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Abstract

It is often assumed that the ultimate goal of a motion-detection system is to faithfully represent the time-dependent
velocity of a moving stimulus. This assumption, however, may be an arbitrary standard since the requirements for a
motion-detection system depend on the task that is to be solved. In the context of optomotor course stabilization,
the performance of a motion-sensitive neuron in the fly’s optomotor pathway and of a hypothetical velocity sensor
are compared for stimuli as are characteristic of a normal behavioral situation in which the actions and reactions of
the animal directly affect its visual input. On average, tethered flies flying in a flight simulator are able to
compensate to a large extent the retinal image displacements as are induced by an external disturbance of their
flight course. The retinal image motion experienced by the fly under these behavioral closed-loop conditions was
replayed in subsequent electrophysiological experiments to the animal while the activity of an identified neuron in
the motion pathway was recorded. The velocity fluctuations as well as the corresponding neuronal signals were
analyzed with a statistical approach taken from signal-detection theory. An observer scrutinizing either signal
performs almost equally well in detecting the external disturbance.
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Introduction

The extraction of motion information from the continually chang-
ing retinal images is one of the most fundamental tasks for many
animals including man but also for artificial vision systems. On the
basis of behavioral and electrophysiological studies, on the one
hand, as well as by computational approaches, on the other hand,
several types of elementary motion-detection mechanisms have
been proposed (for review, see Borst & Egelhaaf, 1993; Hildreth &
Koch, 1987). Usually, the usefulness of a particular motion-
detection mechanism is assessed on the basis of how faithfully it is
able to represent the velocity of a moving stimulus. This standard,
however, may be rather artificial and does not necessarily reflect
the needs of a particular motion information-processing system.
For instance, a vital task of any driver of a car is to avoid crashing
into an obstacle and an important task of flying animals is to
stabilize their course against disturbances like a gust of wind. In
both cases, visual motion cues are decisive for solving the task.
However, it is not self-evident and needs to be analyzed whether an
explicit representation of velocity is required somewhere in the
brain to accomplish such a task. Biological motion detectors gen-

erally do not signal the velocity of a moving pattern unambigu-
ously. Rather they confound pattern parameters, such as contrast or
texture, with the velocity of the moving stimulus (for review, see
Egelhaaf & Borst, 1993b; and see below). Therefore, biological
motion detectors are often thought to perform worse in mediating
the above-mentioned tasks than hypothetical devices that signal
the velocity of a motion stimulus unequivocally. In the context of
optomotor course stabilization, this assumption will be explicitly
tested in the present study.

The stabilization of the gaze or the path of locomotion against
involuntary deviations is of general importance for many moving
animals including humans. The nervous system accomplishes this
task by evaluating changes in the retinal image motion induced by
disturbances and by exploiting this information to mediate correc-
tive movements of the eyes, the head, or the whole body (Miles &
Wallman, 1993). In this behavioral context, we compare the per-
formance of biological motion detectors with the performance of
hypothetical velocity sensors. The experimental investigation is
performed on the visual system of the blowfly, because this model
system is well established for the analysis of motion information
processing and well amenable at both the behavioral and the neu-
ronal level (Reichardt & Poggio, 1976; Egelhaaf et al., 1988;
Hausen & Egelhaaf, 1989; Egelhaaf & Borst, 1993a). In most
studies, the performance of biological motion-detection systems is
assessed by determining motion-dependent neuronal or behavioral
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responses to motion stimuli exclusively defined by the experi-
menter. However, in a normal behavioral situation the animal op-
erates under closed-loop conditions where the retinal input is set to
a large extent by the animal’s own actions and reactions rather than
by an external source. Hence, the dynamics of natural motion
stimuli may differ considerably from those used in most experi-
mental paradigms. Therefore, to approximate a normal behavioral
situation, a motion-sensitive neuron in the fly’s motion pathway,
the H1-cell (Eckert, 1980; Hausen, 1981), is confronted in elec-
trophysiological experiments with motion traces which were gen-
erated by the actions and reactions of flies in preceding behavioral
closed-loop experiments done in a flight simulator. This experi-
mental approach of replaying motion traces previously generated
by the animal itself was pioneered by Heisenberg and Wolf (1988)
at the behavioral level and is extended here to include also the
neuronal level.

Since in real life animals, in general, do not have the opportu-
nity to look at a given stimulus many times before taking a behav-
ioral decision, responses averaged over many stimulus presentations
do not allow assessment of the real-time performance of the system
under consideration. Therefore a statistical approach derived from
signal-detection theory (Green & Swets, 1974) was employed. This
approach allows assessment of the reliability with which two stim-
uli can be discriminated on a trial-to-trial basis. The discriminabil-
ity cannot be assessed with common statistical procedures like, for
instance, the “t-test.” Such tests can only reveal whether different
stimuli leadon averageto different responses, with a large number
of measurements allowing to assess even small differences in mean
values as significant. The statistical analysis used in the present study
is formally equivalent to the so-called ROC-analysis which is widely
employed to evaluate the statistical reliability of neuronal signals
and to link neuronal and psychophysical performance (e.g. Cohn
et al., 1975; Tolhurst et al., 1983; Bradley et al., 1987; Newsome
et al., 1989; Vogels & Orban, 1990). This analysis conceptually leans
on psychophysical discrimination tests in which a subject is con-
fronted with one of two alternative stimuli and has to decide which
one has been presented (“two-alternative-forced-choice”). Of course,
it is not meant to imply that this kind of decision procedure is im-
plemented somewhere in the nervous system of the fly. Instead, the
procedure is just used as a statistical test to assess how reliably two
stimuli can be discriminated. It will be shown that a motion-sensitive
neuron in the optomotor pathway of the fly performs virtually as well
as a hypothetical perfect velocity sensor in detecting an externally
imposed disturbance in behaviorally generated motion stimuli. This
result has been obtained despite the fact that, in contrast to the hy-
pothetical velocity sensor, the neuronal responses are affected by con-
siderable stochastic signal fluctuations, i.e. neuronal noise.

Material and methods

Experiments were performed with female blowflies (Lucilia cup-
rina, Calliphoridae) obtained from laboratory stocks (C.S.I.R.O.,
Division of Entomology, Canberra).

Behavioral experiments

For behavioral experiments flies were prepared as described pre-
viously (Fermi & Reichardt, 1963). The head of the animal was
fixed to the thorax with wax under light carbon dioxide anesthesia.
A triangular piece of cardboard was glued to the wax above the
frontal part of the thorax. With the cardboard triangle flying flies

were suspended from a torque compensator. This device prevented
both rotatory and translatory movements of the animal while it
measured the yaw torque in stationary flight (Fermi & Reichardt,
1963; Götz, 1964). The system was operated under closed-loop
conditions, i.e. the turning responses of the fly were fed back to the
animal’s visual input in a similar way as in a free-flight situation.
Hence, an intended turn of the fly in one direction induced a
displacement of a stimulus pattern in the opposite direction. In this
way, the visual input was affected by the fly’s own actions and
reactions.

Two CRT screens (Tektronix 608, Wilsonville, OR) were used
for visual stimulation. The stimulus pattern was generated at a
frame rate of 183 Hz by an image synthesizer (Picasso, Innisfree,
Cambridge, MA). Screens were placed symmetrically at an angle
of 45 deg and245 deg with respect to the long axis of the fly and
perpendicular to the horizontal plane of the animal. The centers of
the screens were viewed by the fly at an angular horizontal posi-
tion of 55 deg or255 deg (right and left monitor, respectively)
with respect to the fly’s frontal midline and at an angular vertical
position of 0 deg with respect to the equatorial plane of the fly’s
eye. The horizontal and vertical extent of the screens amounted to
approximately 70 deg and 55 deg, respectively. The stimulus con-
sisted of a vertical square-wave grating with 5 periods per screen.
The mean luminance was 44 cd0m2, the contrast 0.92.

As in previous studies (Reichardt & Poggio, 1976; Heisenberg
& Wolf, 1984), the velocity of image motion was controlled in
such a way that it was proportional to the fly’s yaw torque. This
was achieved by sampling the torque signal by a 12-bit analog-
to-digital converter of an I0O-card (DT 2801 A, Data Translation,
Marlboro, MA) and by calculating the corresponding displacement
of the visual surround. At any time step one byte was written to the
digital output port of the I0O-card and fed into the phase input of
the image synthesizer. In this way, the position of the stimulus
pattern was controlled. Since the image synthesizer has a 7-bit
resolution for the spatial phase, it permitted gratings to be dis-
played at 128 distinct phases. In these closed-loop experiments, the
I0O-card had to be switched constantly between data acquisition
(torque) and output of data (stimulus position). This was done at a
frequency of 400 Hz. The torque signals were stored in the mem-
ory of the computer for later data analysis and for replay of the
same stimulus conditions in electrophysiological experiments.

The consequences of a disturbance of the flight course for the
visual input of the animal were simulated by imposing an external
motion bias on the velocity signal resulting from the torque re-
sponse of the tethered flying fly. In an open-loop situation, this
bias would have led to a constant motion of the grating with a
temporal frequency of 3.1 Hz corresponding to an angular velocity
of about 44 deg0s in the center of the screen. The exact figure for
the angular velocity differs along the horizontal axis of the monitor
screen due to perspective distortion.

The fly’s behavioral response, i.e. its yaw torque, is related to
the angular velocity of the stimulus pattern by the “coupling co-
efficient.” Since the coupling coefficient corresponding to the nat-
ural free-flight situation is not known (see Reichardt & Poggio,
1976; Heisenberg & Wolf, 1984), a wide range of coupling coef-
ficients were used in preliminary experiments. For all coupling
coefficients the results were essentially the same, i.e. the fly could
compensate an externally imposed motion signal in a similar
way. With the coupling coefficient chosen in the present study a
torque of 13 1028 Nm led to an angular velocity of the pattern of
10.8 deg0s. The torque signal was low-pass filtered with a cutoff
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at 5 Hz. This relatively low cutoff frequency was chosen to ensure
that it is well below the resonance frequency of the feedback
system which lies between 20 and 30 Hz. It was confirmed in
control experiments that the principal features of the response,
such as the mean slip-speed under closed-loop conditions as well
as the existence of considerable fluctuations in the real-time torque
responses around the mean level (see below), did not change qual-
itatively when the cutoff was set to either 10 Hz or 2 Hz.

Before the experiments, the torque level corresponding to straight
flight (“zero torque level”) had to be determined. This measure
was necessary because, for instance, at the torque compensator
flies that are suspended not entirely symmetrically may generate a
nonzero torque even if their muscles are activated in the same way
as in a straight flight sequence in free flight. To assess the zero
torque level, the fly’s responses were measured for 1 min in a
closed-loop situation. During this time a motion bias was imposed
that alternated every 5 s between clockwise and counterclockwise
rotation of the stimulus pattern. The mean torque response aver-
aged over the whole time interval was taken as the zero torque
level. The computer-controlled procedure for the determination of
the zero torque level was repeated after every 10 sweeps of data
acquisition (see below), i.e. after about 3.5 min. The zero torque
level was determined repetitively, because preliminary experi-
ments revealed that some flies do not maintain their mean torque
level for a longer period of time. Instead, their mean torque re-
sponse slowly drifts to other levels.

The experimental protocol consisted of a series of consecutive
sweeps of 18.75-s duration during which torque responses were
recorded. During the first 7.5 s and the last 3.75 s of each sweep,
motion of the stimulus pattern was entirely determined by the
torque responses of the fly. In between the external motion bias
was added for 7.5 s. After the recording time, data were saved on
the hard disk of the computer. In successive sweeps the direction
of the external motion bias was alternated.

Altogether 1028 sweeps were recorded from 19 flies. The mean
time-dependent torque responses and corresponding slip-speed traces
of different flies varied quite a lot, ranging from no perceptible
compensation of the motion bias to an almost perfect compensa-
tion. For the present study, altogether 139 sweeps of five flies were
selected for further analysis and as stimuli in subsequent electro-
physiological experiments (see below). In these selected sweeps,
the flies compensated the external motion bias particularly well,
leading, on average, to a small retinal slip-speed. Sweeps were
selected because only when the retinal slip-speed is small, there is
a problem at all of detecting an imposed motion bias.

Electrophysiological experiments

The activity of a motion-sensitive, directionally selective spiking
neuron in the third visual neuropil of the fly’s brain, the H1-cell,
was recorded (Eckert, 1980; Hausen, 1981). The animals were
dissected following the same procedure as described in detail in a
previous paper (Warzecha et al., 1993). Recordings were per-
formed extracellularly with electrolytically sharpened tungsten elec-
trodes. The electrodes were insulated with nail polish and had
resistances of about 4 MV. As an indifferent electrode, a glass
electrode was filled with Ringer solution and inserted into the
haemolymph of the head capsule. Recorded signals were amplified
with standard electrophysiological equipment. Extracellularly re-
corded spikes were transformed into pulses of fixed height and
duration. For further analysis, the pulses were fed into a 486 PC

through an analog-to-digital converter of an I0O-card (DT 2801-A,
Data Translation) at a sampling rate of 1.2 kHz. After acquisition,
the temporal resolution of the neuronal activity was reduced to
elementary time bins of 5 ms.

For visual stimulation of the H1-cell, the monitor screens were
arranged in exactly the same way as described above for the be-
havioral experiments. To investigate the responses of the H1-cell
to the retinal image displacements obtained in the behavioral closed-
loop situation, these displacements were replayed as stimuli and
the activity of the cell was recorded. The resting activity was
measured for 1 s before the onset of each sweep. The responses of
seven cells to altogether six replay sequences of each of the 139
selected sweeps were recorded, i.e. some cells were confronted
with all 139 traces while no cell was confronted with any stimulus
trace twice. To assess stochastic as well as deterministic fluctua-
tions around the mean response level, two particular sweeps were
presented to three cells between 30 and 60 times.

Data acquisition and evaluation were carried out with a 486 PC.
The programs were written in ASYST (Keithley Instruments, Taun-
ton, MA).

Data evaluation

To assess how well the H1-cell is able to detect the external motion
bias in the retinal image displacements resulting from the fly’s own
actions and reactions, we used the concept of an ideal observer.
This observer is assumed to look through two time windows at the
activity of a neuron. The activity was induced by motion traces
which were generated in the corresponding behavioral experiments
when there was no external motion bias or in response to a motion
bias, respectively (Fig. 1A). However, the ideal observer does not
know which window belongs to which stimulus condition. Instead
it is the observer’s task to carry out this assignment on the basis of
the integrated activity within each of the two windows (“integra-
tion windows”). The ideal observer is only assumed to know that,
on average, the motion bias leads to an increased activity. There-
fore, the observer always assigns the window with the higher
activity to the external motion bias. It can be shown (Green &
Swets, 1974) that there is no better strategy to detect the bias when
the only information available is the integrated activity within each
of a pair of integration windows. Depending on the actual spike
counts within the two time windows, the choice of the observer can
be correct (more spikes in the window during the motion bias),
random (same spike count in both windows), or false (less spikes
in the window during the motion bias). When this technique is
applied to many response traces, the proportion of correct deci-
sions can be determined as a measure of the reliability with which
the imposed motion bias can be detected. A value of 0.5 is obtained
when the ideal observer assigns the activity within one of the
windows equally often to the time before and during the motion
bias indicating that the motion bias cannot be detected. A value of
1 indicates perfect detection of the motion bias. It should be noted
that the determination of the proportion of correct decisions does
not rely on the assumption that the distributions characterizing the
variability of the responses are Gaussian. This is important, be-
cause for the motion-sensitive neuron analyzed here, the shape of
the spike frequency distribution was found to depend on both the
activity level of the cell as well as on the size of the integration
window within which the spike count was obtained. In particular,
for small integration windows spike frequency distributions devi-
ate considerably from Gaussian distributions.
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This basic procedure was adapted to the present experimental
analysis. Since the mean response amplitude is not constant but
depends on the velocity fluctuations of the stimulus trace, the
proportion of correct decisions was determined, in extension of the
conventional application of this approach, as a function of time
(see Fig. 1B). The integrated activity within a test window was
compared to the reference activity as determined in an equally
sized time window (“reference window”) during the time without
motion bias. Since it is entirely arbitrary where the reference win-
dow should be placed on the response trace during the time with-
out motion bias, the activities within as many neighboring reference
windows were taken into account as could be fitted into a time
interval of 3.2 s before the onset of the motion bias (not illustrated
in Fig. 1B). The reference windows overlapped partly, each being
separated from its neighbors by 5 ms. By using many neighboring
reference windows, a better estimate of the reference activity is
obtained than by using only a single reference window. The ac-
tivity within the test window was compared to the activity within
each reference window and the proportion of correct decisions was
determined from all these comparisons. The test window was shifted
in steps of 5 ms over the entire response trace. For each individual
response trace, this procedure leads to the proportion of correct
decisions as a function of time. For corresponding elementary time

bins, the proportion of correct decisions was averaged over all
individual response traces. The proportion of correct decisions was
determined for integration windows ranging between 10 and
2800 ms.

To compare the performance of the motion-sensitive H1-cell with
that of a perfect hypothetical velocity sensor, the velocity of the time-
dependent retinal image displacements, that were generated by the
fly in closed-loop experiments and used to stimulate the H1-cell, were
subjected to the same statistical procedure as described for the neu-
ron. There were only two modifications. (1) The mean velocity of
the stimulus itself within the integration window was determined,
instead of the spike count of the neuronal response. (2) The tem-
poral resolution of the velocity trace amounted to 2.5 ms. The test
window was therefore compared to reference windows separated by
2.5 ms instead of 5 ms and shifted by 2.5 ms over the velocity trace.

Results

Real-time performance in a behavioral closed-loop situation

In the first step of the analysis, the retinal image displacements that
are experienced by the fly during optomotor course stabilization
were determined in behavioral closed-loop experiments. Fig. 2

Fig. 1.Procedure to determine the proportion of correct decisions. A: An “ideal observer” looks through two windows at the spike trains
that were recorded while the neuron was stimulated with visual motion. The motion trace was generated by a tethered flying fly in a
behavioral closed-loop experiment, either before or during the time an external motion bias was added to the retinal image displace-
ments induced by the fly’s torque response. In consecutive response traces, the time windows are placed at a fixed position in time
relative to the onset of the motion bias. Since, on average, the spike frequency is higher during the motion bias than before it, the
observer assigns the window with the higher activity to the time with motion bias. The assignment is correct when a higher activity
was recorded during the time with external motion bias than before it (upper panel and third panel from above). Due to neuronal
variability, the same number of spikes may occur in both windows rendering the assignment of the observer fortuitous (second panel
from above), or the activity may be larger in the window associated with no motion bias leading to a false decision (bottom panel).
Applying this procedure to the responses elicited by many motion traces as generated by the fly under behavioral closed-loop conditions
without and with external motion bias yields the proportion of correct decisions. B: The proportion of correct decisions is determined
as a function of time. One of the two windows through which the observer looks at the spike train is placed at the time interval without
a motion bias (reference window, not shown). The activity within the other window (“test window”) is compared to the reference
activity as illustrated in A (see Material and methods for the exact procedure). The test window is shifted in time steps of 5 ms across
the entire spike train allowing a decision of the observer for every time step. Applying this procedure to many individual responses
to identical stimuli yields the proportion of correct decisions as a function of time. For clarity, the integration windows are displayed
in the figure slightly smaller than the time step by which they were displaced. Note that for the analysis of the data the windows were
considerably larger.
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depicts the mean torque response and the corresponding retinal
slip-speed before and while flies try to compensate an external
disturbance. Without external disturbance flies, on average, gen-
erate virtually zero torque that does not lead to a displacement of
the stimulus pattern. However, when a motion bias is added, flies
generate a torque signal for the duration of the motion bias. This
torque leads, after a brief transient phase, to a reduction of the
visual consequences of the imposed motion bias with a residual
mean slip-speed of less than 10% of the bias. After cessation of the
motion bias flies, on average, stop generating a torque. As a con-
sequence, the mean slip-speed, after a brief transient, approaches
zero again.

In contrast to the average performance, the individual torque
and slip-speed traces are characterized by large fluctuations around
their mean level. Since these fluctuations are very pronounced, it
is hardly possible to detect in the slip-speed traces the onset and
the offset of the imposed motion bias (see examples in Fig. 3). To
quantify the amplitude of the velocity fluctuations, the standard
deviation from the mean slip-speed was determined for all selected
sweeps. The standard deviation calculated on the basis of 2.5-ms
bins during the last 3.2 s of the motion bias amounts to 35.8 deg0s
as averaged over all sweeps. This figure comes close to the open-
loop velocity of 44 deg0s and is almost 10 times larger than the
residual average slip-speed under closed-loop conditions.

Responses of a motion-sensitive neuron to motion stimuli
generated by the fly’s actions and reactions

How does a motion-sensitive neuron in the optomotor pathway of
the fly respond to the strongly modulated motion signals that are

Fig. 2. Mean torque response and corresponding slip-speed in a closed-
loop situation. During the first and last 3.75 s of the illustrated time traces
the visual input of the fly was controlled exclusively by the torque re-
sponses of the animal as is indicated by open bars underneath the diagrams.
For a duration of 7.5 s, an external motion bias was added to the pattern
displacements induced by the fly’s own torque responses as is indicated by
the filled bar underneath the diagrams. The dashed line indicates the ve-
locity of the external motion bias under open-loop conditions. Averages are
obtained from 139 responses of five flies. (Modified from Warzecha &
Egelhaaf, 1996).

Fig. 3. Three examples of individual torque responses and corresponding
slip-speed traces recorded in the same experimental situation as in Fig. 2.
The duration of the external motion bias is indicated by the filled bars
underneath the diagrams. Open bars indicate the time without external
motion bias. The examples originate from three different flies. Note the
different ordinate scales.
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generated by the fly’s own actions and reactions and how well does
the neuron signal the motion bias? To answer this question, the
motion traces that were generated by the fly under behavioral
closed-loop conditions were replayed while the activity of the
H1-cell, a motion-sensitive neuron in the fly’s motion pathway
(Eckert, 1980; Hausen, 1981) was recorded. This particular neuron
was chosen because it can be recorded from longer than most other
optomotor neurons. Long recording sessions are requisite to obtain
the large amount of data that is necessary for an analysis of the
neuronal performance with respect to its reliability. The H1-cell
responds directionally selective to motion within large parts of one
visual hemisphere due to its input from many retinotopically or-
ganized motion-sensitive elements. In this respect it resembles all
other optomotor neurons in the fly’s brain. The H1-cell is not
directly connected to output regions involved in motor-control. It
rather is an intrinsic element of the optomotor system and conveys
information about wide-field motion to the other half of the brain
(Hausen, 1981). In the behavioral experiments both eyes of the fly
were stimulated. Hence, equivalent neurons in both halves of the
brain were activated which jointly mediate the optomotor turning
responses. Therefore, the activity of the two mirror-symmetrical
H1-cells, one in each optic lobe, needs to be taken into account. To
avoid simultaneous recording from the two heterolateral H1-cells,
spike trains of only one cell were recorded while stimulating the
animal with two versions of each stimulus trace, one that was
identical to the original stimulus of the behavioral situation, the
other being inverted so that every displacement of the stimulus
pattern occurred in the direction opposite to the original one. In
this way the response of the opponent H1-cell in the other half of
the brain could be simulated by recording the activity of just one
neuron and presenting an additional inverted stimulus trace. In the
following analyses spikes were counted as positive signals when
the original motion traces were presented; spikes recorded while
the inverted version was replayed counted as negative signals.
Original and inverted motion traces were always presented con-
secutively. Neuronal responses to these two stimulus versions were
taken as the simultaneous activity of the right and left H1-cell,
respectively, assuming that stochastic fluctuations around the mean
occur independently in both cells. The replayed stimuli can be
divided into two time intervals. During the one interval no motion
bias was added in the behavioral situation so that all slip-speed
fluctuations are due to the fly’s spontaneous torque changes. This
interval will be called “time without motion bias.” The other stim-
ulus interval represents the motion signal when there was an ex-
ternal motion bias in the corresponding behavioral experiment.
This interval will be called “time with motion bias.” These terms
should not be confounded with a stimulus situation where there is
no motion at all or motion with a constant velocity, respectively.

Responses of an H1-cell to an individual motion trace as gen-
erated by a fly under behavioral closed-loop conditions and to its
inverted counterpart are shown in Fig. 4. Since the H1-neuron is
directionally selective, its response is strongly modulated by the
profound fluctuations in the velocity of the stimulus that go along
with perpetual reversals in the direction of motion. When the op-
ponent spike frequency histograms are subtracted the resulting
signal, more or less, follows the slip-speed. Nevertheless, there are
characteristic deviations from a linear relationship, indicating that
the velocity is not encoded linearly by the H1-neuron. Although
the stimulus was the same for each individual response trace,
responses are not identical but show some variability. Hence, there
are two types of temporal modulations in the responses, (1) deter-
ministic fluctuations that are induced by the fluctuations of the

moving pattern and (2) stochastic fluctuations that are different in
each of the individual response traces and, thus, average out when
the same stimulus trace is presented to the cell repeatedly.

Discrimination performance of a pair of motion-sensitive
neurons and a perfect velocity sensor

How well the external motion bias can be detected on the basis of
the neuronal response is expected to depend on both the mean
neuronal response level during the time with external motion bias
as well as on the fluctuations around this mean level. To assess the
relative contribution of the stimulus-induced and the stochastic
components to the response fluctuations two parameters were cal-

Fig. 4. Responses of an H1-cell in a neuronal replay situation to repetitive
stimulation with the same motion trace and its inverted counterpart. The up-
per diagram depicts the original version of the motion trace. Each of the two
middle diagrams shows six consecutive unaveraged responses of the H1-
cell to identical stimulation either with the original (upper box) or inverted
(lower box) motion trace. The occurrence of a spike is indicated by a small
vertical line. The spike frequency histogram in the bottom diagram illus-
trates the difference of 40 H1-cell responses to each of the two opponent
stimulus situations. The spike frequency histogram contains the 23 6 in-
dividual response traces shown in the middle diagrams. Note the dent in the
time course of the spike frequency histogram marked by an arrow where the
mean response obviously does not follow the velocity signal. The filled bar
underneath the bottom diagram denotes the duration of the external motion
bias; the open bar indicates that the motion stimulus was generated exclu-
sively by the actions and reactions of the fly. Note that the neural responses
are displayed at an enlarged scale as compared to the behavioral responses
shown in Fig. 3.
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culated. (1) The standard deviation of the mean time-dependent
response from the time-averaged response (“stimulus-induced fluc-
tuations”) was determined. (2) Within corresponding time win-
dows of consecutive response traces, the standard deviation of the
individual responses from the mean response was evaluated. The
standard deviations determined in consecutive time windows were
averaged. This average was used as a measure of the stochastic
response component (“noise”). Since noise and stimulus-induced
response fluctuations can be expected to depend on the size of the
time window, within which the neuronal activity is taken into
account, both types of modulations were determined using differ-
ently sized integration windows (Fig. 5). For a small integration
window of 10 ms the noise amounts to about 0.5 spikes per 10 ms
corresponding to 50 spikes0s. With increasing integration window,
the noise amplitude decreases considerably as a consequence of
smoothing out the stochastic signal fluctuations. The stimulus-
induced fluctuations are much larger than the noise component for
all window sizes tested. The amplitude of the stimulus-induced
fluctuations does not change much with increasing window sizes
up to 100 ms. Only for larger window sizes does the amplitude of
these fluctuations start to decrease. Window sizes above about
100 ms are large enough to smooth out stimulus-induced fluctua-
tions. Thus, under the present stimulus conditions responses of the
H1-cell deviate from a mean value more because of deterministic
than of stochastic fluctuations.

To compare the performance of the two opponent H1-cells with
that of a perfect velocity sensor, i.e. a hypothetical device that sig-
nals the instantaneous velocity of a moving pattern unambiguously
without being afflicted by noise, it was investigated how well an ideal
observer is able to detect the external motion bias on the basis of
either the responses of the two opponent H1-neurons or the velocity

traces by which the neuronal responses were induced. The only in-
formation available to the observer is the integrated neuronal ac-
tivity or the mean velocity within a time window (“integration
window”). The calculation of the neuronal performance was based
on the difference in the responses of the H1-cell to two versions of
the motion stimuli, one being the inverted counterpart of the other
with respect to its direction of motion. This procedure simulates the
simultaneous recording of the H1-neurons in both halves of the brain.
Since the size of the integration window is likely to influence the
detectability of the motion bias, the proportion of correct decisions
was assessed for differently sized integration windows. Small win-
dows enable a reliable detection of the onset of the motion bias for
both the neuronal as well as the velocity signals (upper panel,
Fig. 6). However, after about 500 ms, when in the behavioral closed-
loop experiment the fly was able to reduce the motion bias con-
siderably (cf. Fig. 2), small windows do no longer allow detection
the motion bias. The proportion of correct decisions then drops to
a mean value only slightly above chance level. The performance of
the ideal observer on the basis of the velocity signal is very similar
to that on the basis of the neuronal response apart from the onset of
the motion bias. Here the observer takes slightly longer to achieve
a reliability of 75% when he0she bases the decisions on the re-
sponses of the H1-cell rather than on the velocity signal. This dif-
ference is due to the fact that the responses of the H1-cell follow the
slip-speed with a phase shift of approximately 60 ms as determined
from cross-correlograms (Warzecha & Egelhaaf, 1996). This time
delay has not been corrected for in the diagrams shown in Fig. 6.
For an integration window of 800 ms, the proportion of correct de-
cisions rises more slowly after the onset of the external motion bias
than for the shorter integration window. The motion bias can be de-
tected with a reliability of more than 75% as long as the reponse to
the onset of the motion bias lies within the integration window (mid-
dle panel, Fig. 6). Subsequently, the proportion of correct decisions
drops to about 60%. Apart from the time shift at the onset of the
motion bias, the decisions of the ideal observer are again about
equally reliable no matter whether they are based on the neuronal
responses or the velocity signals. The same is true for the largest
window used in the present analysis (lower panel, Fig. 6). Here the
window is so large that the response to the onset of the motion bias
is taken into account for the whole illustrated time interval with mo-
tion bias. Consequently, the proportion of correct decisions stays at
a relatively high level of slightly more than 75%.

Discussion

Flying animals are assumed to stabilize their flight path against
disturbances such as a gust of wind or asymmetries in the flight
motor (for review see Collett et al., 1993). The retinal image dis-
placements that go along with deviations from the flight path are
thought to be detected by the optomotor system which then me-
diates compensatory responses. As a consequence, the retinal error
signals get minimized. This means that animals normally operate
under so-called closed-loop conditions where the animal’s retinal
input depends to a large extent on its own actions and reactions. To
test how well an external disturbance can be detected under such
stimulus conditions, motion traces that were generated by a fly in
behavioral responses to an imposed disturbance were presented, on
the one hand, in subsequent experiments to a directionally selec-
tive motion-sensitive neuron in the fly’s optomotor pathway and,
on the other hand, to a hypothetical velocity sensor. By employing
a statistical approach derived from signal-detection theory, it is
shown that the biological motion-detection system performs al-

Fig. 5. Stimulus induced deviations (open circles) and noise (filled circles)
of the H1-cells’ responses in the replay situation for integration windows of
variable size. A particular motion trace generated by a fly in a behavioral
closed-loop situation and its inverted counterpart were replayed to two
H1-cells 30 and 40 times, respectively. A second motion trace and its
counterpart were replayed to another H1-cell 60 times. For each cell the
noise as well as the motion-induced fluctuations were calculated in neigh-
boring nonoverlapping integration windows as described in the text. The
calculation was based on the difference in the responses to the original and
inverted version of the motion trace. Starting with the onset of the exter-
nally imposed motion bias 3.2 s of the neuronal response were evaluated.
Error bars denote the standard error of the mean associated with the aver-
age of the mean values of three cells.
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most as well in detecting the disturbance in the motion signal as an
ideal velocity sensor.

To understand this surprising result, the following questions need
to be addressed: (1) What do the behaviorally generated retinal mo-

tion traces look like and how do they need to be processed to allow
a reliable detection of the external disturbance? (2) What is the func-
tional significance of detecting a motion bias in behaviorally gen-
erated stimuli and what are the limitations of the present approach?
(3) Why do biological motion detectors perform so well in com-
parison to an ideal velocity sensor, despite the fact that their re-
sponses deviate in a characteristic manner from signalling the
velocity of a moving pattern and are concealed by neuronal noise?

What do the behaviorally generated retinal motion traces look
like and how do they need to be processed to allow a reliable
detection of the external disturbance?

In the behavioral experiments, flies were required to compensate
an external motion bias that was constant for some seconds. On
average, flies were able to compensate such a disturbance so well
that the mean residual retinal slip-speed was rather small compared
to the pronounced fluctuations occurring in real-time around this
mean level. At least for human observers, these fluctuations render
it hardly possible to detect the onset or offset of an external dis-
turbance in the individual motion traces. Nevertheless, flies are
able to compensate for such a motion bias astonishingly well and
even a single pair of motion-sensitive neurons provides sufficient
information to detect the motion bias correctly in approximately
75% of all presentations. Such a reliable performance is only pos-
sible if the neuronal activity is temporally integrated to some ex-
tent and, in particular, if the signal at the onset of the motion bias
is included in the integration. Hence, when the neuronal activity is
evaluated only within a short integration window, the motion bias
can be detected reliably only shortly after its onset. Using a larger
integration window enables a reliable detection for a longer period
of time. Of course, the size of the integration window that is most
appropriate to decode an external motion bias in the closed-loop
motion traces is likely to depend on the time course of the motion
bias. Very large windows are only the most appropriate ones, if the
system is required to decode a constant motion bias maintained for
a considerable period of time. Here, some kind of temporal inte-
grator following the motion-detection system seems to be neces-
sary to enable a maintained detection of the external disturbance.
In the case of a more transient motion bias, smaller integration
windows might do much better than larger ones. It should be noted
that these qualifications do not affect the main conclusion of the
present study. The performance of biological motion detectors and
ideal velocity sensors do not much differ with respect to their
ability to signal an external motion bias in motion traces generated
by the fly under closed-loop conditions.

Two points should be mentioned in the present context. (1)
Interestingly, some kind of temporal low-pass filtering with a time
constant of some hundreds of milliseconds has been proposed, on
the basis of quite different lines of evidence, to play a decisive role
in the fly optomotor system (Egelhaaf, 1987; Heisenberg & Wolf,
1988; Wolf & Heisenberg, 1990). Hence, there is behavioral evi-
dence that high-frequency fluctuations in retinal image motion are
smoothed out before the signals are transformed into the compen-
satory turning responses. (2) To assess the performance of a neuron
in the fly’s motion pathway, we did not ask how well the neuronal
responses represent the velocity of the retinal image displacements
as has been done in a previous study (Bialek et al., 1991). Like-
wise, we did not ask how well the time course of the stimulus-
induced response component can be recovered from the individual
response traces, a problem which has been analyzed in a different
study (Warzecha & Egelhaaf, 1997). To accomplish these tasks,
the neuronal responses had to be temporally filtered too (Bialek

Fig. 6. Time course of the proportion of correct decisions with which an
external motion bias can be detected either in the slip-speed traces (dashed
line) generated by tethered flying flies under behavioral closed-loop con-
ditions or in the difference between the responses of the H1-cell (solid line)
to these motion traces and their inverted counterparts. The filled bars
underneath the diagrams denote the duration of the external motion bias;
open bars indicate that there was no external motion bias. The proportion
of correct decisions was evaluated for integration windows of different
lengths as is indicated in the figure. The 139 slip-speed traces recorded in
behavioral closed-loop experiments were presented in their original and
inverted version to seven cells. Some cells “saw” all 23 139 traces, some
only part of these traces, but no cell “saw” any trace twice. Altogether, the
2 3 139 traces were presented six times. The calculation of the neuronal
performance was based on the difference in the responses of the H1-cells
to two mirror-symmetrical versions of the motion stimuli simulating the
simultaneous recording of the H1-neurons in both halves of the brain. To
smooth out high-frequency fluctuations in the curves describing the time-
dependent proportion of correct decisions, the curves were filtered by a
running average of 17.5 ms. Note that this procedure does not affect the
overall shape of the curves.
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et al., 1991; Warzecha & Egelhaaf, 1997), although with a con-
siderably shorter time constant than was found to be necessary in
the present study if not only the rapid transient at the onset of the
imposed motion bias is to be detected in the behaviorally generated
motion stimuli. Hence, depending on the task the system is re-
quired to solve, the neuronal signals need to be processed in a
different way.

On the functional significance of the task biological motion
detectors and the hypothetical velocity sensor were required
to solve and the limitations of the present approach

In the present account both the biological motion-detection system
as well as the hypothetical velocity sensor were required to detect
an external disturbance in time-dependent motion signals that were
generated beforehand by tethered flies flying in a flight simulator
while trying to compensate this external disturbance by their own
reactions. Of course, the ability to compensate for disturbances of
the flight course imposed by, e.g. a gust of wind or asymmetries in
the flight motor, can be assumed to be of vital importance for any
flying animal. This ability can also be assumed to rely, at least to
a large extent, on the efficient processing of visual cues such as the
retinal image displacements that are generated on the eyes as a
consequence of external disturbances. Hence, the computational
task that the fly motion-detection system, on the one hand, and a
hypothetical velocity sensor, on the other hand, were required to
solve in the present account is highly significant from a behavioral
point of view. Nonetheless, the approach that was used to find out
how well different motion-detection schemes accomplish this task
needs to be qualified.

The performance of the two motion-detection schemes was
tested here in an experimental situation where behaviorally gen-
erated motion traces were replayed to a motion-sensitive neuron
rather than in a closed-loop situation itself. In this context, it should
be emphasized that the real-time performance of a control circuit
as is used here to account for optomotor course stabilization can
only be expected to be identical under closed-loop and replay
conditions, if it does not contain any stochastic element and some
kind of nonlinearity such as a saturation characteristic. Otherwise,
the performance of the control system may differ for the two
conditions, although the retinal input is exactly the same (Warzecha
& Egelhaaf, in preparation). Since the fly’s optomotor system ex-
hibits nonlinear behavior as well as stochastic response fluctua-
tions, its replay and closed-loop performance can be expected to
differ. Indeed, differences have been found in behavioral closed-
loop and replay experiments on the fruitflyDrosophila (Heisen-
berg & Wolf, 1988; Wolf & Heisenberg, 1990). At first sight it,
therefore, might have been more appropriate to assess the reliabil-
ity of biological movement detectors and velocity sensors in de-
tecting an external disturbance in the retinal input directly in closed-
loop rather than in replay experiments. However, in order to compare
how well motion-sensitive neurons and hypothetical velocity sen-
sors can detect behaviorally relevant disturbances, one has to present
identical stimuli to both systems which is not possible under closed-
loop conditions. The closest approximation of a closed-loop situ-
ation, thus, is to replay stimuli that have been generated under
behavioral closed-loop conditions.

How do biological motion detectors relate
to perfect velocity sensors?

The similar performance of a pair of motion-sensitive neurons and
of a perfect velocity sensor in detecting an external motion bias in

behaviorally relevant motion stimuli is surprising for two reasons.
(1) Neuronal responses are affected by stochastic signal fluctua-
tions. (2) The responses of biological movement detectors as in-
ferred from the activity of motion-sensitive neurons as well as
from the psychophysical or behavioral performance of humans and
animals including the fly deviate in many respects from the re-
sponses of perfect velocity sensors (for review, see Borst & Egel-
haaf, 1989; Egelhaaf & Borst, 1993b).

In many cases, the variance of the stochastic response fluc-
tuations was found to be in the same order of magnitude as the
corresponding mean response amplitude (for visual interneurons,
see e.g. Tolhurst et al., 1981, 1983; Vogels et al., 1989; Britten
et al., 1993). In other studies the neuronal noise was found to
be, at least to some extent, considerably smaller than the mean
response (Warzecha, 1994; Ruyter van Steveninck et al., 1997;
Warzecha et al., 1997). Although there is some discrepancy with
respect to the interpretation of these differences, i.e. whether
the variability decreases when the stimuli are dynamical rather
than constant (Ruyter van Steveninck et al., 1997) or whether
the variability decreases at high activity levels of the neuron
irrespective of the stimulus dynamics (Warzecha 1994; Warzecha
et al., 1997), the standard deviation of the stochastic signal fluc-
tuations as found in the present study was found to be consid-
erably smaller than the fluctuations in the stimulus-induced
component of the responses to behaviorally generated stimuli
(see Fig. 5). Hence, the stimulus-induced fluctuations of the ret-
inal image displacements elicited by the torque responses of the
fly rather than the noise primarily limit the detectability of the
motion bias in the individual time-dependent neuronal response
traces.

Although at first sight the difference between the output sig-
nals of corresponding motion-sensitive neurons in both halves of
the brain appears to follow more or less the time-dependent
slip-speed signal, at least if averaged over many stimulus pre-
sentations, there are characteristic deviations (see also dent marked
by arrow in Fig. 4). The time course of the neuronal signals
depends, as has been predicted by motion-detection theory, apart
from velocity, also on the velocity changes as well as on the
higher order temporal derivatives (Egelhaaf & Reichardt, 1987;
Egelhaaf & Borst, 1989). Nevertheless, these deviations of the
neuronal responses from the retinal slip velocity do not much
affect the standard deviation of the neuronal activity from its
time average and therefore the performance in detecting the mo-
tion bias in these signals.

In conclusion, how the performance of a hypothetical veloc-
ity sensor and that of biological movement detectors compare
strongly depends on the task that is to be solved. If the task is
to represent the time course of the retinal velocity, an ideal
velocity sensor will obviously be superior to a biological motion-
detection system, because the latter is inherently noisy and does
not faithfully represent the retinal velocity. However, as was
outlined above the optomotor system is not required to represent
the velocity but rather to compensate for disturbances of the
flight course. In this functional context, a biological motion-
detection system does not perform worse than a hypothetical
velocity sensor in detecting an external disturbance in motion
traces that were generated by the animal itself. Moreover, the
characteristic properties of biological motion detectors may even
be particularly advantageous, since the decrease in their gain at
high pattern velocities prevents the optomotor system from get-
ting unstable when it is to operate with a high feedback gain in
order to counteract an external disturbance efficiently (Warzecha
& Egelhaaf, 1996).
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