted in 
quantitative terms. 

In Figure 3 the transinformation conveyed by individual response 
traces is plotted as a function of the time window with which they 
were evaluated. Since the absolute figures of the transinformation do 
not immediately make it possible to draw conclusions about how 
well individual responses represent the SIRC, the transinformation 
was normalized to the information capacity of the SIRC as determined 
according to Equation 1 .  Moreover, since the transinformation depends 
on the temporal resolution with which the SIRC is determined as 
well as on the graduation of the probability distributions, these 
parameters were varied (different line styles in Fig. 3). Independent 
of the exact choice of parameters the transinformation increases at 
first with increasing time window, reaches a maximum for a window 
size between 40 ms and 80 ms and then decreases again. It is obvious 
from Figure 3 that even for the best time window only about 35- 
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40% of the information contained in the SIRC is transmitted by 
individual responses. The thick solid line connecting the circles 
illustrates the transinformation obtained for activity classes of 10 
spikes/s and a tcmporal resolution of the SIRC of 5 ms. When, as a 
control, the probability distributions for calculating the transinforma- 
tion were determined on the basis of responses that were subdivided 
into larger or smaller activity classes (five spikes/s, 20 spikeds), or 
when the elementary time window with which the SIRC was obtained 
was enlarged to either 10 ms or 20 ms, the shape of the curve shown 
in Figure 3 does not change qualitatively. Most importantly, its 
maximum stays between 40 ms and 80 ms. Only the absolute figures 
of the transinformation and the information capacity to which the 
former has been normalized vary slightly due to the change in 
the probability distributions and the number of different response 
levels obtained with the different procedures. Consequently, the 
dependence of the relative transinformation on the size of the time 
window within which the neuronal activity was integrated is robust 
against the exact procedure used for its evaluation. Hence it can be 
concluded that information about the SIRC can be recovered best 
from individual real-time responses, if these are smoothed by time 
windows of considerable length. 

This finding may result from two antagonistic effects. On the one 
hand, it is expected that the stochastic response components are 
smoothed out by increasing the size of the time window within 
which individual responses are integrated. Thus, temporally filtering 
individual response traces with increasingly larger time windows 
should result in an increase of the transinformation due to a reduction 
of neuronal noi\e. On the other hand, when the time windows used 
for assessing individual responses are enlarged further and further, 
the SIRC will eventually be smoothed out. Thus, one would expect 
that smoothing individual responses with increasingly larger time 
windows will reduce the information that can be conveyed by 
individual responses about the SIRC. We again used the transinforma- 
tion as a measut-e to quantify these two opposing effects. 

The consequences of smoothing the SIRC were assessed by 
calculating the information that is conveyed by temporally filtered 
versions of the SIRC about the unsmoothed version. Therefore, p(rj) 
in Equation 2 now represents the probability of a given response 
level of the SIRC as smoothed by integrating the responses within 
differently sized time windows that were slid over the time-dependent 
responses in time steps of 5 ms. p(sJ still has the same meaning as 
defined above. As shown previously, the transinformation determined 
in this way was normalized to the information capacity of the 
unsmoothed SIRC. As expected, the information conveyed by filtered 
versions of the SIRC about the original, non-filtered one, decreases 
monotonically with increasing time window (Fig. 4). 

In order to quantify the consequences of smoothing out the 
stochastic response component, it was determined how well individual 
responses filtered with time windows of variable size represent the 
equally filtered SIRC. Therefore, p ( q )  in Equation 2 now represents 
the probability of a given response level of the SIRC after smoothing 
it in the same way as the individual responses. The transinformation 
determined for cach time window was normalized to the information 
capacity of the respectively filtered SIRC calculated according to 
Equation 1, i.e. each data point in Figure 5 was normalized to a 
different figure. At a fine time scale the information capacity is 
reduced to 15% due to noise. With increasing time window the 
relative transinformation increases up to 50% for a 640 ms window 
(Fig. 5) .  Obviously, the stochastic response component gets smaller 
with increasing size of the time window with which it is assessed. 

As a consequence of the antagonistic effects of smoothing out the 
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Fig. 4. Transinformation conveyed by the SIRC as smoothed by a range of 
time windows about the unsmoothed version, i.e. the SIRC obtained from 
spike counts within consecutive 5 ms time windows (size of activity classes: 
10 apikesls). The transinformation was normalized to the information content 
of thc unsmoothed stimulus-induced response. For details of the analysis see 
text. The same data set was used as in Figure 3. Error bars denote SEMs. 
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FIG. 5. Transinformation conveyed by individual responses smoothed by a 
range of time windows about the correspondingly smoothed SIRC (size of 
activity classes: 10 spikeds). Each transinformation was normalized to 
the information content of the correspondingly smoothed stimulus-induced 
response. For details of the analysis see text. The same data set was used as 
in Figures 3 and 4. Error bars denote SEMs. 

noise and the SIRC, most information about behaviourally relevant 
motion stimuli is conveyed at a time scale of about 40-100 ms. 

Discussion 
Variability of neural responses appears to be abundant at all levels 
of nervous systems (see Introduction). Given this variability it is far 
from being clear what strategies are employed by nervous systems 
to ensure that animals can eventually perform their behavioural acts 
or perceptual tasks with sufficient reliability to survive in an often 
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ance of the fly motion-sensitive neuron in representing information 
about the SIRC does not only depend on the size of the time window 
but also on its shape. Of course, the type of window used in the 
present study that weighs all events equally strongly does not appear 
very plausible from a physiological point of view. Moreover, it is 
likely that there are differently shaped time windows that lead to a 
more reliable representation of the SIRC by the individual responses 
than those used in the present analysis. However, there is no reason 
to assume that the shape of the time window chosen in the present 
study would affect our general conclusion, that in the fly motion- 
sensitive neuron behaviourally relevant motion stimuli, as obtained 
in the context of optomotor course stabilization, can be resolved best 
at a time scale where the timing of individual spikes does not matter. 
(iii) The optimal size of the time window depends on the dynamic 
properties of the stimuli. In fact, temporal integration on a smaller 
time scale than inferred in the present study was found to be optimal 
for decoding a white noise signal from the real-time responses of the 
HI-neuron (Bialek et al., 1991). This is not surprising since the noise 
signal was band-limited at 1 kHz and thus contained information at 
much higher temporal frequencies than occur in stimuli that are 
generated by the fly in a behavioural closed-loop situation. In this 
context, it should be emphasized again that the motion traces generated 
in the context of optomotor course stabilization and used here as 
stimuli, did not contain much power above 6-10 Hz (see Fig. 2). The 
temporal characteristics of the retinal image displacements may differ 
considerably in behavioural contexts other than optomotor course 
stabilization such as, e.g. obstacle avoidance or pursuit of potential 
mates. On what time scale the relevant information has to be decoded 
in these behavioural situations needs to be elucidated in future 
experiments. (iv) Our conclusion is based on an information theoretic 
analysis. It is therefore not meant to imply that the fly actually 
employs such a decoding strategy. We are currently addressing at 
least part of this important problem by characterizing how the 
information conveyed by a motion-sensitive neuron is decoded by its 
postsynaptic cells. In this context it needs to be emphasized that i t  is 
not necessarily the task of the postsynaptic neurons to represent the 
SIRC as well as possible and thus to act simply as a channel 
transmitfing information. Rather the task of neurons and neuronal 
circuits usually is to process the incoming information in order to 
explicitly extract certain aspects of a stimulus that are only implicitly 
contained in the incoming signals (e.g. extract motion information 
from the spatio-temporal changes in luminance perceived by the 
photoreceptors). Depending on the task such processing might require 
to treat the presynaptic signals on a time scale different from the one 
which is optimal to represent the SIRC. 

How does the present approach relate to other approaches? 
In order to assess the reliability of neuronal information processing, 
we recorded sequences of spike trains induced by identical stimuli. 
On this basis, we could determine those components of the individual 
responses that are induced by the stimulus and those which have a 
stochastic origin. The relative size of these two response components 
allowed us to infer how much information about the time-course of 
the stimulus-induced response component is transmitted by individual 
spike trains and, thus, how reliably information is processed up to 
the level of an identified motion-sensitive neuron of the fly that plays 
a role in tuning other neurons to particular types of optic flow. In 
contrast to related studies (e.g. Eckhorn and Popel, 1974; Theunissen 
and Miller, 1991), it was not intended by the present account to find 
out the relationship between individual responses and the stimuli by 
which they were elicited. 

Moreover, our approach to assessing the reliability of neural 

hostile environment. Put in this way, it is evident that a final 
assessment of the reliability of neural coding is only possible if the 
neuronal responses arc not considered in isolation but are related to 
behavioural or perceptual abilities. During the last years the reliability 
of neural coding is being addressed in a continually increasing number 
of studies which scrutinize the activity patterns of neurons with a 
host of sophisticated techniques. In most cases, however, the results 
cannot directly be relared to the behavioural or perceptual performance 
of the animal. An exception is the work on the reliability of neural 
coding in the motion pathway of the macaque monkey. Here the 
performance of neurons in detecting motion stimuli has been directly 
related to the concurrcntly determined performance of the animal in 
perceiving these motion stimuli (e.g. Shadlen et al., 1996). In these 
experiments the animal was required to inspect a visual stimulus for 
2 s before it was allowed to make its decision. During this time 
interval spikes of a neuron in the motion pathway were counted. 
Hence, the monkey’s response did not affect the visual stimulus, 
which was exclusively controlled by the experimenter. Though this 
technique has been very successful, it does not address an important 
aspect of the situation an animal encounters in real life. Here, quite 
generally, the visual input of an animal is affected by its own actions 
and reactions. In particular, the dynamic properties of natural stimuli 
as are generated on the eyes under such closed-loop conditions may 
differ considerably from those stiniuli that are usually designed by 
experimenters. 

For this reason, a novel approach to analysing the reliability of 
neural coding has been employed in the present study. Rather than 
activating neurons with stimuli that have been designed exclusively 
for analytical purposes, the neuron which has been analysed here was 
confronted with stimuli that were essentially generated by the behaving 
animal itself, i.e. by its own actions and reactions. We performed our 
analysis on the visual system of the fly, where we have access to 
both the behavioural and the neuronal level (for review see Egelhaaf 
and Borst, 1993a). Here we analysed with a flight simulator the 
performance of the fly in optomotor course stabilization under closed- 
loop conditions wherc the visual input is affected by the fly’s responses 
in a similar way as in normal flight. Motion traces that were generated 
by the fly in such behavioural closed-loop experiments were repeatedly 
replayed to an identified neuron in the fly’s pathway for processing 
visual motion inforniation. In this way it could be shown, that the 
SIRC can be decoded most reliably in the individual real-time 
responses of the neuron, if the activity is smoothed on a relatively 
coarse time scale, i.e. within time windows of 40-100 ms. At a finer 
temporal resolution the reliability o f  neuronal information processing 
decreases due to stochastic fluctuations in the spike activity. Such 
large time windows for decoding the SIRC appear to be plausible 
also from another perspective. For instance, an 80 ms integration 
window would allow to recover frequencies in the SIRC of up to 
6.25 Hz. Higher frequency components. however, do not contribute 
much to the SIRC (see Fig. 2B). Thus high-frequency variations in 
spike activity can be safely smoothed out without much deteriorating 
the representation 01’ the behaviourally generated stimuli. 

The conclusion that the stimulus-induced component contained in 
the responses of the analysed neuron in the fly’s visual motion 
pathway can be decoded best by temporal integration over some 40- 
100 ms requires some further comments. (i) This conclusion is not 
meant to imply that the fly’s motion-sensitive neurons cannot respond 
to rapid changes in pattern velocity. Rather, it has been shown in 
various studies that they respond to some extent to oscillating stimulus 
patterns with frequencies above 10 Hz (Egelhaaf and Reichardt, 1987; 
Haag and Borst, 1996). However, such high-frequency stimuli do not 
play a major role in optomotor course stabilization. (ii) The perform- 
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information processing is in clear distinction to approaches that are 
aimed at reconstructing the stimulus from an individual time-depend- 
ent spike train and, in this way, to find out what the neuron codes 
for (for review, see Bialek 1990). This so-called reverse reconstruction 
method has been applied to a variety of sensory systems (Rieke et al., 
1991; Roddey and Jacobs, 1996; Theunissen et al., 1996), including 
the H1-neuron of the fly (Bialek et al., 1991). With respect to the 
H1-neuron, a linear filter was derived and used to estimate from 
individual spike trains the velocity of the motion stimulus by which 
they were eliciled. Deviations of the estimated stimulus from the 
original velocity traces were interpreted as to reflect the ‘effective 
noise level and fault tolerance of neural computation’ (p. 1854 in 
Bialek et ul., 1991). With respect to the latter conclusion, some 
qualifications need to be made. It has long been known that the 
motion-sensithe neurons of the fly do not encode stimulus velocity 
as the only sti inulus parameter. Rather, their responses depend on 
other aspects of the stimulus as well, such as its spatial frequency 
content and contrast (for review see Borst and Egelhaaf, 1989; 
Egelhaaf and Borst, 1993b). Moreover, even for a given stimulus 
pattern, the time-course of the SIRC is not linearly related to pattern 
velocity but rather depends in a non-linear way on the weighted 
sum of the instantaneous velocity and all its higher-order temporal 
derivatives. Thc responses are approximately linearly related to pattern 
velocity only for small displacements and slow velocity changes 
(Egelhaaf and Reichardt, 1987). Hence, deviations of the estimated 
stimulus, as obtained by the reverse reconstruction method from 
pattern velocily, can have two sources. (i) Stochastic response 
components may lead to an imperfect reconstruction. (ii) The relation- 
ship between stimulus velocity and SIRC may be not sufficiently 
linear. Since these two factors cannot be disentangled by means of 
the reconstruction procedure, the latter can hardly provide useful 
information about how the reliability of neuronal coding is deteriorated 
by noise. 

Temporal encoding in the nervous system 
Although it is generally agreed that neurons signal information 
through changes in their electrical activity, the ‘neural code’ by which 
information is represented in this neural activity still remains elusive. 
Thus, it is not surprising that the search for the ‘neural code’, which 
is used by an organism in a particular behavioural or perceptual task, 
is getting increasingly fashionable (e.g. Shadlen and Newsome, 1994; 
Theunissen and Miller, 1995; Konig et al., 1996). An important 
aspect of the current still highly controversial debate is the question 
on what time scale temporal spike patterns can convey significant 
information (Shadlen and Newsome, 1994, 1995; Softky, 1995; Konig 
et al., 1996). Quite generally, this scale depends essentially on how 
precisely spikes are timed contingent upon a given pattern of synaptic 
input and thus on the resulting spatio-temporal pattern of postsynaptic 
potentials. How reliably neuronal information can be encoded is 
mainly a question of how deterministic neuronal processes are and 
to what extent they are affected by stochastic processes that lead to 
a jitter in the timing of spikes contingent upon a given input of the cell. 

The size of the stochastic component has been estimated for a 
wide range of neurons of various species. Although the actual noise 
strongly depends on the time window in which the spikes are counted 
and thus thc estimates vary between the studies, it is clear that the 
variance of the spike count may be in the range of the mean spike 
count or evcn larger (Tolhurst et al., 1983; Vogels et al., 1989; Miller 
et al., 1991; Britten er al., 1993). The H1-cell in the fly’s visual 
motion pathway lies at the lower end of this range with respect to 
its variability (Warzecha, 1994). Although the H1-cell is thus not a 
particularly noisy neuron, its spikes are not precisely time-locked, at 
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least on a millisecond time scale, to motion stimuli as are generated 
by the fly itself under behavioural closed-loop conditions. Neverthe- 
less, the discharge rate of motion-sensitive neurons in the fly modulates 
in a time-locked fashion to the time-course of external visual inputs 
at a time scale of tens to hundreds of milliseconds (see Fig. 1) in a 
similar way as described, for instance, for interneurons in the monkey 
cortical area MT (Shadlen and Newsome, 1994); however, these 
neurons may respond to favourable transient stimuli somewhat more 
precisely, i.e. with a jitter of <10 ms (Bair and Koch, 1995). 

Despite the considerable variability in neuronal activity as described 
for many neurons, several studies using a range of different approaches 
suggest the importance of precise, corhplex single-spike computations 
on a time scale well below the average interspike interval. In 
particular, it has been proposed that a neuron could signal reliably 
the occurrence of certain combinations of presynaptic events with a 
temporal fidelity in the order of a millisecond or less (Softky, 1995; 
Konig et al., 1996). Moreover, as long as the input signal is sufficiently 
transient, cortical neurons in a slice preparation may produce spike 
trains with a timing reproducible to <1 ms, as could be shown by 
injecting a white noise current stimulus (Mainen et aL, 1995). In 
addition, spike patterns with a temporal precision in the range of 
only a few milliseconds may occur much more frequently than can 
be expected if spike timing were random (Strehler and Lestienne, 
1986; Abeles et al., 1993). And of course, some sensory systems 
such as the auditory system of the barn owl or the electrosensory 
system of electric fish rely on precise neural responses well below 
thc millisecond range to localize an object or communicate with 
conspecifics (for review see Konishi, 1991; Can; 1993). Finally, 
spiking in a pair of identified motion-sensitive neurons in the visual 
system of the fly which receive their input from the same set of 
rctinotopic input elements was found to be mutually time-locked on 
a millisecond time-scale. Since this high degree of synchronicity is 
not due to stimulus-induced modulations of the synaptic input to 
these neurons but rather due to some unknown source, it does not 
conflict with the variable responses of these neurons to repetitive 
presentation of identical stimuli (Warzecha et al., 1997; A.-K. War- 
zccha, in preparation): It should be noted that, apart from the electric 
fish and the barn owl, the functional significance of precisely timed 
spikes is not yet experimentally established in any other of the above 
mentioned systems. Hence, it cannot be decided here whether the 
dcscribed neuronal precision has any relevance for neuronal informa- 
tion processing or whether it is just an epiphenomenon of some 
biophysical properties of nerve cells and their interactions. 

The few examples for which it has been possible to relate the 
precision of neuronal events to the behavioural performance of 
the whole animal may suggest that the precision of neural coding is 
adapted by evolution to the requirements of the respective system. 
For instance, for a barn owl as a nocturnal predator that relies on 
acoustic cues to detect its prey there is no other possibility than to 
exploit temporal cues with a precision in the range of a few 
microseconds. On the other hand, for an animal such as the fly it 
might be advantageous in visual orientation behaviour to temporally 
integrate the incoming signals as long as is allowed by the temporal 
dynamics of the stimuli as are generated by the fly’s own actions and 
reactions. Interestingly, integration times of a similar size as found 
here for a fly motion-sensitive neuron were also concluded to be 
most appropriate to decode the activity of neurons in the visual as 
well as in the inferotemporal cortex of the monkey (Heller et al., 
1995; Victor and Purpura 1996). Also, in these systems the precise 
timing of individual spikes does not appear to matter for the processing 
of information. A similar conclusion has been drawn in combined 
behavioural and electrophysiological experiments on the escape 
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system of the cockroach, which mediates turning reactions away from 
a potential source of danger. It was found that the cockroach integrates 
over a couple of spikes before eliciting an escape response rather 
than relying on the fine temporal patterning of a spike sequence 
(Liebenthal et al., 1991). 

In conclusion, on what time scale relevant information is conveyed 
can only be assessed if the computational needs of the respective 
system are known. If there is any chance to find out what aspects of 
neural activity encode significant information and on what time scale 
this is accomplished, the analysis at the neuronal level has to be 
guided and constrained by the performance of the animal as it 
manifests itself at the behavioural level. 
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