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Introduction

This group report concentrates on discussions of
structure-function relationships in brains. It also
attempts to compare some evolutionary achieve-
ments of natural organisms with the influence of
computer and robot (artificial organism) design on
their performance. Here, the term “structure” re-
fers to the materialistic implementation at the
level of molecules, subcellular organelles, cells or
networks which enables the (natural or artificial)
organism to achieve a teleologically defined func-
tion. Both, in neurobiology and in robotics, the
meaning of the term “function” depends on the
particular level chosen for analysis of performance
and organisation. A given structure may have only
one or many functions, and a given function may
be implemented by only one or by several dif-
ferent structures.

Physical and chemical constraints have a large
influence on the structure of organisms. Obvious
examples are provided by convergent evolution
(e.g., in the mole and the mole-cricket). We also
see effects of physico-chemical constraints in ner-
vous systems. Receptor cells, e.g., have two parts,
an outer segment involved in signal transduction
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and an inner segment that has all the machinery
to electrically process the transduced signal. The
outer segment is specific for modality: Outer seg-
ments of photoreceptors are different from outer
segments of mechanoreceptors or chemoreceptors.
The inner segments, however, are rather similar in
all cases. Since all signals are processed similarly
in the brain, the question was raised whether more
specific structure-function relationships can be
seen in central parts of nervous systems than ob-
served on the level of receptors.

To cut some vistas into the jungle of intermin-
gled problems related to structure and function of
brains and computers, the group decided to discuss
five topics under the following headings:

— Influence of architecture on functional perform-
ance of brains and computers,

- Implementation of plasticity,

- Nature and role of algorithms,

- Enhancement of efficacy by internal reconstruc-
tion of brains and computers,

- Limitations of brains and artefacts.

Influence of Architecture on Functional
Performance of Brains and Computers

Relations between brain structure and function
may be analysed on different levels. They com-
prise the fine-structural organisation of individual
neurones, the extent of synaptic connections onto
and from neurones, the relationships to neigh-
bouring glial elements, the lay-out of neuronal
nets, the arrangement of neuronal populations in
cell layers and the dimensions of distinct brain nu-
clei. Relations between structure and function
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have been described of small local elements, such
as the number of synapses subserving transmission
of specific signals from one set of central neurones
to another and the number and form of dendritic
spines receiving signals from presynaptic boutons.
Much is known about the molecular characteristics
of neurones, about enzyme activities involved in
synthesis, release and degradation of neurotrans-
mitters, and about the number and distribution of
receptor molecules regulating the conductance of
ion channels in synaptic membranes by direct cou-
pling to ionophores or via second messenger cas-
cades.

Just as in natural brains, also in artificial systems,
functionality has to be analysed on different levels.
We have to distinguish between a physical level
(solid state physics), an electronic circuit level, a
digital level, a program level, and a model level. If
we have a complete agent, a robot, we finally have
to relate the internal processing to behaviour. In
such analyses, the so-called “frame-of-reference”
problem must be taken into account: The relation-
ship between observer, the object that he is at-
tempting to model and the environment must be
clearly specified. Likewise, the relation between
the designer, the artefact that he tries to construct
and its environment is important. Behaviour (of a
natural or artificial organism) is the result of a sys-
tem-environment interaction. Attempts to reduce
the behaviour of an organism to internal mecha-
nisms of brain processes only, would therefore
constitute a category error.

Apparently, specific relations between structure
and function are more obvious in peripheral parts
of nervous systems, i.e., close to sensory receptors
and motor effectors. In central parts of the ner-
vous system information processing makes use of
neuronal generalists and stereotype small cell as-
semblies embedded into larger neuronal nets, in
particular in the cortex of the telencephalon. For
these parts of the brain it is more difficult to eluci-
date specific structure-function relationships: Very
little is yet known, whether and how specific func-
tions may be reflected in a specifically adapted ar-
chitecture of neurones, nuclei or neuronal circuits,
and where such relations have been decribed, they
appear to be weak. In some specific elements,
however, a high correlation between structure and
function has been reported. Some of these specific
adaptations were discussed in detail:
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Example 1

In general, it can be observed that brain arcas
involved in the processing of biologically impor-
tant information are enlarged. In those insects
which rely very much on vision, the visual system
comprises about 50% of the entire nervous sys-
tem. In the avian brain, distinct nuclei, including
area X, the nucleus robustus archistrialis and the
hyperstriatum ventrale, pars caudale, are used to
generate song. These nuclei are only found in
songbirds and parrots. They are enlarged in males
and comprise more and larger neurones than in
females (Nottebohm et al., 1976). Further reports
referred to the number of dendritic bifurcations
and the distances between them. These structural
characteristics are under hormonal control, not
only during ontogenetic maturation, but also in
the context of seasonal requirements. Female ca-
naries implanted with testosterone propionate de-
velop larger vocalisation areas and begin to sing.
The same effect was elicited in female zebra
finches, if they had been pre-treated with 17 3-es-
tradiol as chicks.

Example 2

In 1948 Jeffress postulated the existence of a
specific set-up of neuronal connectivities as a
structural prerequisite for the measurement of
small time differences. The predicted type of archi-
tectural arrangement was indeed observed some
40 years later in the nucleus laminaris of the barn-
owl (Wagner and Luksch, 1998: this issue, pp. 560-
581). The barn-owl represents the position of its
prey in the brain in an acoustic map of the sur-
rounding. Here, the horizontal deviation from the
mid-sagittal plane, the azimuth, is coded as in-
teraural time difference between the signals re-
ceived by the two ears. To extract the value of a
given interaural time difference, the delay of neu-
ronal signals from both ears is compared by neu-
rones in the nuclei laminares, which are the first
neurones receiving ipsi- and contralateral auditory
input. These neurones have partly lost their den-
dritic trees. The reduction in the dendritic arbori-
sation is more pronounced in neurones involved
in the measurement of high frequencies (7 kHz),
than in neurones tuned to lower frequencies

(1-2 kHz).
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Example 3

In their mating behaviour, male flies chase fe-
males in virtuous flight manoeuvres in order to
catch them. This conspicuous behaviour is medi-
ated by neuronal circuits which, at least to a large
extent, only exist in male flies. Already at the level
of the retina and the first processing stages of the
visual system, sex-specific specialisations have
been found. Moreover, in the third visual neuropil,
neurones have been characterised which are not
present in females at all. These sex-specific spe-
cialisations reflect a high degree of correlation be-
tween structure and function (Egelhaaf et al., 1998:
this issue, pp. 582-592).

Example 4

A further example of structure-function rela-
tionships is the fine-structural specialisation of
dendritic spines involved in the reception of neu-
ronal signals in the nucleus arcuatus hypothalami:
The mammalian brain develops primarily female
characteristics, unless exposed to testosterone dur-
ing a critical phase around parturition. When the
(male) foetus produces testosterone, this hormone
is biochemically converted (aromatised) by neuro-
nal enzymes to estradiol, which reduces the
number of dendritic spines on neurones in the nu-
cleus arcuatus. Functional female characteristics of
the mature mammalian brain are only preserved
if the full amount of dendritic spines is expressed
on these neurones. The neuroendocrine cells of
the nucleus arcuatus release LHRH in the pitu-
itary. In order to prevent a male differentiation of
a genetically female brain, the mother’s estradiol
(a steroid passing via the placenta and through the
foetus’ blood brain barrier) is masked in the blood
of the neonatal female rat by a special estradiol-
binding protein, the a-fetoprotein. If this protein
is not provided in a sufficiently high concentration,
the individual will not retain its female organisa-
tion nor the ability to produce the hormones re-
sponsible for ovulation, in spite of its female phe-
notype.

Example 5

Long-term potentiation is a well known exam-
ple of functional neuronal plasticity elicited at
distinct sets of synapses, in particular in the mam-
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malian hippocampus. The electrophysiological
changes at these synapses are observed after short
trains of tetanic stimulation, and they can persist
from several hours to weeks. Long-term potentia-
tion has been interpreted as a model system or
even a partial mechanism of memory formation.
Induction of long-term potentiation involves a se-
quel of partly understood biochemical reactions
evoked by the neurotransmitter glutamate and by
modulators at NMDA-receptors. Repeatedly it
was reported in the literature that, some hours af-
ter induction of long-term potentiation, changes
can be observed in the number and fine-structural
characteristics of dendritic spines (spine length, bi-
furcations etc.) of those postsynaptic neurones
which exhibit the long lasting functional adapta-
tion.

Example 6

Teleosts (bony fish) lack the high degree of tel-
encephalic differentiation typical of higher verte-
brates, mammals in particular. In the teleost mes-
encephalon, sensory inputs from different
modalities project on distinct classes of neurones,
each situated in a particular cell layer of the “op-
tic” tectum. Later in evolution, such layers have
been rearranged to form distinct nuclei. As it is
known on which tectal cell population each set of
afferent axons projects and because some of the
different types of synapses can be identified with
the electron microscope, the tectum of teleosts of-
fers an unique possibility to study modality-spe-
cific functional adaptations at the level of the
synapses involved. Following an active shock
avoidance conditioning in goldfish, e.g., deposition
of a functionally important cell adhesion molecule
was observed at synapses of the type I neurones
in the optic tectum, i.e., at neurones involved in
the integration of those excitations representing

the stimuli used in the preceding conditioning
(Schmidt, 1995).

Example 7

Specialised neurones in fish (Mauthner cells)
mediate their escape response. These neurones
have well myelinated axons to speed-up signal
conduction to muscles of the tail, and they mainly
use electrical transmission at mixed electrical/
chemical synapses, thus avoiding delay of informa-
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tion processing caused otherwise by release, diffu-
sion and binding of chemical neurotransmitters.

Quite obviously, for the more specialised brain
regions, functions are more evident, whereas the
cortex of the telencephalon can potentially “do
anything” — it resembles a universal purpose de-
vice. Architectural differences, as far as they exist
in the cerebral cortex at all, may be attributed to
different degrees of connectivity, reflecting the
specific demand for neuronal interaction partners.
Neurones in layer V, e.g., project to the brain stem
and the spinal cord. Where numerous fibres have
to be sent to these targets, thickness of layer V
is increased. Cortical input-output transformations
cannot clearly be recognised if descriptions in
terms of outer-world phenomena are chosen, such
as seeing a visual stimulus or hearing a sound. But
it is essential, to always relate neuronal processing
to the actual behavioural performance. This re-
quires precise knowledge of how the components
of the brain are embedded in a physical organism.
Correspondingly it is necessary to define how al-
gorithms are “embodied” in a robot (cf. Pfeifer
and Scheier, 1998: this issue, pp. 480-503).

The continuous advancement of computer de-
sign has little in common with the evolution of nat-
ural brains. In technical systems, the same func-
tionality can be achieved by computer chips of
rather different structures, and, moreover, compu-
tational functionalities can be implemented in
software or hardware solutions. As for natural
brains, it is easier to understand the function of a
particular unit in the periphery of an artefact than
in its central parts. Chips in central parts of com-
puters are often very general processors used in a
wide range of applications. Specialised parts en-
able higher velocities of computation, but usually
a compromise has to be found between speed of
performance and flexible applicability of a com-
puter chip. The closer to function a particular ele-
ment is, the more specialised it may be designed
(this holds true for neurones as well as for flip-
flop computer elements).

From an engineering perspective, the following
two terms seem to be helpful: “engineering” and
“reverse engineering”. Engineering works from
specifications, also called functional requirements,
to structure, the actual device. Reverse engineer-
ing starts with the artefact and tries to work out,
what the functional requirements might have
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been. Reverse engineering has been applied quite
successfully in computer science, e.g., to derive the
specification from the program code, solving the
questions “What was the function of this pro-
gram?” and “What was the intention to write this
program?”

A very successful principle of design in technical
systems is modularisation and layering leading to
modules for each function or each group of func-
tions. Modules should be designed in a way that
interactions between them are only possible
through precisely defined interfaces, although usu-
ally there will also be unintended interactions.
Such modules as boards for monitors, ports for
network components etc. can be used again in
other systems or can easily be exchanged, if the
computer has to be repaired or if it is to be im-
proved. Making use of standardised modules,
hardware implementation is fast. Software imple-
mentation, on the other hand, is much more flexi-
ble. Finally, the modular construction of comput-
ers facilitates their reconstruction during reverse
engineering, in particular, if one module is imple-
mented for one function or at least one class of
functions.

Even though natural brains seem to be highly
structured and certain architectural features can
be found in many brains, we do not know, whether
this involves a kind of modularisation. In particu-
lar feed-back loops of connectivities indicate that
it is not easy to identify well-defined interfaces be-
tween the building-blocks of brains. Perhaps, evo-
lution leads to some degree of modularisation in
natural systems, although there seems to always
remain a certain amount of resource sharing be-
tween different functions. The task of the biologist
who tries to determine the function of a particular
neurone, a group of neurones or a brain area is —
in a sense — one of reverse engineering.

Implementation of Plasticity

If we attempt to understand brain functions, we
have to know how neuronal processing relates to
behaviour (in the field of robotics the correspond-
ing concept of “embodiment” refers to the imple-
mentation of algorithms in the robot). In the
course of evolution, many brain specialisations de-
veloped subserving specific functional demands
for the behaviour of the species. Still, many plastic
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changes take place on different levels of the ner-
vous system in each individual to adapt it even
better to functional requirements: Natural brains
modify their internal organisation during ontoge-
netic development, guided by a genetically fixed
program. Some of these structural modifications
occur gradually in the course of maturation, others
rather instantaneously, e.g. during puberty or
metamorphosis. During ontogenetic development,
some neurones lose their morphological and bio-
chemical phenotype (e.g., neurones derived from
the neural crest) and become endocrine cells (ad-
renergic cells reaching their final destination in the
adrenal medulla). Other examples include changes
in the number of steroid receptors in the brain
induced by pregnancy and parturition. Plastic
changes also serve functional repair after injury.

Further functional demand for plasticity depends

on individual experience, and it is induced by re-

petitive exposure of the organism to (new) stimuli
and by learning in particular. But learning is only
one specific form of plasticity.

In principle, plasticity of the brain is imple-
mented by rearrangements of neurones and their
connections and by changes in the efficacy of neu-
ronal information transfer. These plastic changes
may occur on many different organisational levels
of the brain. The function of a plastic change
should always be defined with respect to the cho-
sen level of explanation which, in turn, depends
on the objectives of the particular investigation.
Important levels of plasticity include
¢ Brain subsystems: Take-over of the function of

one brain area by another.

® Network level: Changes in synaptic efficacy,
such as homosynaptic depression as a mecha-
nism for habituation and heterosynaptic facilita-
tion as a mechanism for sensitisation.

* Groups of neurones: Establishment of new syn-
apses.

* Neuronal level: Formation of new neurones by
mitosis; this is a rare event, but it does occur,
e.g., in the brains of many fish and in songbirds.

® Subcellular level: Formation of new extensions,

a process called sprouting, and division of den-

dritic spines (often including the spine appara-

tus); recruitment of synaptic vesicles.

® Biochemical level: Molecular mechanisms in-
volved in transmitter synthesis and release, up-
regulation of specific receptors, notably the
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NMDA-glutamate receptor, alterations at ion

channels, second transmitter cascades, post-

translational modifications, such as protein
phosphorylation, induction of early and late
genes, and many more.

Different forms of plasticity occur within dif-
ferent time ranges. In natural brains a major dis-
tinction may be made between temporary physio-
logical changes in the excitability of neurones on
the one hand, and long lasting changes in struc-
tural connectivities on the other. Changes in the
concentration and conformation of molecular con-
stituents, e.g., undergo rapid turnover, and may fa-
vourably lend themselves for short-term events.
Structural changes, however, may persist for a life-
time and are thus suitable for permanent adapta-
tions. There is increasing evidence that not only
the formation of new synapses, but also the degra-
dation of some neuronal characteristics follows a
predetermined series of cell biological reactions
(apoptosis). Even the maturation of a nervous sys-
tem does not necessarily only involve the setting-
up of new elements, but may equally well involve
mechanisms to select a subset of specific elements
from an initially larger group of such elements
(pruning). An intriguing biological question is,
whether some of the mechanisms involved in de-
velopment and in repair (e.g., regeneration) of the
nervous system may have been adopted to serve a
new function for behaviourally induced neuronal
plasticity in the sequel of learning (Schmidt, 1997).

Learning is a form of behavioural plasticity ob-
served in most animals. It has to be differentiated
between associative learning and non-associative
learning (some neurobiologists prefer to call this
non-associative plasticity). Examples of non-asso-
ciative learning are habituation and sensitisation
of behavioural responses. They are based on ho-
mosynaptic depression and heterosynaptic facilita-
tion, respectively (Kandel and Schwartz, 1982).

Associative learning has been studied in a large
variety of paradigms including classical and oper-
ant conditioning. The process involves a short-term
memory phase, which is susceptible to physical in-
terference, such as electroconvulsive shocks or
cooling within seconds to minutes after acquisition
of the information, and a long-term memory phase,
which is not blocked by such events and may last
for years. The mechanism by which short-term
memory is transformed into long-term memory is
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called “memory consolidation”. Tt depends on
transcription and translation, in particular on bio-
synthesis of cell adhesion molecules and other gly-
coproteins, and is of uttermost importance, both
with respect to ageing and several diseases of the
central nervous system of which Alzheimer's is but
one well known example.

During memory consolidation, a temporarily
adopted new behavioural program is finally imple-
mented in form of persistent changes in neuronal
ultrastructure and connectivities, presumbly in-
cluding - at least in part - also those neuronal
elements that were involved in the original pro-
cessing of the new information during acquisition.
Synaptic membranes in neuronal circuits become
“primed” by the electrophysiological events dur-
ing acquisition. Repeated similar, or even iden-
tical, learning-events (rehearsal) involving learn-
ing-rules, like the Hebbian condition (Hebb,
1949), may be sufficient to induce permanent
structural alterations at these activated synapses.
Higher organisms, however, evolved additional
mechanisms to evaluate, which primed circuits are
or are not to be consolidated. Here, an additional,
delayed signal may decide, whether a long-term
structural change is initiated. In fear-conditioning,
e.g, a primarily neutral stimulus gains aversive
properties by repeated contingent presentation to-
gether with an aversive stimulus (Koch and
Schnitzler, 1997). This can be achieved in form of
a Pavlovian conditioning procedure that leads to
a re-evaluation of the meaning of the formerly
neutral stimulus by the brain. A structural basis
of fear-conditioning has been described in detail
(Koch, 1998: this issue, pp. 593-598).

It has to be kept in mind, however, that neuro-
nal adaptations may not only be induced by neuro-
nal activity, but can also be influenced by humoral
signals, hormones in particular. Humoral signals
from endocrine and neuroendocrine cells are
widely distributed via the blood and/or extracellu-
lar brain fluid like a message “to whom it may
concern”. Glucocorticoids and related stress-hor-
mones, may represent signals which indicate how
important a preceding learning situation was for
the animal. Furthermore, the decrease in glucocor-
ticoid concentration resulting from the acquisition
of a new behaviour that proved to be advanta-
geous for the individual may be used as a signal to
evaluate behavioural success. Such endocrine sig-
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nals may trigger expression of protein factors
which durably modify all those synapses that were
primed during acquisition. In this way a new
pattern of connectivity may be obtained that be-
comes a physical implementation of long-term
memory in the brain. Cell adhesion proteins in
particular, have been shown to participate in long-
term memory formation (Schmidt, 1998).

In behavioural biology the term “contiguity” re-
fers to the observation that the conditioned stimu-
lus has to precede the unconditioned stimulus in
order to achieve effective classical conditioning.
Contiguity may be explained by conventional bio-
chemical mechanisms of allosteric regulation via
secondary transmitter molecules: An enzyme E,
e.g., may be activated by two different factors, A
and B, which are produced in the sequel of synap-
tic input from two different neurones A* and B*
acting on different receptors within the membrane
of the same postsynaptic cell. If A binds first to
the enzyme, the activated complex AE may be-
come even more susceptible to further activation
by factor B, eliciting a synergistic effect to form
the enzymatically active complex ABE. However,
if factor B binds first to E, the formed complex
BE may become less susceptible to bind A, and no
synergistic effect can be achieved. The suggested
mechanism may, therefore, be used to implement
contiguity in associative learning: Only if neurone
A* (representing the conditioned stimulus) is acti-
vated prior to B* (unconditioned excitation), the
postsynaptic cell is fully activated by the enzymatic
complex ABE. It will be noted, that such a type
of mechanism will allow implementation of tem-
porality. On a higher level of functional analysis
these conjunctures may be interpreted to repre-
sent causality.

Plasticity is a wide concept that can also be ap-
plied to artificial systems. Plasticity of perfor-
mance, e.g., is found in robots. There are various
different possibilities for the implementation of
plasticity in artefacts. In von-Neumann-computers
hard- and software can easily be distinguished.
Many changes in the “hardware” of brains are
simulated by software changes in computers. The
hardware of a computer can also be changed, e.g.,
if more memory capacity is integrated. Usually,
however, plasticity is restricted to software and
programs, as in simulated neuronal nets (connc?c-
tionism). Artificial evolution partly simulates bio-
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mechanisms involved in evolution, development
and learning. Recently, attempts have been made
to change artificial hardware in a way, so that it
may operate without software and induce physical
alterations in the hardware itself. However, these
mechanisms implemented in artificial organisms
have little in common with the mechanisms used
by the brain.

Critical for artefacts is the input-output coding.
To give but one example, it is very difficult to use
a robot to manoeuvre a truck with a hanger back-
wards, if Cartesian co-ordinates are used. Once,
the input-output system makes use of polar co-
ordinates, the problem becomes a linear one
solved by just one artificial neurone. In computers
it is always specified, what and where information
is processed and stored (discrimination between
address and contents). In the brain, however, the
neuronal connectivities define to which neurones
an excitation is transmitted and to which part of
the brain this information is conveyed. Some of
these connectivities remain plastic — at least in
some animals and in some humans for some time.

Nature and Role of Algorithms
The concept of algorithm

By algorithms we solve problems. There are
many algorithms. A typical example is multiplica-
tion: At school we learn the rules to multiply any
two integers. Other algorithms serve in adding
numbers, in subtracting, dividing, in solving equa-
tions, constructing geometric figures, winning
games, checking for logical truth and logical valid-
ity. Computer programs are special algorithms.
Our brain also solves problems. Does it work algo-
rithmically? In order to discuss this question, an
explication of the concept of “algorithm” is given
in three steps of increasing precision:
® In everyday language of scientists, an algorithm

is a general problem solving procedure or, in

other words, a formal description of the manipu-

lation of information. In many cases, such a

vague conception suffices. But sometimes we

need more precision, especially when we investi-
gate the scope of such procedures.
® More precisely, an algorithm for a problem class

C s defined as a procedure yielding the solution

to every problem from C in finitely many deter-

minate steps. This definition exhibits three im-
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portant traits of algorithms: Generality: An algo-
rithm solves not just one problem, but all
problems of a problem class. The data and range
of single variables may belong to an infinite do-
main such as integer values, functions or even
algorithms. Finiteness: The algorithm is laid
down in finitely many prescriptions, and it solves
the problem in finitely many steps. Deterministic
character: In every step the next step is uniquely
specified. The set of basic operators may vary
deeply. Some algorithms are formulated in
terms of equations, some in determinative con-
structs of a programming language and even
others may incorporate operators that generate
random numbers. Sometimes, elementarity of
steps is required, but this is not necessary.

For some procedures, termination is not guaran-
teed. Should we call them all algorithms? Take
square roots as an example. The usual root extrac-
tion terminates and the result is rational:
J6.25 =2.5; /(16/9) = 4/3. It does not terminate, if
the result is irrational: \/2=1.4142... If a pro-
cedure doesn’t terminate, i.e., if the problem is not
solved in finite time, the original problem is not
solved at all. In practice, then, we must restrict our
claims to finite precision, e.g., to four digits. The
procedure then terminates, and we have an algo-
rithm in the strict sense defined above. Thus it
makes sense to restrict the concept of algorithms
to terminating procedures.
® For some purposes mathematicians, metama-

thematicians and computer scientists need an

even more precise definition, in particular, when
they want to establish the limits of algorithms.

Such a definition can be given by the concept of

the Turing machine specifying the mechanical or

automatic character of an algorithmic computa-
tion.

According to the Church-Turing Thesis, every
computation executed by humans can also be done
by a Turing machine. This claim cannot be proven,
but there are good arguments supporting it. But
may all functions exhibited by brains also be ex-
hibited by machines? May even every mental
property exhibited by a natural system be exhib-
ited by an artificial system (as proposed by Busch-
linger et al., 1998: this issue, pp. 455-479)? Al-
though this question cannot yet definitely be
answered, there are interesting arguments about
it. In particular, it is a controversial point whether
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it is possible to separate out a finite set of building
blocks of computation, since the brain makes use
of physical properties of the organism and the out-
side world in order to optimise its behaviour. Vari-
ous versions of the Church-Turing Thesis and the
most ambitious point of view of Artificial Intelli-
gence have been discussed by Hofstadter (1979).

The problem of embodiment

In organisms as in artefacts, algorithms must be
“embodied”, or implemented. On the conceptual
level, the distinction between the algorithm and its
implementation is clear enough, but how about its
relevance for our question? From the fact that the
program embodied in a computer plays a causal
role (the computer follows the program’s instruc-
tions) we cannot conclude that this is also true for
brains. By definition, algorithms are formal pro-
cedures, abstracting from the underlying proper-
ties of the physical system. Every algorithm can be
implemented in various ways. Therefore, we must
never take the formalism as the mechanism itself.
The question, then, is not whether the brain “is”
an algorithm (it is not), but whether algorithms
are appropriate means to describe the behaviour
and achievements of natural brains.

The role of the physical environment in which
an algorithm is implemented was discussed by
Thompson (1997): Whether a pure algorithmic de-
scription of the brain’s work could realise (in-
stantiate) the properties of the brain seems to be
doubtful. As intimated by Thompson’s experi-
ments on Feld-Programmable Gate Arrays
(FPGAEs), there are differences between the sim-
ple description of algorithmic work in terms of a
model and the realisation of algorithmic work in
a physically real circuit. A FPGA is, structurally
spoken, a chip with an array of certain compo-
nents and wires. The components can be con-
nected to the wires. The connections themselves
can be determined by electronic switches each of
which can be addressed by (software-) memory On
board of the chip. After fixing the connections of
FPGA, it is a real-world hardware-chip comprising
“software built into wires”.

There are two major differences between hard-
ware-realisation of software and software (algo-
rithmic description) executed on a given hardware:
(1.) The possibility to exploit real world properties
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(the physical medium) and (2.) the necessity to re-
gard physical attributes of a hardware realisation
not only as accidental, but as essential features of
an implementation. In Thompson’s experiments it
became clear that the size, shape and location of
the components are not just necessary for their
existence (and, therefore, negligible in a pure soft-
ware description), but they are crucial for deter-
mining the interactions between the components
themselves. Probably, the most striking result was
the observation that there were parts of the FPGA
that influenced the FPGA's total behaviour, al-
though they had no connectivities to the output.
Possibly, there are more subtle physical effects at
work that cannot be completely described by the
wiring of the components. But this is exactly what
is done in a mere software description.

Different levels

Is it useful or even necessary to distinguish dif-
ferent levels in the description of brains? On some
levels, a description by algorithms might be appro-
priate, on others not. Probably most behavioural
performances of brains can be simulated by algo-
rithms. We also have to distinguish, what a neu-
rone can do and what it actually does. A major
function of a particular neurone is to perform cer-
tain computations. Its morphology puts constraints
on the computation (e.g., temporal constraints in
integrating different inputs and generating out-
put). These constraints determine what it can do —
in principle. But what it actually does, is mainly
determined by the context. Depending on the
context, an individual neurone will perform dif-
ferent tasks and even different computations.

Discreteness

Algorithms are based on discrete data, and all
standard computers work on discrete procedures.
How about the brain? Just like computers, brains
are systems with many discrete subsystems, and at
any moment in time, they comprise a limited
number of discrete states. Can analogue devices
solve more problems than Turing machines? If
not, are they more effective, e.g., faster or less
memory demanding? No consent was obtained on
the question, of whether analogue and discrete
systems are finally equivalent, nor whether con-
version of discrete to analogue data is more diffi-
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cult than the conversion of analogue data to a digi-
tal form (some properties of attractors may be
changed by such transformations).

From the perspective of neurobiologists, an im-
portant question is, how algorithms are imple-
mented into natural systems. In neurones, EPSPs
and IPSPs (excitatory and inhibitory postsynaptic
potentials) can be induced via activation of recep-
tor molecules. Integration of PSPs in the postsyn-
aptic neurone may, or may not, reach a threshold
to elicit an action potential as a discrete all-or-
nothing response. On the electrophysiological
level of analysis, the PSP is usually conceived as
an analogue signal, but it emerges from discrete
events occurring on the molecular level (move-
ment of ions). On the level of biochemical reac-
tions and below, in some instances, it appears less
appropriate to describe brain functions by those
deterministic algorithms and basic operators used
in today’s programming languages.

Chance events

If we attempt to model behaviour in terms of
algorithms, we have to take into account that the
behaviour may ultimately be emergent from lower
levels, i.e., the performance and output of brains
may be influenced by stochastic effects of
quantum mechanics, mutations induced by radio-
active irradiation in DNA molecules or by steric
hindrance resulting from Brownian movement
etc.. Causalities might arise from levels below
those which can be formulated by means of ab-
stract, deterministic algorithms. How important
are chance events? Are they constitutive for the
functioning of natural brains? Four possibilities
have to be envisaged:
® There are no chance events in the brain. This

possibility seems to be ruled out by our observa-

tions.

® There are chance events in the brain, but they
do not influence its performance.

® There is an influence of chance events on the
brain, lowering the accuracy of its performance.

® There is an influence of chance events im-
proving the performance of the brain.

Having discarded the first possibility, we find ex-
amples for all three cases left. Most astonishing is
the fact that chance may improve the performance
of a system. An instructive example is given by
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Schulten (1987). It became evident from the dis-
cussion that for an adequate description of brain
functions by algorithms, stochastic elements have
to be introduced and are required for perfor-
mance. When random noise is removed from a
simulated central nervous system, this results in a
deterioration of its functioning (see Fuster, 1998:
this issue, pp. 582-592). Apparently, chance
(stochasticity of events) is a constitutive entity for
the functionality of both, natural and artificial sys-
tems. Chance elements in the strict sense are not
deterministic. Thus, a system working with genu-
ine chance is not strictly algorithmic. It is, how-
ever, very difficult to decide whether a seemingly
random element is truly random. Strictly speaking,
it is even impossible to prove indeterminism. In
most cases, even chance generators in computers
work deterministically. In any case, we might be
forced to ask whether the brain works by algo-
rithms combined with chance elements and even
whether chaos may play a constitutive role in
brains.

Further questions

How and why did the class of problems solved
by brains increase in the course of evolution? If
all ecological niches manageable by simple devices
are occupied, more complex devices, including
problem solving devices, are necessary to explore,
to use or even to create, more demanding niches.
This explains the overall increase of complexity
in evolution.

The question was raised whether there could be
a meta-algorithm telling engineers how to con-
struct — to any specific mental property — an arti-
ficial system exhibiting this same property
(Gierer, 1985).

Enhancement of Efficacy by Internal
Reconstruction of Brains and Computers

Evolution proceeds gradually, but occasionally
big advances are also made in a single step. The
neurone and, later, the isocortex may be regarded
as examples of such achievements. Once “in-
vented”, they were used over and over again for
many different purposes. Nevertheless, even a
brain without an isocortex may reach high levels
of performance. For each such purpose, however,
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a specialised network has to develop which, there-
after, cannot easily be used for other tasks.

The elaborated isocortex with an almost iden-
tical architecture (hence its name) in all areas ana-
lysed so far is a characteristic of the mammalian
brain. Why was the isocortex so successful in evo-
lution? — The isocortex of the telencephalon has
much in common with a general purpose calcula-
tor. Its structural regularity and uniformity may
provide functional universality and indicate that
each cortical “module” essentially performs one
stereotyped computational step, which, however,
may not be very elaborated. A special feature of
the mammalian telencephalon is that the isocorti-
cal tissue can be applied serially, one module after
the other performing the same algorithmic opera-
tions several times, each time with inputs mixed
up anew by convergence and divergence (Kriiger,
1998: this issue, pp. 599-609). Here, the output
from one cortical module may serve as an input
signal to the next. This is a property of the cortex
not shared by brain nuclei (that represent the ma-
jor evolutionary achievement of the avian brain)
nor by other neural tissues.

The rapid increase in the size of the isocortex
during evolution may perhaps result from the fact
that it makes use of distinct modular units applied
serially. This architectural design, makes it feasible
to increase the complexity of processing by simply
adding such modules. The latter idea is largely ap-
proved, although questions remain, e.g., why some
clinical cases have been reported, in which the
damage of large parts of the cortex did not pro-
foundly impair the performance of the individual.
It was emphasised, that an increase in brain size is
not the only important means to cope with envi-
ronmental challenges. Social insects partly com-
pensate for their small brains by the establishment
of large communities (“states”). Here, some tasks
or problems may be solved, because one indivi-
dual - out of thousands — finds a solution by trial
and error. The new behaviour is then imitated or
learned by the others. The cortices of some orders
in the class of mammals have even secondarily
been simplified, e.g. in salamanders. Here, the
number of neurones was reduced for further func-
tional specialisation. Neuroanatomists point out
that in higher vertebrates the number of inhibitory
cortical neurones is particularly high. Their inhibi-
tory function might provide an alternative to the

pruning of neurites in ontogeny as a means to im-
prove functional specificity.

The idea was discussed that the cerebral cortex
might have developed as a general purpose struc-
ture for which no particular ecological pressure
can easily be delineated (it was compared to the
invention of money in human societies). It has
been argued that no distinct function can be as-
signed to some parts of the cerebral cortex, but it
would rather have to be seen as an option to guar-
antee flexibility and to solve rarely occurring prob-
lems in the future. On the other hand, selection is
blind for history and future demands. Though the
environmental pressures act on systems with a cer-
tain history, selection itself acts on the system
without regarding this history. Selection favours
only temporary advantages to improve the repro-
ductive fitness, and it drives the evolution into rel-
ative optima, but not towards an absolute maxi-
mum.

On the other hand, the implementation of the
cerebral cortex may be considered as just one evo-
lutionary achievement amongst many others, such
as cell membranes, captured micro-organisms de-
veloping to constitute intracellular compartments,
ion channels, secondary transmitter cascades etc..
This may be compared to the improvement of
computer design in different generations, first
making use of electron tubes, then of transistors,
semiconductors, integrated circuits, network tech-
nology and higher programming languages. At
several levels the performance of a computer can
be enhanced by integrating and multiplying cer-
tain components, which in some respects might be
comparable to the enlargements of the cerebral
cortex. With state-of-the-art-algorithms this is eas-
ily possible with memory, additional processors or
hard drives, and with systems and programs oper-
ating in parallel.

Limitations of Brains and Computers

Problem-solving

In history, the most recent technical invention
(the clock, the steam engine etc.) has always been
taken as a metaphor to describe the brain. How
are functions of the brain differently implemented
in computers? The main problem in answering this
question is probably our lack in knowledge of the
algorithms working in brains. Which problems can
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be solved by algorithms, be it in principle or in
practice, within realistic time or with realistic
memory, is nowadays intensively investigated, and
there are already some interesting results. From
mathematics, especially from geometry, we know
that there are problems which cannot be solved
with specified means, e.g., trisecting angles, dou-
bling cubes and squaring circles only with ruler
and compass. But there are also problems which
probably cannot be solved by any algorithm (e.g.,
Turing’s halting problem). To know that a problem
is unsolvable may be useful because this knowl-
edge saves time, energy and money. There are
even problems for which an algorithm is known,
but it takes too much time, too many steps or too
much memory to allow a solution in any realistic
way. For some of these problems it has been
proven that no elegant algorithm exists (take the
game “roadblock” in Stockmeyer and Chandra
(1979)). For some problems this has not been
proven, but for good reasons mathematicians gave
up hope to find an efficient algorithm for them
(e.g., NP-complete problems, such as the travelling
salesman problem).

Can we judge the difficulty of a problem? For a
solved problem we use the number or length of
the steps that were necessary to solve it. In geome-
try the number of subsidiary lines is a good meas-
ure. But for unsolved problems? Some experts
seem to have a feeling for the difficulty of prob-
lems. A striking example was the mathematician
Paul Erdés (1913-1996). He used to pose un-
solved problems and to offer prizes for their solu-
tion, reaching from one to 25,000 dollars. Some-
times he had indeed to reward a solution given,
but never by more than 1000 dollars. Obviously,
he must have had some intuitive feeling for the
difficulty of the problems. Could this ability be
made more explicit?

Decision-making

May an artificial system decide something?
There are already interesting examples, that com-
puters have found mathematical proofs, including
the four colour theorem (1977), Mertens’ conjec-
ture (1984), Waring’s conjecture (1986) and Rob-
bins algebra (1997; cf. Buschlinger et al., 1998: this
issue, pp. 455-479). The problem is not with de-
duction, but with an informed guess on whether a

R. Schmidt et al. - Group Report: Influence of Brain and Computer Design on Their Performance

newly derived theorem is interesting, useful or
deep. It has been shown that so far deduction ma-
chines will get lost in true but trivial theorems
(Ebbinghaus, 1992). Obviously, this is related to
the problem, of how search strategies might be
made more effective. The performance of comput-
ers depends on their fast processors and their large
memories. If we engage a computer to look up all
papers with the word “brain”, it will in principle
be able to do so. But, we don’t have the algorithms
to handle this amount of information so as to
make sense of it (e.g., to write a review). Comput-
ers are able, however, to find new and better solu-
tions by combining more information from many
different sources and by averaging over or by neg-
lecting individual statements and demands.

The frontal cortex, which is functionally in-
volved in response selection and decision-making,
obtains innervation from a larger number of
sources than any other part of the brain. The deci-
sions reached by the frontal cortex may appear to
represent free will, but actually they may be de-
rived from an integration weighing the amount of
all inputs. There may operate a “winner-takes-all”
type of competition: Who ever wins by number of
input signals takes over the decision; free will may
be just an illusion. If we cannot obtain any addi-
tional information from introspection as opposed
to inter-subjective observation, it appears likely
that computers can in principle do all that human
brains can.

Development of aesthetic categories and creativity

Computers can already develop categories of
aesthetics. The fact that computer-art is not ap-
proved by everybody, certainly does not rule out,
that it may (or once will) be considered as true
art. Computers can, e.g., use digital image analysis
and averaging procedures to superimpose many
photographs of female faces and construct an
averaged face. As compared with each of the origi-
nal faces, this artificial construct was preferentially
chosen as the prettiest by a group of male test per-
sons. Furthermore, a computer may store images
of faces rated “attractive” or “more attractive” by
the observers. Then, it can use the analysed fea-
tures to extrapolate and construct a super-attrac-
tive face, comparable to a super-natural key-stimu-
lus in behavioural science. Computers may also
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simulate emotions. But, do we want to develop
computers with all natural features of human
brains? Can we construct better ones?

As compared with children, computers are still
rather limited in their ability to understand and
use human language. Also creativity may demand
more complex features than simple information
processing, evaluation and decision-making. Could
a computer be creative like a composer? Could it
write poetry on its own, if provided (implemented)
with a basic understanding of human (?) emotions,
or would it fail because of a lack in “personal ex-
perience” of love and sorrow? But what is “per-
sonal experience”, and what is a “basic under-
standing of human emotions” with respect to the
attempt to build a robot? Simply adding interfaces
acting on the outer world and receiving responses
from it? - Surely not. This is rather easily
achieved. E.g., a robot may be constructed with
some kind of mouth and hands enabling it to eat
vanilla ice-cream. Although it will indeed “con-
sume” the ice-cream, it will not know how vanilla
ice-cream tastes and will be unable to distinguish
the vanilla flavour from that of strawberry. But let
us even assume, that we could provide the robot
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with the physical devices for those measurements
that enable it to distinguish vanilla from straw-
berry ice-cream, does the robot then really know
how vanilla ice-cream tastes? - Is there any fur-
ther prerequisite besides interfaces and physical
devices for measurements in order to implement
taste perception (Nagel, 1974)? The question may
be asked the other way round: Assuming that the
brain works algorithmically, how does it achieve
recognition of any specific taste? — No convincing
answers are yet available. We also asked ourselves,
whether a computer may exhibit humour or
understand a joke made about the computer
itself. — We did not discuss, whether computers
have (self)consciousness.

Can we make some predictions on the further
development of artificial systems? — Yes. On the
future of brains? - Barely. And on the future of
brain research? Could a computer write a grant
proposal in a theoretical discipline, by looking up
all successful grant proposals of the previous
years? Could the gentle reader of this contribution
possibly decide, whether it was composed by an
intelligent computer using language recognition or
by a less capable rapporteur?
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