über die reaktion von α - und β -tetralon mit kaliumsuperoxid $^{1)}$

Manfred Lissel

Fakultät für Chemie, Universität Bielefeld, Universitätsstr., D-4800 Bielefeld 1

Summary: The reaction of α - and β -tetralone with potassium superoxide is described. In addition to 2-hydroxy-1,4-naphthoquinone α -naphthol is formed from α -tetralone and β -naphthol and 2-carboxy-benzenepropionic acid from β -tetralone.

Wir berichteten 1978 über die oxidative Spaltung von Ketonen mit Kaliumsuperoxid in Gegenwart von Aliquat 336^2) oder Kronenethern³). Im Rahmen eines Forschungsprojektes über den Mechanismus dieser Reaktion haben wir vor einiger Zeit auch &- und 3-Tetralon mit Kaliumsuperoxid umgesetzt⁴). Eine soeben erschienene Publikation französischer Wissenschaftler zur Oxidation der genannten Ketone bringt uns dazu, unsere eigenen, weiterführenden Resultate zu präsentieren⁵).

man das Verhältnis Substrat:KO₂ auf 1:4, so wird bei gleichem Umsatz 30% <u>3</u> isoliert, der Anteil an &-Naphthol 2 beträgt nur 6%. Nach diesem Experiment kann man \prec -Naphthol als Zwischenprodukt annehmen. Als weiterer Beweis dafür, wird \bowtie -Naphthol unter den gleichen Reaktionsbedingungen wie \prec -Tetralon mit Kaliumsuperoxid umgesetzt. In exothermer Reaktion erhält man als Hauptprodukt 34% 2-Hydroxy-1,4-naphthochinon 3.

 $oldsymbol{\beta}$ -Tetralon $\underline{4}$ unter den gleichen Reaktionsbedingungen⁶⁾ mit Kaliumsuperoxid umgesetzt, erhält man nach üblichem Aufarbeiten 5% $oldsymbol{\beta}$ -Naphthol $\underline{\underline{5}}$ und 27% 2-Hydroxy-1,4-naphthochinon $\underline{\underline{3}}$, ferner erhält man das ringgeöffnete Oxidationsprodukt 3-(2-Carboxy-phenyl)-propionsäure in 14% Ausbeute.

Eine mechanistische Klärung kann an dieser Stelle noch nicht erfolgen. Es wird jedoch deutlich, daß der von den französischen Autoren vorgeschlagene Autoxidationsmechanismus nicht der einzige Reaktionsweg zur Bildung von 3 sein kann.

Literatur und Anmerkungen

- 1) Reaktionen mit Kaliumsuperoxid 1.
- 2) Handelsname für ein technisches Produkt, das im wesentlichen aus Methyltricaprylammoniumchlorid besteht.
- 3) M. Lissel und E.V. Dehmlow, Tetrahedron Lett. 1978, 3689.
- 4) Forschungsprojekt O.Z. 2158 vom März 1982 aus dem Haushalt der Universität Bielefeld.
- 5) M. Hocquauy, B. Jacquet, D. Vidril-Robert, M.-T. Maurette und E. Oliveros, Tetrahedron Lett. 1984, 533.
- 6) 20 mMol fein gepulvertes KO₂ wurden in 25 ml Toluol suspendiert und mit einer Lösung aus 10 mMol &-Tetralon (o. (5 -Tetralon bzw. & -Naphthol) und 0.1 mMol Aliquat 336 oder 18-Krone-6 in 10 ml Toluol versetzt und 12 h gerührt. Nach wäßrigem Aufarbeiten werden die Reaktionsprodukte chromatographisch getrennt und durch spektroskopische Methoden und Derivate identifiziert. (Received in Germany 29 February 1984)