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Abstract

Let X �→ A(X ) denote the algebraic K-theory of spaces functor. The main objective of this
paper is to show that A(X × S1) admits a functorial splitting. The splitting has four factors: a
copy of A(X ), a delooped copy of A(X ) and two homeomorphic nil terms. One should view the
decomposition as the algebraic K-theory of spaces version of the Bass-Heller-Swan theorem. In
deducing this splitting, we introduce a new tool: a “non-linear” analogue of the projective line.
c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

The “fundamental theorem” of the algebraic K-theory of rings states that there is a
decomposition

Kn(R[t; t−1]) ∼= Kn(R)⊕ Kn−1(R)⊕ N−Kn(R)⊕ N+Kn(R);

where R[t; t−1] is the Laurent ring in one indeterminate over a ring R. The “nil-term”
N+Kn(R) is deBned to be the complementary summand of Kn(R) in Kn(R[t]) (the
former is a summand of the latter since R[t] is an augmented R-algebra) and the
nil-term N−Kn(R) is deBned similarly by replacing t with t−1 (see [1,2,4]).
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In this paper we establish a corresponding result for the functor X �→ A(X ) of [8].
We prove that there is a functorial decomposition

Afd(X × S1) � Afd(X )×BAfd(X )× N−Afd(X )× N+Afd(X ):

Here, Afd(X ) is the version of A(X ) that is based on Bnitely dominated spaces and
BAfd(X ) is a certain canonical non-connective delooping of Afd(X ). The remaining
functors N−Afd(X ) and N+Afd(X ) are nil-terms.

The above splitting of Afd(X × S1) may be regarded as a special case of a “funda-
mental theorem” for the K-theory of “brave new rings” which has been sketched in
[5]. From that point of view, the present study considers in eGect “Laurent rings” over
“group rings”, i.e.,

Q+(�X )[t; t−1] :=Q+(�(X × S1));

where Q+ is unreduced stable homotopy.
There are two reasons for providing a diGerent proof in the present context. The Brst

(and perhaps minor) reason is to introduce the projective line category in connection
with the algebraic K-theory of spaces, to identify its K-theory, and to deduce the
fundamental theorem from this identiBcation; this is very similar to Quillen’s treatment
in [4]. The second (and more weighty) reason is that the projective line approach as
opposed to that of [5] provides a convenient framework for studying the action of
the “canonical involution” of [7] on the splitting of Afd(X × S1). This study shall be
undertaken in part II of this series of papers.

In a recent preprint, Hughes and Prassidis [3] formulate and prove a geometric
version of the “fundamental theorem” for the PL Whitehead space WhPL(X ). It would
be of some interest to relate their result with ours.

Outline. Section 1 is foundational. In Section 2 we deBne the telescope in the context
of the K-theory of spaces. In Section 3 we introduce the projective line category
associated to G, the realization of a simplicial group. In Section 4 we express the
K-theory of the projective line as a certain homotopy pullback. In Section 5 we deBne
some exact functors to be used in the identiBcation of the K-theory of the projective
line. In Section 6 we establish the equivalence between the K-theory of the projective
line of G and the cartesian product of two copies Afd(BG). In Section 7 we assemble
the material of the previous sections to prove the main result.

1. Preliminaries

1.1. Notational conventions. Let us recall that if C is a category with co9brations
coC (usually not speciBed) and a category of weak equivalences wC, then there is a
connected, based space |wS.C|, the S.-construction of C, whose loop space is taken
as the deBnition of K-theory in this situation (see [8, 1.3]). We will sometimes employ
the symbol � to indicate that a morphism of C is a coBbration. To indicate that a
morphism is a weak equivalence, we use the symbol ∼→.
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Given an exact functor F :C → D (cf. [8, p. 327]), a convention we shall often
employ is to denote the induced map on S.-constructions and K-theories by the same
name. Thus, we write F : |wS.C| → |wS.D|. Given a pair of exact functors F0; F1 :
C → D, an equivalence is a natural transformation F0 → F1 whose value on any object
x ∈ C gives a weak equivalence F0(x) ∼→F1(x). If this is the case, then F0 and F1

induce homotopic maps |wS.C| → |wS.D| (cf. [8, 1.3.1]).

1.2. Equivariant spaces. By space we mean a compactly generated topological space.
Products are to be formed using the compactly generated topology. We now review the
various categories with coBbrations and weak equivalences which arise in connection
with the algebraic K-theory of spaces.

Let M . be a simplicial monoid whose realization |M .| we denote by M . With respect
to our convention regarding products, M has the structure of a topological monoid.

Let T(M) denote the category whose objects are based M -spaces, i.e., based spaces
Y equipped with a based left action M × Y → Y (i.e., the action leaves the base point
of Y invariant). Morphisms of T(M) are the based equivariant maps.

The cell of dimension n is deBned to be

Dn ×M:

This is an (unbased) M -space, where the action of M is given by left translation
(i.e., the eGect of m ∈ M acting on the point (x; n) ∈ Dn ×M is the point (x; m · n)).
Similarly, we have the (unbased) equivariant sphere Sn−1 ×M .

If Z is an object of T(M), and � : Sn−1 ×M → Z is an equivariant map, then we
can form the object

Z ∪� (Dn ×M)

by attaching Dn×M to Z along �. We call this operation the eGect of attaching a cell.
A morphism Y → Z of T(M) is said to be a co9bration if either: (1) Z is obtained
from Y up to isomorphism by a (possibly transBnite) sequence of cell attachments,
or (2) it is a retract of the foregoing. Observe that coBbrations satisfy the equivariant
homotopy extension property. An object Z is said to be co9brant if the inclusion of
the basepoint ∗ → Z is a coBbration. We let C(M)⊂T(M) denote the full subcategory
of coBbrant objects.

1.3. Remark. Given g ∈ M , there is an associated morphism g : M 
 pt → M 
 pt
deBned by left translation (where M 
 pt is just M with a disjoint basepoint added).
This map is a coBbration of C(M) if and only if g is invertible in M . For the quotient
space (M 
 pt)=g(M 
 pt), if non-trivial, is never coBbrant (since multiplication by g
acts trivially on it). This is even true when M has the left cancellation property, which
shows that there might be equivariant inclusions of an elementary kind which fail to
be coBbrations.

1.4. Finiteness. An object of C(M) is said to be 9nite if it is isomorphic to a Bnite
free based M–CW complex, i.e., it is built up from a point by a Bnite number of cell
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attachments, where the order of attachment is compatible with the dimension of the
cells. A cellular morphism of Bnite objects is a morphism of C(M) which preserves
skeleta. The subcategory of C(M) consisting of the Bnite objects and their cellular
morphisms will be denoted Cf (M).

An object Y ∈ C(M) is homotopy 9nite if there is a Bnite object Z and a morphism
f : Y → Z which, when considered as a map of ordinary spaces, is a weak homo-
topy equivalence (in the sense that the induced map of homotopy groups �n(Y; y) →
�n(Z; f(y)) is an isomorphism for all n ≥ 0 for any choice of base point y ∈ Y ). 1

The full subcategory of C(M) consisting of the homotopy Bnite objects is denoted
Chf (M).

Call an object Y ∈ C(M) 9nitely dominated if it is a retract of a homotopy Bnite
object, i.e., there is a factorization of the identity morphism of Y through a homotopy
Bnite object (equivalently, the identity map of Y admits a factorization up to homotopy
through a Bnite object). The full subcategory of C(M) consisting of Bnitely dominated
objects is denoted Cfd(M).

Lastly, an object Y of C(M) is said to be s-9nitely dominated if �kY is Bnitely dom-
inated for some k ∈ N, where the latter object denotes the k-fold reduced suspension
of Y (given the structure of an M -space by letting M act trivially on the suspension
coordinate). We denote the full subcategory consisting of s-Bnitely dominated objects
of C(M) by Csfd(M).

We have thus deBned a sequence of categories

Cf (M)→ Chf (M) ⊂→Cfd(M) ⊂→Csfd(M) (⊂C(M)); (1.1)

where the functors are all given by inclusion, and all but the Brst of these is full. A
morphism of Cf (M) is a co9bration if it is isomorphic to a skeletal inclusion. Call a
morphism of Chf (M);Cfd(M) or Csfd(M) a co9bration if it is so when considered in
C(M).

Call a morphism in any of these categories a weak equivalence if it is a weak homo-
topy equivalence of underlying spaces. These notions equip C?(M) with the structure
of a category with coBbrations and weak equivalences, where ? denotes any of the
decorations f ; hf ; fd; sfd.

1.5. Notation. With M = |M .| as above, the K-theories of the categories appearing in
(1.1) are correspondingly denoted by

Af (∗; M)→ Ahf (∗; M)→ Afd(∗; M)→ Asfd(∗; M)

with the displayed maps induced by the inclusions.

1.6. Remark. When G = |G.| is the realization of a simplicial group, then Af (∗; G) is
one of the deBnitions of A(BG), where BG denotes the classifying space of G (see [8,
pp. 382–383]).

1 In view of the coBbrancy condition, a weak homotopy equivalence is the same thing as an M -homotopy
equivalence in the strong sense, by the equivariant Whitehead theorem.
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The following relates the various notions of Bniteness (see [8, 2.1]).

1.7. Lemma. (1) The inclusion Cf (M)⊂Chf (M) induces a homotopy equivalence

|hS.Cf (M)| �→|hS.Chf (M)|
and consequently; a homotopy equivalence Af (∗; M) �→Ahf (∗; M).

(2) The inclusion Cfd(M)⊂Csfd(M) induces a homotopy equivalence

|hS.Cfd(M)| �→|hS.Csfd(M)|
and consequently; a homotopy equivalence Afd(∗; M) �→Asfd(∗; M).

(3) There is a homotopy equivalence

Afd(∗; M) � K̃0(Z[�0(M)])× Ahf (∗; M);

where K̃0(Z[�0(M)]) is the reduced class group of the integral monoid ring Z[�0(M)].

Proof. (1) This is just a part of [8, 2.1.5].
(2) Filter Csfd(M) by full subcategories Csfd(M; k) in which an object is in the latter

if its k-fold suspension is Bnitely dominated. These subcategories inherit the structure
of a category with coBbrations and weak equivalences. Notice that Cfd(M)=Csfd(M; 0)
and that Csfd(M) is the colimit of the sequence of inclusions

· · · ⊂→Csfd(M; k) ⊂→Csfd(M; k + 1) ⊂→· · · :
It will therefore be suRcient to show that the inclusion

Csfd(M; k) i→Csfd(M; k + 1)

induces a homotopy equivalence on S.-constructions for all k ≥ 0.
Suspension deBnes a functor

Csfd(M; k + 1) �→Csfd(M; k):

The composite � ◦ i is the suspension functor for Csfd(M; k) and the composite i ◦� is
the suspension functor for Csfd(M; k +1). We infer that �◦ i and i◦� induce homotopy
equivalences on S.-constructions by Waldhausen [8, 1.6.2]. Consequently, i induces a
homotopy equivalence on S.-constructions, as was to be proved.

(3) See the remark on [8, p. 389]. One can also deduce this from the co9nality
theorem of Thomason [6, 1.10.1] (see the argument used to prove Proposition 3.3(2)
below).

2. The telescope

2.1. Let N+ and N−, respectively, denote the monoids of nonnegative and nonpositive
natural numbers (including 0) with generators t and t−1. It will be typical in the sequel
that M is the geometric realization of a simplicial monoid of the form

G.; G.×N−; G.×N+ or G.× Z
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for a Bxed simplicial group G.. Consequently, if we write G = |G.|, then M has the
form G, G ×N−; G ×N+ or G × Z.

We shall deBne functors

C(G ×N−)→ C(G × Z) and C(G ×N+)→ C(G × Z);
U �→ U (t); V �→ V (t−1);

which assign to an object its telescope, and conBrm that the telecope functors preserve
coBbrations, weak equivalences and Bniteness conditions. Although it is perhaps more
precise to write U ((t−1)−1) for U (t) to indicate in the Brst case that t−1 is to be
inverted, we prefer the simpler notation.

Let t :V → V be deBned by the action of t. We shall take V (t−1) to be the
categorical colimit of the sequence

· · · t→V t→V t→· · ·
with the evident action of G×Z. Actually, this only deBnes V (t−1) up to isomorphism.
To get an explicit model for it, we shall deBne it as the quotient space of V × Z in
which a pair (v; n) is identiBed with the pair (t(v); n + 1). In the latter representation,
the action of tk on a pair (v; n) yields the pair (v; n− k), for k ∈ Z. Observe that the
map

V → V (t−1); v �→ (v; 0)

is a (G × N+)-equivariant inclusion. If the action of t on V was invertible to begin
with, then this inclusion is an isomorphism of (G × Z)-spaces (the inverse map is
deBned by (v; n) �→ (t−n(v); 0)).

Similarly, for U ∈ C(G ×N−), we deBne U (t) by taking the categorical colimit of
the sequence

· · · t
−1

→U t−1

→U t−1

→ · · · :

2.2. Lemma. (1) The telescope functor preserves co9brations and weak homotopy
equivalences.

(2) If V ∈ C?(G ×N+) is an object; where ? is one of the decorations f; hf; fd
or sfd; then V (t−1) is an object of C?(G × Z).

Proof. (1) Observe that the telescope maps the pair (Dn
G×N+

; Sn−1
G×N+

) isomorphically
to the pair (Dn

G×Z; S
n−1
G×Z). Also, since it is a kind of colimit, the telescope is stable

under cobase change. The assertion follows, since an arbitrary coBbration is a sequence
of cobase changes with respect to such pairs.

The map t : V → V is a coBbration of G-spaces (though not of G × N+-spaces;
note also that V is coBbrant when considered as a G-space). It follows that the cate-
gorical colimit is weak homotopy invariant (for it is weak homotopy equivalent to the
homotopy colimit).

(2) This follows for Bnite objects by the argument used to establish the Brst part.
The rest is evident.
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3. The projective line

3.1. The telescope constructions of Section 2 provide a pair of maps

Afd(∗; G ×N−)→ Afd(∗; G × Z)← Afd(∗; G ×N+):

It will be the purpose of the next sections to study the homotopy pullback of this
diagram.

As the Brst step in our study, we deBne a projective line category P(G) which is
equipped with forgetful functors to C(G ×N−), C(G ×N+) and C(G × Z). We give
P(G) the structure of a category with coBbrations and weak equivalences and deBne
Bniteness conditions parallel to those already deBned for the categories C(M). Beyond
giving the deBnitions the main purpose of the section is to prove results comparing
the K-theories that result from the various Bniteness conditions.

The category P(G) is deBned as follows: an object is speciBed by a triple of objects
Y− of C(G × N−), Y of C(G × Z), and Y+ of C(G × N+), together with a pair of
maps

Y−
a−→Y and Y

a+←Y+

such that a− is G ×N−-equivariant and a+ is G ×N+-equivariant (where we restrict
the action of G × Z on Y to G ×N±). Moreover, the data are required to satisfy the
following auxiliary conditions:
• The induced maps of telescopes

Y−(t)
a−(t)
−−−→Y (t) ∼= Y and Y ∼= Y (t−1)

a+(t−1)←−−−−Y+(t−1)

are both co9brations and weak equivalences.
We allow ourselves the liberty of using more than one notation to refer to objects

of P(G): an object will be speciBed either as a triple (Y−; Y; Y+), or as a diagram
Y− → Y ← Y+. The terms Y−, Y and Y+ are called the components of the given
object.

A morphism of P(G) is given by three morphisms f− ∈ C(G×N−), f ∈ C(G×Z),
and f+ ∈ C(G ×N+) which satisfy a commutative diagram

Y− −−−−−→ Y ←−−−−− Y+

f−

�
� f

� f+

Z− −−−−−→ Z ←−−−−− Z+

3.2. Finiteness in the projective line. An object (Y−; Y; Y+) of P(G) is said to be
(locally) 9nite if the objects Y−, Y and Y+ are Bnite in their respective categories.
A morphism of 9nite objects of P(G) is deBned so that the map on each component
is cellular. We let Pf (G) denote the (non-full) subcategory of P(G) given by Bnite
objects and Bnite morphisms.
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An object (Y−; Y; Y+) is said to be homotopy 9nite if each of its components is. It is
said to be 9nitely dominated if it is a retract of a homotopy Bnite object. Similarly, an
object is stably 9nitely dominated if some suspension of it is Bnitely dominated. We
let Phf (G), Pfd(G) and Psfd(G) denote the full subcategories of P(G) consisting of the
homotopy Bnite, Bnitely dominated, and stably Bnitely dominated objects, respectively.

A morphism (Y−; Y; Y+)→ (Z−; Z; Z+) of P(G) is a co9bration if
• each of the maps Y− → Z−; Y+ → Z+ and Y → Z is a coBbration, and
• the induced maps

Y ∪Y−(t) Z−(t)→ Z and Y ∪Y+(t−1) Z+(t−1)→ Z (∗)
are coBbrations of C(G × Z).
The coBbrations of the subcategory P?(G) for each of the decorations ?= hf, fd, sfd

are given by those morphisms which are coBbrations when considered in P(G). In the
Bnite case, a morphism of Y → Z of Pf (G) is a coBbration if the induced maps (∗)
above are coBbrations of C(G × Z).

A morphism in one of the above categories will be a weak equivalence if each of
its component maps is a weak homotopy equivalence of underlying spaces.

We let K(P?(G); h), with ? denoting one of the decorations f, hf, fd, sfd be the
K-theory of the projective line with respect to the above notions of coBbration and
weak equivalence.

3.3. Proposition. (1) The canonical map |hS.Pf (G)| → |hS.Phf (G)| is a homotopy
equivalence.

(2) The canonical map |hS.Phf (G)| → |hS.Pfd(G)| induces an isomorphism on
homotopy groups in degrees ¿ 1.

The proof of the Brst part of the proposition will be a consequence of the approxi-
mation theorem [8, 1:6:7].

Before beginning the proof, we brieTy recall the set-up for the approximation theo-
rem. Suppose we are given an exact functor F :C → D of categories with coBbrations
and weak equivalences such that C and D satisfy the saturation axiom [8, p. 327] and
C admits a cylinder functor [8, p. 348] so that the weak equivalences of C satisfy the
cylinder axiom. We say that F has the approximation property if

App 1. F re=ects weak equivalences, i.e., a morphism of C is a weak equivalence if
(and only if) its image in D is a weak equivalence.

App 2. Given any object c of C and any morphism x :F(c) → d in D, then there
exists a morphism y : c → c′ and a weak equivalence z :F(c′) ∼→d such that
the composite z ◦ F(y) :F(c)→ d equals x.

The approximation theorem says that if F has the approximation property, then the
induced map wS.C → wS.D is an equivalence on realizations.

Proof of Proposition 3.3. (1) The proof will consist of several steps.
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Step 1: DeBne a full subcategory Pf (G)′⊂Pf (G) whose objects (Y−; Y; Y+) satisfy
the additional property that the associated map

Y−(t) ∨ Y+(t−1)→ Y

is a coBbration of Cf (G×Z). Call a morphism (Y−; Y; Y+)→ (Z−; Z; Z+) of Pf (G)′ a
co9bration if (and only if) its components are coBbrations, and moreover the induced
map

Z−(t) ∪Y−(t) Y ∪Y+(t−1) Z+(t−1)→ Z

is a coBbration of Cf (G × Z). Call a morphism a weak equivalence if it is so when
considered in Pf (G). With these deBnitions, Pf (G)′ is a category with coBbrations and
weak equivalences. Observe that the inclusion functor i :Pf (G)′⊂Pf (G) is exact.

DeBne a functor T :Pf (G)→ Pf (G)′ by

(Y−; Y; Y+) �→ (Y−; UY ; Y+);

where UY is the mapping cylinder of the map Y−(t) ∨ Y+(t−1) → Y and the maps
Y− → UY and Y+ → UY are the inclusions into the mapping cylinder. Then T is exact
(the nontrivial thing to be veriBed is that T preserves coBbrations — we omit the
details).

The canonical weak equivalence UY ∼→Y shows that the composites T ◦ i and i ◦ T
are equivalent to the identity. Consequently, the map

|hS.Pf (G)′| → |hS.Pf (G)|
is a homotopy equivalence.

In the homotopy Bnite case, we also have a subcategory Phf (G)′⊂Phf (G) whose
objects are deBned analogously. The inclusion functor induces a homotopy equivalence
|hS.Phf (G)′| �→|hS.Phf (G)|.

Thus, we are reduced to the problem of showing that the inclusion functor

Pf (G)′ → Phf (G)′

induces a homotopy equivalence on S.-constructions.
Step 2 (Assertion): If y = (Y−; Y; Y+) ∈ Phf (G)′ is an object, then there exists an

object z = (Z−; Z; Z+) ∈ Pf (G)′ and mutually homotopy inverse weak equivalences

z ∼→y and y ∼→ z:

To prove this, let W−
∼→Y−, W ∼→Y and W+

∼→Y+ be weak equivalences, where
W−, W and W+ are, respectively, Bnite. Then, by the equivariant Whitehead theorem,
there exist weak equivalences W−(t) ∼→W and W+(t−1) ∼→W such that the induced
diagram

W−(t) ∨W+(t−1) −−−−−→ W�
�

Y−(t) ∨ Y+(t−1) −−−−−→ Y
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is (G×Z)-equivariantly homotopy commutative. Set Z− =W−, Z+ =W+ and let Z be
the mapping cylinder of the map W−(t) ∨W (t−1) → W . Then a choice of homotopy
for the diagram deBnes a weak equivalence (Z−; Z; Z+) ∼→(Y−; Y; Y+).

The inverse homotopy equivalence (Y−; Y; Y+) → (Z−; Z; Z+) is constructed as fol-
lows: choose inverse equivariant homotopy equivalences Y− → Z−, Y → Z and Y+ →
Z+. Then the resulting diagram

Y−(t) ∨ Y+(t−1) −−−−−→ Y�
�

Z−(t) ∨ Z+(t−1) −−−−−→ Z

is equivariantly homotopy commutative. As the top horizontal map is a coBbration, it
follows that we can deform (using the equivariant homotopy extension property) the
map Y → Z to obtain a strictly commutative diagram. The latter deBnes the inverse
equivalence.

A straightforward application of the equivariant homotopy extension property also
shows that the composite (Y−; Y; Y+)→ (Z−; Z; Z+)→ (Y−; Y; Y+) is homotopic to the
identity. The same applies to the other composite.

This completes the proof of the assertion.
Step 3: The mapping cylinder construction applied component-wise equips Pf (G)′

with a cylinder functor. As condition App 1 holds for the inclusion functor Pf (G)′ →
Phf (G)′, we need only to verify condition App 2.

Let y= (Y+; Y; Y+) ∈ Pf (G)′ be an object and let y → z be a morphism of Phf (G)′,
where z = (Z−; Z; Z+). We need to show that there exists a factorization y → u ∼→ z,
with u ∈ Pf (G)′.

By the above assertion, we may choose an object k = (K−; K; K+) ∈ Pf (G)′ and
weak equivalences k ∼→ z and z ∼→ k which are mutually inverse to each other.

Choose a morphism of Bnite objects y → k which is homotopic to the composite

y → z ∼→ k

(this is possible by the equivariant homotopy extension property since Y−(t)∨Y+(t)→
Y is a coBbration), and deBne u = (U−; U; U+) to be its mapping cylinder. Then there
exists a map u → z which extends the given maps on y and k. Consequently, we
obtain a factorization y � u ∼→ z.

Thus the second approximation property holds, and we conclude that the map
|hS.Pf (G)′| → |hS.Phf (G)′| is a homotopy equivalence. This completes the proof
of Proposition 3.3(1).

(2) This will be a special case of the co9nality theorem of Thomason [6, 1:10:1].
Let A− be the abelian group given by taking the cokernel of the homomorphism

�1(|hS.Chf (G ×N−)|)→ �1(|hS.Cfd(G ×N−)|)
and deBne A+ by taking the cokernel of the homomorphism given by using N+ instead
of N− above.
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Recall that an object X ∈ Cfd(G ×N−) gives rise to an element of

�1(|hS.Cfd(G ×N−)|)
(cf. [8, p. 329]). The obstruction for X to be homotopy Bnite is given by the image of
this class in A− under the quotient homomorphism. Similar remarks apply to an object
of Cfd(G ×N+).

The forgetful functor

Pfd(G)→ Cfd(G ×N−)× Cfd(G ×N+);

(Y−; Y; Y+) �→ (Y−; Y+)

induces a map on S.-constructions and consequently on their fundamental groups.
Composing with the product of the quotient homomorphisms, we get a homomorphism

�1(|hS.Pfd(G)|)→ A− × A+

such that an object y=(Y−; Y; Y+) ∈ Pfd(G) is homotopy Bnite if and only if the asso-
ciated class in the fundamental group gets mapped to zero in A− × A+. The coBnality
theorem then says that there is a homotopy Bber sequence

|hS.Phf (G)| → |hS.Pfd(G)| → A− × A+

(where A−×A+ is given the discrete topology). We infer that the map |hS.Phf (G)| →
|hS.Pfd(G)| induces an isomorphism on homotopy groups in degrees ¿ 1.

The following says in eGect that any object of Cf (G × Z) admits a certain kind of
‘Mayer–Vietoris decomposition’. Note that it is asserted only in the Bnite case.

3.4. Lemma. Each 9nite object Y ∈ Cf (G × Z) may be taken as a constituent of
an object y := (Y−; Y; Y+) ∈ Pf (G). In fact; we may choose y so that Y−(t) ∼= Y ∼=
Y+(t−1).

Proof. We proceed by induction. Assume that the result is true for some Bnite object
Z where Y = Z ∪� Dn

G×Z along an attaching map � : Sn−1
G×Z → Z . Hence there exists a

Bnite object of the projective line of the form (Z−; Z; Z+), with Z−(t) ∼= Z ∼= Z+(t−1).
Using the inclusion Sn−1

G×N+
⊂ Sn−1

G×Z and compactness of Sn−1, there exists a k ≥ 0
such that

tk ◦ �(Sn−1
G×N+

)⊂Z+:

Let Y+ be the eGect of attaching Dn
G×N+

to Z+ along tk ◦ �. This gives an inclusion
Y+⊂Y which induces an isomorphism Y+(t−1) ∼= Y . A similar argument constructs
Y−.

Given objects Y−; Z− ∈ Cf (G ×N−), and a (G ×Z)-map Y−(t)→ Z−(t), one may
ask whether it comes from a map Y− → Z−. The next result in eGect says that this is
indeed the case up to a translation. As its proof is similar to the proof of Lemma 3.4,
we omit the details.
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3.5. Translation Lemma. Suppose that we are given objects Y−; Z− ∈ Cf (G ×N−);
an object Y of Cf (G × Z) and cellular morphisms . :Y−(t)→ Y and f :Y → Z−(t).
Then there exists an integer k ≥ 0 and a cellular morphism g− :Y− → Z−; such that
the following diagram of morphisms commutes:

Y−(t)
g−(t)
−−−−−→ Z−(t)

.

�
� tk

Y −−−−−−−−→
f

Z−(t)

4. The K -theory of the projective line as a pullback

4.1. Let

Pf (G)→ Cf (G ×N−) and Pf (G)→ Cf (G ×N+)

be the forgetful functors which are deBned on objects by

(Y−; Y; Y+) �→ Y− and (Y−; Y; Y+) �→ Y+;

respectively. Similarly, there is a forgetful functor

Pf (G)→ Cf (G × Z);

which is given by (Y−; Y; Y+) �→ Y . These functors are coBbration-preserving.
However, the diagram

in which the lower and right-hand arrows arise from the telescope construction, com-
mutes only up to equivalence. Additional categories D(G × N−);D(G × N+) and
D(G×Z) substituting for Cf (G×N−);Cf (G×N+) and Cf (G×Z), respectively, and
new notions of weak equivalence on the variants of P?(G) are required to get around
this diRculty. Once the technical diRculties are resolved, we exhibit in Corollary 4:14
a homotopy cartesian square

K(Pfd(G); h) −−−−−→ Afd(∗; G ×N+)�
�

Afd(∗; G ×N−) −−−−−→ Afd(∗; G × Z):

More useful, however (as will be seen in Section 7), is a delooped version of this
square, called the canonical diagram of the projective line. This is deBned in 4:13
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below as the homotopy cartesian square

PG −−−−−−−−−−−−−−−−→ |hS.Dfd(G ×N+)|�
�

|hS.Dfd(G ×N−)| −−−−−−−−−→ |hS.Dfd(G × Z)|
together with a speciBc identiBcation

PG � |hS.Pfd(G)| × K−1(Z[�0(G)]):

To proceed, we now deBne three new notions of weak equivalence on Pf (G), in
addition to the h-notion. We will say that a morphism (f−; f; f+) : (Y−; Y; Y+) →
(Z−; Z; Z+) of Pf (G) is an hN− -equivalence if (and only if) f− is a weak equiva-
lence (hence also f, but not necessarily f+). Similarly, (f−; f; f+) will be called
an hZ-equivalence (resp. hN+ -equivalence) if (and only if) f (resp., f+) is a weak
equivalence.

These forgetful functors induce maps

|hLS.Pf (G)| → |hS.Cf (G × L)|; (4.1)

where L denotes either N−, Z, or N+.

4.2. Proposition. The map (4:1) is a homotopy equivalence; for L =N−; Z or N+.

It is perhaps worth noting here that the result is asserted only for the ‘f ’ decoration.

Proof of Proposition 4.2. We give the argument for the map

|hN+S.Pf (G)| → |hS.Cf (G ×N+)|;
as the proofs in the other cases are analogous. To this end, we shall apply the approx-
imation theorem [8, 1:6:7].

We want to check that the exact functor

Pf (G); hN+Pf (G))→ (Cf (G ×N+); hCf (G ×N+));

Y− → YY+ �→ Y+

satisBes the two approximation properties.
The functor evidently reTects weak equivalences (cf. App 1 before the proof of

Proposition 3.3(1)). Thus we only need to check App 2, i.e.,

Assertion. Given an object (Y−; Y; Y+) of Pf (G) and a morphism f+ : Y+ → Z+ of
Cf (G ×N+), there exists a coBbration

(Y−; Y; Y+) � (W−; W;W+)

and a weak equivalence W+
�→Z+ in Cf (G ×N+) such that the composite

Y+ � W+
∼→Z+

is identical to f+.
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By replacing f+ by its mapping cylinder if necessary, we can assume, without any
loss in generality, that f+ is a coBbration. Set Z1 equal to the amalgamated union

Y ∪Y+(t−1) Z+(t−1):

By Lemma 3.4, there exists an object Z− of Cf (G × N−) and an isomorphism
Z1

∼=→Z−(t). Consequently, the maps Bt together to yield a commutative diagram

Y− −−−−−→ Y←−−−−−−−− Y+

f

�
� f+

Z−(t) ←−−−−− Z+

(4.2)

where f is the composite Y ⊂→Z1
∼=→Z−(t).

By Translation Lemma 3:5, there exists an integer k and a morphism g− : Y− → Z−
so that

Y− −−−−−→ Y

g−

�
� f

Z− ←−−−−−
tk

Z−(t)

(4.3)

commutes. We infer that there is a morphism

(Y−; Y; Y+)→ (Z−; Z−(t); Z+);

which has the given map Y+ → Z+ as a component. Set (W−; W;W+) equal to the
mapping cylinder of (g−; f; f+). Then diagrams (4.2)–(4.3) show that the object
(W−; W;W+) fulBlls the assertion.

The four notions of weak equivalence on the projective line induce a commutative
square of based spaces

|hS.P?(G)| −−−−−→ |hN+S.P?(G)|�
�

|hN−S.P?(G)| −−−−−→ |hZS.P?(G)|

(4.4)

for each of the decorations ? = f ; hf ; fd; sfd.

4.3. Proposition. With respect to the decorations hf ; fd; sfd; square (4:4) is homo-
topy cartesian.

Proof. We will apply the 9bration theorem [8, 1:6:4] to each of the horizontal arrows
to show that (4.4) has contractible iterated homotopy Bber. This will be suRcient to
conclude that the diagram is homotopy cartesian since each of its vertices is connected.
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We give the proof in the Bnitely dominated case only (the proofs in the other cases
are similar). Let

PhN+
fd (G)⊂Pfd(G)

denote the full subcategory whose objects (Y−; Y; Y+) satisfy the condition that Y+ is
acyclic (i.e., the morphism from the zero object to Y+ is a weak equivalence).

By the Bbration theorem, the commutative square

|hS.PhN+
fd (G)| −−−−−→ |hS.Pfd(G)|�

�
|hN+S.P

hN+
fd (G)| −−−−−→ |hN+S.Pfd(G)|

(4.5)

is homotopy cartesian. Moreover, the term in the lower left-hand corner is contractible.
Similarly, let PhZ

fd (G)⊂Pfd(G) be the full subcategory with objects (Y−; Y; Y+),
where Y is an acyclic object of Cfd(G × Z). Again by the Bbration theorem, one
has a commutative homotopy cartesian square

|hN−S.PhZ
fd (G)| −−−−−→ |hN−S.Pfd(G)|�

�
|hZS.PhZ

fd (G)| −−−−−→ |hZS.Pfd(G)|
in which the lower left-hand term is contractible. Moreover, square (4.5) maps via
inclusion into the latter square. Hence, to show that (4.4) has contractible iterated
homotopy Bbre, it will suRce to show that the map

|hS.PhN+
fd (G)| → |hN−S.PhZ

fd (G)|
is a homotopy equivalence.

Consider the inclusion functor PhN+
fd (G)⊂PhZ

fd (G) which induces this map. We shall
apply the approximation theorem [8, 1:6:7] to show that this functor induces a homotopy
equivalence on S.-constructions. By deBnition, the functor reTects weak equivalences
(cf. App 1 before the proof of Proposition 3.3(1)). We therefore seek to establish
condition App 2 of the approximation theorem.

Suppose that

y := (Y−; Y; Y+)→ (Z−; Z; Z+) =: z

is a morphism of PhZ
fd (G) such that the source is an object of PhN+

fd (G).

Assertion. There exists an object w ∈ PhN+
fd (G) and a factorization

y � w ∼→ z:

By applying the cylinder functor if necessary, we may assume, without loss in
generality that y → z is a coBbration. DeBne an object w := (W−; W;W+) of PhN+

fd (G)



36 T. H�uttemann et al. / Journal of Pure and Applied Algebra 160 (2001) 21–52

by setting W− :=Z−, W :=Z , and W+ :=Y+, where the map W+ → W is taken to be
the composite Y+ → Y → Z . Then there is an evident factorization y � w ∼→ z, so the
assertion holds.

4.4. The canonical diagram. We now restrict our discussion to the Bnitely dominated
case. The diagram

Pfd(G) −−−−−−−−→ Cfd(G ×N+)�
�

Cfd(G ×N−) −−−−−→ Cfd(G × Z)

in which the upper horizontal map is given by (Y−; Y; Y+) �→ Y+, the left vertical
map is given by (Y−; Y; Y+) �→ Y−, and the maps into the terminal vertex are given
by the telescope construction is not commutative. However, it is commutative up to
a canonical chain of natural transformations which is described by the chain of weak
equivalences

Y−(t) ∼→Y ∼←Y+(t−1):

The lack of commutativity will be rectiBed below by introducing another model for
Cfd(G × L), where L denotes N−, Z or N+. We will deBne a category Dfd(G × L)
with coBbrations and weak equivalences and a factorization by exact functors

Pfd(G)→ Dfd(G × L)→ Cfd(G × L):

The functor Dfd(G×L)→ Cfd(G×L) will induce an equivalence on S.-constructions.
Suppose Brst that L =N−. The category Dfd(G ×N−) is deBned so that
• An object is speciBed by a diagram Y− → Y ← Y+, as in Pfd(G), except that we do
not require the induced coBbration Y+(t−1)→ Y to be a weak equivalence (although
we do require the other coBbration Y−(t)→ Y to be a weak equivalence).

• Morphisms and co9brations of Dfd(G ×N−) are deBned in the same way that we
deBned them for Pfd(G).

• A morphism (Y−; Y; Y+) → (Z−; Z; Z+) is a weak equivalence if (and only if) the
map Y− → Z− is a weak homotopy equivalence.
The category Dfd(G × N+) is deBned similarly, i.e., an object is speciBed by a

diagram Y− → Y ← Y+, where this time we only require the map Y+(t−1)→ Y to be
a weak equivalence. A morphism (Y−; Y; Y+)→ (Z−; Z; Z+) in this instance is a weak
equivalence if (and only if) the map Y+ → Z+ is a weak homotopy equivalence.

Lastly, Dfd(G × Z) is deBned to be the category whose objects are Y− → Y ← Y+

with no condition imposed on the induced maps Y−(t)→ Y and Y+(t−1)→ Y except
that they should be coBbrations. A morphism (Y−; Y; Y+)→ (Z−; Z; Z+) is speciBed to
be a weak equivalence if (and only if) Y → Z is a weak homotopy equivalence.

It follows that Pfd(G) is a (full) subcategory of Dfd(G × L) for L =N−;N+;Z.
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4.5. Lemma. Let L be N− (Z or N+). Then the forgetful functor

Dfd(G × L)→ Cfd(G × L);

(Y−; Y; Y+) �→ Y− (resp: Y; Y+)

induces a homotopy equivalence |hS.Dfd(G × L)| �→|hS.Cfd(G × L)|.

Proof. We prove the lemma only when L =N− as the other cases are similar. Let f
denote the forgetful functor. DeBne an exact functor g : Cfd(G× L)→ Dfd(G× L) by
g(Y−) = Y− → Y−(t) ← ∗. Then f ◦ g and g ◦ f are equivalent to the identity in an
evident way.

There is an inclusion of categories Pfd(G)⊂Dfd(G× L) which gives rise to a com-
mutative diagram

|hS.Pfd(G)| −−−−−−−−→ |hS.Dfd(G ×N+)|�
�

|hS.Dfd(G ×N−)| −−−−−→ |hS.Dfd(G × Z)|

: (4.6)

Let PG denote the homotopy pullback of the diagram

|hS.Dfd(G ×N−)| → |hS.Dfd(G × Z)| ← |hS.Dfd(G ×N+)|:
The commutativity of (4:11) shows that there is a preferred map |hS.Pfd(G)| → PG.

4.6. Theorem. The map |hS.Pfd(G)| → PG induces an isomorphism on homotopy
groups in positive degrees. In particular; there is a homotopy equivalence

PG � |hS.Pfd(G)| × K−1(Z[�0(G)]);

where the second factor denotes the cokernel of the homomorphism

K0(Z[�0(G)](t−1))× K0(Z[�0(G)](t))→ K0(Z[�0(G)](t; t−1))

given on each summand by the map induced by inclusion.

4.7. Terminology. The homotopy cartesian square

PG −−−−−−−−−−−→ |hS.Dfd(G ×N+)|�
�

|hS.Dfd(G ×N−)| −−−−−→ |hS.Dfd(G × Z)|
together with the identiBcation

PG � |hS.Pfd(G)| × K−1(Z[�0(G)])

of Theorem 4.6 will be called the canonical diagram of the projective line.
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Proof of Theorem 4.6. We Brst deduce the second assertion from the Brst one. The
Brst assertion implies that |hS.Pfd(G)| is homotopy equivalent to the component of
the base point of PG. The space PG is the homotopy pullback of maps of group-like
H -spaces, by [8, 1:6:2]. Hence PG is also a group-like H -space, and PG is homotopy
equivalent to the cartesian product of its base point component with �0(PG). Using
Lemma 1.7(3) and the long exact sequence for the homotopy groups in a homotopy
cartesian square, it follows that �0(PG) is isomorphic to K−1(Z[�0(G)]). This gives
the second assertion.

We now prove the Brst assertion. By Lemma 1.7(3), Proposition 4.2 and Lemma
4.5 we infer that the maps

|hLS.Pfd(G)| → |hS.Dfd(G × L)|
induce isomorphisms on homotopy groups in degrees ¿ 1 for L = N−;Z or N−.
Using Proposition 4.3, we infer that the map |hS.Pfd(G)| → PG also induces an
isomorphism on homotopy groups in dimensions ¿ 1. We are therefore reduced to
showing that the map induces an isomorphism on fundamental groups. Surjectivity will
be a consequence of the canonical presentation of K0 of a category with coBbrations
and weak equivalences. The injectivity part will be a consequence of the results of
Sections 6 and 7 which are independent of this section.

Surjectivity. Recall that �1(|hS.C|) for a category C with coBbrations and weak equiv-
alences is an abelian group equipped with generators [c] so that c is an object of C,
with relations of two kinds:
(1) A coBbration sequence c� d→ d=c gives rise to the relation [c] + [d=c] = [d].
(2) A weak equivalence c ∼→d gives rise to the relation [c] = [d].

Using the homotopy equivalences (Lemma 4.5), we see that PG is homotopy equiv-
alent to the homotopy pullback of the diagram

|hS.Cfd(G ×N−)| → |hS.Cfd(G × Z)| ← |hS.Cfd(G ×N+)|:
Let x ∈ �1(PG) be an element. Then x is represented by objects UL ∈ Cfd(G × L)

for L =N−;N+;Z which are subject to the condition that UN−(t), UN+(t−1) and UZ
represent the same element of �1(|hS.Cfd(G×Z)|). Using relations (1) and (2) above,
we can assume that UN− is a retract up to homotopy of a j-spherical object, i.e., an
object which is a Bnite coproduct of objects of the form S j

N− for some Bxed positive
integer j. Similar considerations apply to the objects UN+ and UZ. Consequently, x
is represented by VL in which the latter is a j-spherical homotopy retract for L =
N−;N+;Z.

By wedging on a further j-spherical object (if necessary), we may conclude that x
is represented by VL in which there are weak homotopy equivalences

VN−(t) � V � VN+(t−1):

Let V ′ be the result of converting the induced map VN−(t) ∨ VN+(t−1) → V
into a coBbration. It follows that the triple (VN− ; V ′; VN+) represents an element of
�1(|hS.Pfd(G)|) which maps to x. This establishes surjectivity.
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Injectivity. In Section 6 we identify |hS.Pfd(G)|; we show in 6:8 that there is a certain
homotopy equivalence

|hS.Cfd(G)| × |hS.Cfd(G)| �→|hS.Pfd(G)|;
such that the composite with the map

|hS.Pfd(G)| → PG → |hS.Cfd(G ×N−)| × |hS.Cfd(G ×N+)|
is a co-retract up to homotopy (the retraction property is a consequence of 7:1 and
Lemma 7.2). This implies the injectivity of the map |hS.Pfd(G)| → PG on the level
of fundamental groups.

4.5. Corollary. The commutative diagram (4:6) induces a homotopy cartesian square

K(Pfd(G); h) −−−−−→ Afd(∗; G ×N+)�
�

Afd(∗; G ×N−) −−−−−→ Afd(∗; G × Z):

Proof. The homotopy equivalence PG � |hS.Pfd(G)| × K−1(Z[�0(G)]) looped once
gives a homotopy equivalence

�PG � �|hS.Pfd(G)|=:K(Pfd(G); h):

The assertion now follows by applying the loop functor to the canonical diagram.

5. Auxiliary functors

Our goal in the next section (Section 6) is to produce a homotopy equivalence

|hS.Pfd(G)| � |hS.Cfd(G)| × |hS.Cfd(G)|
which, of course, loops to a homotopy equivalence K(Pfd(G); h) � Afd(∗; G)×Afd(∗; G).
The proof of this result will be modeled on Quillen’s proof of an analogous result for
rings [4, Chapter 8, Theorem 3:1] and requires auxiliary functors 2 : P(G) → C(G)
and, for n ∈ Z,  n : Cfd(G) → Pfd(G). DeBnitions of these functors and the basic
identities they satisfy are given in this section.

5.1. Global sections. DeBne a functor 2: P(G)→ C(G) by the rule

Y− → Y ← Y+ �→ CY− ∪Y− Y ∪Y+ CY+;

where CY− denotes the cone of Y−, and CY+ is the cone on Y+. 2 This construction
preserves coBbrations and weak equivalences.

2 The use of the term ‘global sections’ here is actually a misnomer. However, it conveys a similar idea:
2(Y−; Y; Y+) is a model for the homotopy coBbre of the evident map Y− ∨ Y+ → Y , which we think of as
stably representing the ‘overlap’ of Y− with Y+ inside Y up to a suspension.
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5.2. Lemma. The functor 2 maps 9nitely dominated objects to s-9nitely dominated
objects. Hence 2 induces a map

|hS.Pfd(G)| → |hS.Csfd(G)| � |hS.Cfd(G)|:

Proof. As 2 preserves retractions, it is suRcient to show that 2 applied to a Bnite
object is s-Bnitely dominated. We shall show that 2 applied to a Bnite object is Bnitely
dominated after one suspension.

Call a Bnite object z := (Z−; Z; Z+) globally 9nite if its skeletal Bltration zj :=
(Zj

−; Zj; Zj
+) is such that zj is obtained from zj−1 by attaching a Bnite coproduct of

objects of the kind

Dj
G×N−

tr→Dj
G×Z

ts←Dj
G×N+

for some r; s ∈ Z;
where the amalgamation is taken along morphisms

(Sj−1
G×N−

tr→ Sj−1
G×Z

ts← Sj−1
G×N+

)→ zj−1:

By a straightforward induction which we omit, one sees that 2 applied to a globally
Bnite object yields a homotopy Bnite object of C(G).

Let y := (Y−; Y; Y+) be an arbitrary (locally) Bnite object of P(G). Choose a globally
Bnite object z :=Z−

�−→Z
�+←Z+ together with a weak equivalence f : Y ∼→Z of Cf(G×

Z) (as is guaranteed, say, by Lemma 3.4). For integers k; ‘ ∈ Z, let zk;‘ be the object

Z−
tk◦�−−−−→Z

t‘◦�+−−−→Z+:

Then, by induction, zk;‘ is also globally Bnite.
By translation Lemma 3:5 applied twice, there exist integers k; ‘, and morphisms

g− : Y− → Z− and g+ : Y+ → Z+ which satisfy a commutative diagram

Y− −−−−−→ Y ←−−−−− Y+� g− f

�
� g+

Z− −−−−−→
tk◦�−

Z ←−−−−−
t‘◦�+

Z+

i.e., a morphism (g−; f; g+) : y → zk;‘. Let c :=C− → C ← C+ denote the mapping
cone of (g−; f; g+), given by the component-wise mapping cone of each of the maps
g−, f and g+. Then C is acyclic, because f : Y → Z is a weak equivalence. This
implies C+(t−1) and C−(t) are acyclic.

However, since C+(t−1) is acyclic, and C+ is Bnite in C(G ×N+), there exists an
integer m ≥ 0 so that the map

C+
tm→C+

is homotopic through morphisms of C(G) to the constant map to the base point.
This implies that the identity map id : C+ → C+ factors up to homotopy in C(G)

through the quotient map C+ → C+=tm(C+), where C+=tm(C+) makes sense because
tm : C+ → C+ is a coBbration when considered as a morphism of C(G). Moreover,
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a straightforward induction on the number of cells of C+ shows that C+=tm(C+) is
a Bnite object of C(G). It follows that C+ is a Bnitely dominated object of C(G).
Similarly, C− is a Bnitely dominated object of C(G).

As C is acyclic, it follows that 2(c) is Bnitely dominated. The evident coBbration
sequence

2(y) � 2(T (y → zk;‘))→ 2(c)

(where T (y → zk;‘) denotes the mapping cylinder of y → zk;‘) then shows that 2(y)
is stably Bnitely dominated.

5.3. Extension by scalars. Let L be a monoid and M the realization of a simplicial
monoid. The extension by scalars functor is given by

Cfd(M)→Cfd(M × L)

K �→K ⊗ L;

where K ⊗ L denotes (K × L)=(∗ × L).

5.4. The twists. For each integer n, deBne an exact functor

6n : Pfd(G)→ Pfd(G);

where if y = (Y−; Y; Y+) is an object of Pfd(G), then 6n(y) is the object

Y−
tn→Y ← Y+;

where the map Y+ → Y is as before, and the map tn is shorthand notation for
the composite

Y− → Y tn→Y

(inclusion followed by left translation).

5.5. The canonical sheaves. For n ∈ Z we deBne an exact functor

 n : Cfd(G)→ Pfd(G)

called the canonical sheaf twisted by n.
To deBne it, let K be an object of Cfd(G). Let  0(K) be the object of Pfd(G)

given by

K ⊗N−
⊂→K ⊗ Z ⊃←K ⊗N+;

where K ⊗N−, etc., are as in 5:3 (recall that N− and N+ are, respectively, the nega-
tive and positive integers with 0 included).

DeBne  n(K) by

 n(K):=6n ◦  0(K);

where 6n is as in 5:4.
By a straightforward argument which we omit, it is readily veriBed that
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5.6. Lemma. If n ≥ 0; then 2 ◦  n is equivalent as an exact functor to

K �→ �K ⊕ · · · ⊕ �K︸ ︷︷ ︸
(n+1) times

;

if n¡ 0; then 2 ◦  n is equivalent as an exact functor to

K �→ K ⊕ · · · ⊕ K︸ ︷︷ ︸
−(n+1) times

;

where in each case ⊕ means the coproduct operation (i.e.; wedge sum).

6. Identi1cation of the K -theory of the projective line

In this section we apply the constructions of the preceding section. First, we prove
that the global sections functor 2 and the twist 61 combine to induce a homotopy
equivalence

|hS.Pfd(G)| (2◦61 ;2)→ |hS.Cfd(G)| × |hS.Cfd(G)|:

In particular, there will be a homotopy equivalence

K(Pfd(G); h) � Afd(∗; G)× Afd(∗; G):

We also prove that the canonical sheaf functors  0 and  −1 induce a homotopy
equivalence

|hS.Cfd(G)| × |hS.Cfd(G)|  0⊕ −1→ |hS.Pfd(G)|:

6.1. DeBne a coarser category h2Pfd(G) of weak equivalences in Pfd(G) by declaring
a morphism x → y to be an h2-equivalence if (and only if) 2(x) → 2(y) is a
weak equivalence in Csfd(G). Correspondingly, we have P2

fd(G), the full subcategory
of Pfd(G) consisting of those objects x of the latter for which 2(x) is acyclic.

6.2. Proposition. The square

|hS.P2
fd(G)| −−−−−→ |hS.Pfd(G)|�

� 2

|h2S.P2
fd(G)| −−−−−→

2
|hS.Cfd(G)|

is homotopy cartesian. The lower left corner is contractible. Moreover; the right
vertical map admits a section up to homotopy.
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Proof. Application of the Bbration theorem [8, 1:6:4] shows that the square (induced
by the evident inclusions)

|hS.P2
fd(G)| −−−−−→ |hS.Pfd(G)|�

�
|h2S.P2

fd(G)| −−−−−→ |h2S.Pfd(G)|

(6.1)

is homotopy cartesian. We will show that the map

|h2S.Pfd(G)| 2→|hS.Csfd(G)|
is a homotopy equivalence. This will establish that the square in the statement of
Proposition 6.2 is homotopy cartesian. The section to the right vertical map in this
square is provided by  0, since Lemma 5.6 shows that the composite

|hS.Cfd(G)|  0→|hS.Pfd(G)| → |h2S.Pfd(G)| 2→|hS.Csfd(G)|
is a homotopy equivalence. Hence, 2 is a surjection on homotopy in all degrees. We
are reduced to showing that 2 is an injection on homotopy in all degrees.

Let R+ denote the real numbers with the addition of a disjoint basepoint. Translation
deBnes a Z-action on R+ which is free in the based sense. Similarly, let R+

≤0 and R+
≥0

respectively denote the nonpositive and nonnegative real numbers equipped with their
evident N− and N+ actions.

Let �′ : Pfd(G) → Pfd(G) be the functor which is given by mapping an object
y = (Y−; Y; Y+) to the object

R+
≤0 ∧ (CY− ∪Y− CY )→ R+ ∧ �Y ← R+

≥0 ∧ (CY ∪Y+ CY+)

(with evident structure maps and the action on each smash product is the diagonal
one). Each term in the above expression is naturally equivalent to a suspension, i.e.,
�′ is equivalent, as an exact functor, to the suspension functor.

If we set K :=2(y), it follows that there is a commutative diagram

K −−−−−−−−−→R+
≥0 ∧ (CY ∪Y+ CY+)�

�
R+

≤0 ∧ (CY− ∪Y− CY ) −−−−−→ R+ ∧ �Y:

The map K → R+
≤0 ∧ (CY− ∪Y− CY ) may be extended to a map

K ⊗N− → R+
≤0 ∧ (CY− ∪Y− CY )

by forcing equivariance. Similarly, we may deBne maps K ⊗ Z → R+ ∧ �Y
and K⊗N+ → R+

≥0∧ (CY+∪Y+ CY ), which, taken together, provide an h2-equivalence

 0(K) ∼→�′y:

This procedure describes an exact natural transformations (with respect to the
h2- equivalences) from  0 ◦ 2 to �′. But �′ is an equivalence on S.-constructions,
so 2 gives an injection on homotopy in all degrees.
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The next step is to identify the initial vertex in the square of Proposition 6.2 with
|hS.Cfd(G)|.

6.6. Proposition. The exact functor

2 ◦ 61 : P2
fd(G)→ Cfd(G)

induces a homotopy equivalence

|hS.P2
fd(G)| �→|hS.Cfd(G)|:

This will be proven below. Let us Brst note that application of 6:6 yields the main
result of this section, namely

6.7. Corollary. The map

|hS.Pfd(G)|(2◦61 ;2)−−−→|hS.Cfd(G)| × |hS.Cfd(G)|
is a homotopy equivalence. In particular; there is a homotopy equivalence

K(Pfd(G); h) � Afd(∗; G)× Afd(∗; G):

Proof. From the cartesian square (Proposition 6.2), there is a homotopy Bber sequence

|hS.P2
fd(G)| → |hS.Pfd(G)| 2→|hS.Cfd(G)|:

By Proposition 6.6, we Bnd that the composite

|hS.P2
fd(G)| → |hS.Pfd(G)| 2◦61−→|hS.Cfd(G)|

is a homotopy equivalence. It follows that

(2 ◦ 61; 2) : |hS.Pfd(G)| → |hS.Cfd(G)| × |hS.Cfd(G)|
is a homotopy equivalence.

For the proof of the main result of this paper, we will also need another corollary of
Proposition 6.6 which gives a homotopy equivalence in the other direction. Consider
the composite map

 −1 ⊕  0 : |hS.Cfd(G)| × |hS.Cfd(G)|
 −1× 0−−−→ |hS.Pfd(G)| × |hS.Pfd(G)|

⊕→ |hS.Pfd(G)|;
where ⊕ is induced by coproduct operation on Pfd(G) (this gives |hS.Pfd(G)| the
structure of an H -space, by [8, p. 330]). Using Lemma 5.6, one sees that the composite

(2 ◦ 61; 2) ◦ ( −1 ⊕  0)

is the map which is given (up to homotopy) by the matrix(
�⊕2 �
� 0

)
;
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where �⊕2(K) = �K ⊕ �K is the coproduct of two copies of �K . Since � induces
a homotopy equivalence on |hS.Cfd(G)| (it is a homotopy inverse for the H -space
structure), it follows that the map is homotopy invertible. Hence,

6.8. Corollary. [cf. Quillen [4, Chapter 8, Theorem 3:1]]The map

|hS.Cfd(G)| × |hS.Cfd(G)|  −1⊕ 0→ |hS.Pfd(G)|
is a homotopy equivalence.

With these corollaries out of the way, we now proceed with the proof of Propo-
sition 6.6. Our Brst step is to deBne yet another collection of subcategories of weak
equivalences on Pfd(G).

For j ∈ N∪∞, let h2≤j denote the (coarser) notion of weak equivalence on Pfd(G)
whereby a morphism x → y is a weak equivalence if and only if the induced map

2(6i(x))→ 2(6i(y))

is weak homotopy equivalence for 0 ≤ i ≤ j, where 6i(x) denotes the ith twist of x,
deBned in 5:4. This also restricts to a notion of weak equivalence on P2

fd(G).

Proof of Proposition 6.6. By Corollary 6.11 below, the canonical map

|hS.P2
fd(G)| → |h2≤1S.P2

fd(G)|
is a homotopy equivalence. To prove that the map 2 ◦ 61 : |hS.P2

fd(G)| → |hS.Cfd(G)|
is a homotopy equivalence, it is therefore suRcient to prove that 2 ◦ 61 induces a
homotopy equivalence

|h2≤1P2
fd(G)| → |hS.Cfd(G)|:

On the one hand, the functor  −1 :Cfd(G) → Pfd(G) factors through P2
fd(G) and

the factorization  −1 :Cfd(G) → P2
fd(G) is exact with respect to the notion of weak

equivalence given by h2≤1 on the codomain. Then we have

(2 ◦ 61) ◦  −1 = 2 ◦ (61 ◦  −1)

= 2 ◦  0 by (5:5);

�� by Lemma 5:6:

Consequently, 2 ◦ 61 induces a surjection on homotopy groups.
On the other hand, we assert that the composition

 −1 ◦ (2 ◦ 61) : (P2
fd(G); h2≤1P2

fd(G))→ (P2
fd(G); h2≤1P2

fd(G))

is equivalent by a chain of equivalences of exact functors to the suspension functor
�. To see this, recall that there is a chain of equivalences from the exact functor
 0 ◦ 2 to the suspension functor � with respect to the h-notion of weak equivalence
(cf. the discussion before Proposition 6.6). As the h2≤1 -notion of weak equivalence
is coarser, it follows that there is a chain of equivalences from  0 ◦ 2 to � with
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respect to the h2≤1 -notion of weak equivalence. Apply 61 to the right and 6−1 to the
left of  0 ◦ 2. It follows that there is a chain of equivalences of exact functors from
6−1 ◦  0 ◦2 ◦ 61 =  −1 ◦2 ◦ 61 to 6−1 ◦� ◦ 61 = � (with respect to the h2≤1 -notion of
weak equivalence).

In particular, 2 ◦ 61 induces an injection on homotopy groups. It follows that

|h2≤1S.P2
fd(G)| 2◦61→ |hS.Cfd(G)|

is a homotopy equivalence. This completes the proof of Proposition 6.6.

6.9. Lemma. The evident map

|hS.Pfd(G)| → |h2≤∞S.Pfd(G)|
is a homotopy equivalence.

Proof. Let P2≤∞
fd (G) be the full subcategory of Pfd(G) consisting of objects x for

which 2(6n(x)) are acyclic objects of Cfd(G), for all n ≥ 0.
By the Bbration theorem [8, 1.6.4], there is a homotopy cartesian square

|hS.P2≤∞
fd (G)| −−−−−→ |hS.Pfd(G)|�

�
|h2≤∞S.P2≤∞

fd (G)| −−−−−→ |h2≤∞S.Pfd(G)|
in which the lower left corner is contractible. It is therefore suRcient to show that
|hS.P2≤∞

fd (G)| is contractible. This will be true if every object of P2≤∞
fd (G), after a

suitable number of suspensions, is weak equivalent (with respect to the h-notion of
weak equivalence) to the 0-object (∗; ∗; ∗).

Let y:=(Y−; Y; Y+) be an object of P2≤∞
fd (G). By suspending if necessary, we can

assume that the components of y are simply connected. By the equivariant Whitehead
theorem, it is then suRcient to prove that Y− and Y+ have trivial reduced singular
homology. We will show that the groups H∗(Y+) are trivial (and hence also H∗(Y ));
an analogous argument will show that the groups H∗(Y−) are trivial.

Denote the structure map Y− → Y by �− and the structure map Y+ → Y by �+. Let
[v+] ∈ Hi(Y+) be a homology class with representing cycle v+. By the compactness
of v+, there exists an integer n so that [�+(v+)] ∈ Hi(Y ) is the image under tn�− of
a class [v−] ∈ Hi(Y−).

Using the Mayer–Vietoris sequence,

· · · → Hi+1(2(6n(y)))→ Hi(Y−)⊕ Hi(Y+)
tn�−⊕�+−−−−→Hi(Y )→ Hi(2(6n(y))→ · · · ;

it follows that the element −[v−]⊕ [v+] ∈ Hi(Y−)⊕ Hi(Y+) maps to zero. Using the
assumption Hi(2(6n(y)))=0 for all i ≥ 0, it follows that −[v−]⊕[v+]=0. Consequently,
[v+] is also zero. This shows that Hi(Y+) is trivial, since [v+] was arbitrarily chosen.
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6.10. Lemma. The inclusions of subcategories of weak equivalences h2≤i+1Pfd(G)⊂
h2≤iPfd(G) yield homotopy equivalences

|h2≤1S.Pfd(G)| �←| h2≤2S.Pfd(G)| �← · · · �← |h2≤∞S.Pfd(G)|:

Proof. Suspension induces a homotopy equivalence on these S.-constructions, so it will
suRce to show that a morphism of Pfd(G) which suspends to an h2≤n−1 -equivalence
(for n ≥ 2) also suspends to an h2≤n -equivalence.

Let y := (Y−; Y; Y+) be an object of Pfd(G). For each nonnegative integer n, there
is a homotopy pushout square in Csfd(G) of the form

2(6n−2(y))
a1−−−−−→ 2(6n−1(y))

b1

�
� b2

2(6n−1(y)) −−−−−→
a2

2(6n(y))

;

where 6n(y) is the nth twist of y as in 5.4, and
• the map a2 is induced by the applying 2 to top and bottom in the diagram

Y−
tn−1

−−−−−→ Y ←−−−−− Y+

id

�
� t

� t

Y−
tn−−−−−→ Y ←−−−−− Y+

and a1 is deBned similarly.
• The map b2 is deBned by applying 2 to top and bottom in the diagram

Y−
tn−1

−−−−−→ Y ←−−−−− Y+

t−1

� id

�
� id

Y−
tn−−−−−→ Y ←−−−−− Y+

and b1 is deBned similarly.
Using the square, a straightforward induction shows that if a suitable suspension of

y is acyclic with respect to the 2≤n−1 notion of equivalence (for n ≥ 2) then it is also
acyclic with respect to the 2≤n notion of equivalence. This implies the result, since a
morphism suspends to a weak equivalence if and only if its mapping cone is stably
acyclic.

6.11. Corollary. The map

|hS.P2
fd(G)| → |h2≤1S.P2

fd(G)|
is a homotopy equivalence.
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Proof. We have a commutative square,

|hS.Pfd(G)| −−−−−→ |h2S.Pfd(G)|

�

�
∥∥∥∥∥

|h2≤1S.Pfd(G)| −−−−−→ |h2S.Pfd(G)|
which by Lemmas 6.9 and 6.10 is homotopy cartesian. The result then follows by
application of the Bbration theorem [8, 1.6.4] to its horizontal arrows.

7. The “fundamental theorem”

In this section we complete the proof of the “fundamental theorem”: we will establish
a splitting

Afd(X × S1) � Afd(X )×BAfd(X )× N−Afd(X )× N+Afd(X );

where N−Afd(X ) and N+Afd(X ) are naturally isomorphic and BAfd(X ) denotes a canon-
ical non-connective delooping of Afd(X ).

7.1. Augmentation. Let L be one of the monoids N−, Z or N+. We deBne a functor
9 :Dfd(G × L) → Cfd(G) which will enable us to factor out a copy of |hS.Cfd(G)|
from |hS.Dfd(G × L)|.

For y = (Y−; Y; Y+) ∈ Dfd(G × L), we take 9(y) to be

Y=Z;

i.e., the orbit space under the action of Z. The same description deBnes an exact functor
9 :Pfd(G)→ Cfd(G).

7.2. Lemma. If K ∈ Cfd(G); then there is a natural isomorphism

9( n(K))
∼=→K

for every n ∈ Z; where  n is the canonical sheaf functor twisted by n (see 5:5).

Proof.  n(K) has the form (K ⊗N−; K ⊗ Z; K ⊗N+), and K ⊗ Z is a Z-fold wedge
of copies of K . Then (K ⊗ Z)=Z is isomorphic to K .

To state the next lemma, we introduce some notation: If g :A→ B is a map of based
spaces, we let Ag denote its homotopy Bber; it comes equipped with a map Ag → A.

7.3. Lemma. The canonical map |hS.Dfd(G × L)|9 → |hS.Dfd(G × L)| admits a left
homotopy inverse. Moreover; there is a homotopy equivalence

|hS.Dfd(G × L)| � |hS.Dfd(G × L)|9 × |hS.Cfd(G)|:
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Similarly; the canonical map |hS.Pfd(G)|9 → |hS.Pfd(G)| admits a left homotopy
inverse; and there is a homotopy equivalence

|hS.Pfd(G)| � |hS.Pfd(G)|9 × |hS.Cfd(G)|:

Proof. Using the previous lemma, it is readily veriBed that the composition

|hS.Dfd(G × L)|9 × |hS.Cfd(G)|
→ |hS.Dfd(G × L)| × |hS.Cfd(G)| id⊕ 0−−−→|hS.Dfd(G × L)|

gives the homotopy equivalence. Choosing a homotopy inverse and then following
with the projection |hS.Dfd(G× L)|9 × |hS.Cfd(G)| → |hS.Dfd(G× L)|9 gives the left
homotopy inverse. The argument for the other map is the same.

7.4. The main result. Recall from 4.7 that there is a homotopy cartesian square

|hS.Pfd(G)| × K−1(Z[�0(G)]) −−−−−→ |hS.Dfd(G ×N+)|�
�

|hS.Dfd(G ×N−)| −−−−−−−−−→ |hS.Dfd(G × Z)|:
By taking homotopy Bbres of the maps 9, we obtain another homotopy cartesian

square

|hS.Pfd(G)|9 × K−1 −−−−−→ |hS.Dfd(G ×N+)|9�
�

|hS.Dfd(G ×N−)|9 −−−−−→ |hS.Dfd(G × Z)|9;

(7.1)

where K−1 is shorthand notation for K−1(Z[�0(G)]).
From Corollary 6.8 we have a homotopy equivalence  −1 ⊕  0 : |hS.Cfd(G)| ×
|hS.Cfd(G)| �→|hS.Pfd(G)|. As 9 equalizes  0 and  −1, there exists a map

( −1 �  0)9 : |hS.Cfd(G)| → |hS.Pfd(G)|9

whose composite with the map |hS.Pfd(G)|9 → |hS.Pfd(G)| is homotopic to  −1�  0,
where the latter denotes  −1 ⊕ � 0 (the notation is intended so as to recall the fact
that suspension represents a choice of homotopy inverse to the H -multiplication).

By the elementary properties of 2, we know that 2 ◦  −1 is null homotopic and
2 ◦  0 is equivalent to the identity. This implies that 2 ◦ ( −1 �  0)9 is homotopic to
the identity map. Consequently,

7.5. Lemma. The map

|hS.Cfd(G)|
( −1� 0)9

−−−−→|hS.Pfd(G)|9

is a homotopy equivalence.
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7.6. Lemma. The map

|hS.Pfd(G)|9 × K−1 → |hS.Dfd(G ×N−)|9

is null homotopic. Similarly; the map |hS.Pfd(G)|9 × K−1 → |hS.Dfd(G × N+)|9 is
also null homotopic.

Proof. It suRces by symmetry to prove the Brst part. Since the map is a morphism of
group-like H -spaces, it is suRcient to show that the restriction to its identity component
is null homotopic, i.e., it suRces to prove that the map

|hS.Pfd(G)|9 → |hS.Dfd(G ×N−)|9

is null homotopic.
Since ( −1�  0)9 : |hS.Cfd(G)| → |hS.Pfd(G)|9 is a homotopy equivalence (Lemma

7.5), it will be suRcient to show that the composite

|hS.Cfd(G)|
( −1� 0)9

−−−−→|hS.Pfd(G)|9 → |hS.Dfd(G ×N−)|9

is null homotopic.
By Lemma 7.2, the map |hS.Dfd(G×N−)|9 → |hS.Dfd(G×N−)| is a co-retraction

up to homotopy. Hence, we are further reduced to showing that composition with this
map is null homotopic. But this composite is homotopic to

|hS.Cfd(G)|
 −1� 0−−−→|hS.Pfd(G)| → |hS.Dfd(G ×N−)|;

by the way ( −1�  0)9 was deBned. Since the map |hS.Dfd(G×N−)| → |hS.Cfd(G×
N−)| is a homotopy equivalence (by Lemma 4.5), we are even further reduced to
showing that

|hS.Cfd(G)|
 −1� 0−−−→|hS.Pfd(G)| → |hS.Cfd(G ×N−)|

is null homotopic, where the second of these maps is induced by the forgetful functor.
Let K be an object of Cfd(G). Then  0(K) is given by

K ⊗N−
⊂→K ⊗ Z ⊃←K ⊗N+:

Similarly,  −1(K) is given by

K ⊗N−
t−1

→ K ⊗ Z ⊃←K ⊗N+:

It follows from the deBnitions that the N−-components of  0(K) and  −1(K) are
identical. This means that the forgetful functor Pfd(G)→ Cfd(G×N−) equalizes  0(K)
and  −1(K). We infer that the composite

|hS.Cfd(G)| (�;id)−−−→|hS.Cfd(G)| × |hS.Cfd(G)|
 −1� 0−−−→|hS.Pfd(G)| → |Cfd(G ×N−)|

is null homotopic, as was to be shown.

For the proof of the main result, we shall need one last technical lemma.
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7.7. Lemma. Suppose that f :X → Z and g :Y → Z are maps of connected; based
spaces which have the homotopy type of CW complexes. Let P be the homotopy
pullback of f and g and suppose that the natural map P → X × Y is null homotopic.
Then there exists a homotopy equivalence of based spaces

�Z � P × �X × �Y:

Proof. There is a homotopy Bbre sequence �X × �Y → �Z → P which is induced
by the null homotopic map P → X × Y (note that the second map in this sequence is
surjective on �0 because X and Y are connected).

Since the homotopy Bbre sequence is induced by a null homotopic map, it is homo-
topically trivial. A choice of trivialization gives the conclusion in the statement of the
lemma.

We are now ready to prove the main result. Let X be a connected, based space. Let
G. denote the Kan loop group of the total singular complex of X , and set G = |G.| .
Then Afd(X ) is given by �|hS.Cfd(G)| (cf. Remark 1.6, Lemma 1.7(3)).

7.8. “Fundamental Theorem”. There is a splitting;

Afd(X × S1) � Afd(X )×BAfd(X )× N−Afd(X )× N+Afd(X );

where N−Afd(X ) and N+Afd(X ) are naturally isomorphic and BAfd(X ) denotes a
canonical non-connective delooping of Afd(X ).

Proof. Recall that by Bbering the canonical diagram of the projective line (4:7) over
the augmentation map (of 7:1), we obtained the homotopy cartesian square (7.1)

|hS.Pfd(G)|9 × K−1 −−−−−→ |hS.Dfd(G ×N+)|9�
�

|hS.Dfd(G ×N−)|9 −−−−−→ |hS.Dfd(G × Z)|9
whose initial vertex is homotopy equivalent to |hS.Cfd(G)| × K−1, by Lemma 7.5.

Using Lemma 7.6, we may apply Lemma 7.7 to conclude that there is a homotopy
equivalence

�|hS.Dfd(G × Z)|9 � BAfd(X )× �|hS.Dfd(G ×N−)|9 × �|hS.Dfd(G ×N+)|9;
where

BAfd(X ) := |hS.Cfd(G)| × K−1

is a nonconnective one-fold delooping of Afd(X ).
We now deBne the nil-terms. Set N−Afd(X ) equal to �|hS.Dfd(G × N−)|9, and

similarly, set N+Afd(X ) equal to �|hS.Dfd(G ×N+)|9. With these notational changes,
we have

�|hS.Dfd(G × Z)|9 � BAfd(X )× N−Afd(X )× N+Afd(X ):
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Take the cartesian product of both sides with Afd(X ) = �|hS.Cfd(G)|. Using the
equivalence

Afd(X × S1) = �|hS.Cfd(G × Z)|
��|hS.Dfd(G × Z)|
��|hS.Cfd(G)| × �|hS.Dfd(G × Z)|9

(by Lemmas 7.3 and 4.5), we obtain the splitting

Afd(X × S1) � Afd(X )×BAfd(X )× N−Afd(X )× N+Afd(X ):
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