Chemistry Central Journal

Poster presentation

Open Access

CELLmicrocosmos 2.1: a software approach for the modelling of three-dimensional PDB membranes

B Sommer^{*1}, T Dingersen¹ and S Schneider²

Address: ¹University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany and ²D-28759 Bremen, Germany * Corresponding author

from 4th German Conference on Chemoinformatics Goslar, Germany. 9–11 November 2008

Published: 5 June 2009

Chemistry Central Journal 2009, 3(Suppl 1):P72 doi:10.1186/1752-153X-3-S1-P72

This abstract is available from: http://www.journal.chemistrycentral.com/content/3/S1/P72

© 2009 Sommer et al; licensee BioMed Central Ltd.

Background

CELLmicrocosmos is an approach to develop tools for the generation of virtual cell environments. The CELLmicrocosmos 2 project deals with the computational generation of three-dimensional cell membranes. Biological membranes consist mainly of lipids and proteins. The Protein Data Bank [1] and the HIC-UP database [2] represent a large number of three-dimensional protein and lipid structures, which have been extracted from biological membranes. Other databases contain information about the membrane-type-specific localization of proteins. There exist various approaches of utilizing these models for the computation of membranes.

Results

Research in many fields of science is dealing with the problem of visualizing, modelling and/or simulating membranes. The theoretical as well as the computational status quo does not allow to generate realistic membranes. Hence, alternatives are created, which are using different developmental environments. Therefore a lot of work has to be invested, before the sophisticated work dealing with algorithms can begin.

We present a software framework, which should allow academics to generate problem-specific membranes: They should be enabled to use simple, short-time as well as complex, time-consuming algorithms featuring a higher grade of realism.

Conclusion

Utilizing Java, Java3D and Jmol [3], we created a tool which is able to deal with different PDB models. While proteins are aligned manually, a number of algorithms for the percental lipid distribution has been implemented. The most sophisticated one so far is a geometrical-based Monte Carlo algorithm. The exported PDB membranes could be used to run Molecular Dynamics simulations with appropriate programs.

References

- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. In Nucleic Acids Research Volume 28. Oxford University Press, Oxford; 2000:235-242.
- 2. Kleywegt GJ, Jones TA: Databases in protein crystallography. Acta Cryst, CCP4 Proceedings 1998, D54:1119-1131.
- 3. Jmol: An open-source Java viewer for chemical structures in 3D 2008 [http://www.jmol.org].