Adjoining Roots of Unity to E_{∞} Ring Spectra in Good Cases - A Remark.

R. Schwänzl, R.M. Vogt, F. Waldhausen

Dedicated to Michael Boardman on the occasion of his 60th birthday.

Throughout this paper we work in categories of ring-, module-, and algebra spectra as constructed by Elmendorf, Kriz, Mandell, and May [2], who exploit a crucial observation by Hopkins [4].

We start by specifying what we mean by "adjoining roots of unity" to an E_{∞} ring spectrum or, more precisely, to a commutative S-algebra E. For a ring R let H(R) denote its associated Eilenberg-MacLane ring spectrum given as appropriate cell spectrum. If E is connective there is a map of S-algebras $E \to H(\pi_0 E)$ realizing the identity on π_0 [2, IV.3.1]. Hence $H(\pi_0 E)$ is an E-algebra.

Definition 1: Let E be a connective, commutative S-algebra, and $\pi_0(E) \subset R$ an extension of the commutative ring $\pi_0(E)$ in the usual algebraic sense. We say a map $E \to F$ of commutative S-algebras lifts the extension $\pi_0(E) \subset R$ if $\pi_0(F) \cong R$ and there is a weak equivalence of $H(\pi_0 E)$ -algebras

$$F \wedge_E H(\pi_0 E) \to H(R)$$

Motivation: Let A be an S-algebra and B be an A-algebra. We can define topological Hochschild homology $THH^A(B)$ of B over A as the realization (in the category of A-module spectra) of the simplicial spectrum

$$[n] \mapsto B \wedge_A B \wedge_A \dots \wedge_A B \quad (n+1)$$
 factors

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P42.

with the well-known Hochschild structure maps. We have the following result from [6].

Theorem 1: Let K be a classical commutative ring and R a flat K-algebra. Assume there is a commutative S-algebra A and an A-algebra E such that

- (1) HK is a commutative algebra over A.
- (2) there is a weak equivalence of HK-algebras $E \wedge_A HK \to HR$. Then (modulo technical cofibrancy conditions)

$$THH_*^A(HR) \cong HH_*^K(R) \otimes_K^{\mathbb{L}} THH_*^A(HK),$$

as graded K-modules, where HH_*^K stands for the classical Hochschild homology over the ground ring K and $\otimes^{\mathbb{L}}$ for the total left derived of \otimes .

We want to investigate lifts of algebraic extensions by roots of unity. An investigation of more general "algebraic extensions" of algebra spectra is work in progress.

Proposition 2: In general there is no lift for extensions.

Proof: Take the sphere spectrum **S**. Suppose we could adjoin a fourth root of unity to **S**, then according to Theorem 1

$$THH_*^{\mathbf{S}}(\mathbb{Z}[i]) \cong HH_*^{\mathbb{Z}}(\mathbb{Z}[i]) \otimes_{\mathbb{Z}}^{\mathbb{L}} THH_*^{\mathbf{S}}(\mathbb{Z})$$

In particular, $THH_*^{\mathbf{S}}(\mathbb{Z})$ would be a direct summand of $THH_*^{\mathbf{S}}(\mathbb{Z}[i])$.

Calculations by Bökstedt and Lindenstrauss show that this is not the case: we use the following results from [1] and [5]

$$THH_k^{\mathbf{S}}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k = 0\\ \mathbb{Z}/i & \text{if } k = 2i - 1\\ 0 & \text{if } k \text{ is even} \end{cases}$$

$$THH_n^{\mathbf{S}}(\mathbb{Z}[i]) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & n = 0\\ 0 & n > 0 \text{ even}\\ \mathbb{Z}/2j \oplus \mathbb{Z}/4j & n = 2j - 1 \end{cases}$$

and the induced map $THH_n^{\mathbf{S}}(\mathbb{Z}) \to THH_n^{\mathbf{S}}(\mathbb{Z}[i])$ for n = 2j-1 comes from multiplication by 2 on $\mathbb{Z}/j \to \mathbb{Z}/2j$.

Our main result is

Theorem 3: Let E be a connective commutative S-algebra spectrum and p a prime which is invertible in $\pi_0(E)$. Suppose the cyclotomic polynomial

$$X^{q(p-1)} + X^{q(p-2)} + \ldots + X^q + 1$$

with $q = p^{n-1}$ is irreducible in $\pi_0(E)[X]$ and ζ is a p^n -th primitive root of unity. Then there is a commutative E-algebra spectrum $E(\zeta)$ lifting the extension $\pi_0(E) \subset \pi_0(E)(\zeta)$.

The proof uses the simple observation, well known in algebra, that factoring idempotents $\varepsilon \in \pi_0 E$ can be done by localizing.

Lemma 4: Let E be a connective commutative S-algebra and $\pi_0(E)[X^{-1}]$ the localization of the ring $\pi_0(E)$ where X is a subset of $\pi_0(E)$. Then there is a commutative cell E-algebra $E[X^{-1}]$ and a weak equivalence of $H(\pi_0 E)$ -algebras

$$E[X^{-1}] \wedge_E H(\pi_0 E) \to H((\pi_0 E)[X^{-1}]) = H(\pi_0(E[X^{-1}])).$$

Proof: By [2, VIII.4.2] there is a cell *E*-algebra $E[X^{-1}]$ whose unit $\lambda: E \to E[X^{-1}]$ induces the localization

$$\lambda_* : \pi_*(E) \to \pi_*(E)[X^{-1}].$$

Then $\lambda \wedge_E id : E \wedge_E H(\pi_0 E) \to E[X^{-1}] \wedge_E H(\pi_0 E)$ is the localization of $H(\pi_0 E)$ by [2, VIII.4.1], and the claim follows.

Proposition 5: Let E be a connective commutative S-algebra and $\varepsilon \in \pi_0 E$ an idempotent. Then there is a commutative E-algebra $E/\varepsilon E$ and a weak equivalence of $H(\pi_0 E)$ -algebras

$$(E/\varepsilon E) \wedge_E H(\pi_0 E) \to H(\pi_0 E/\varepsilon \pi_0 E) = H(\pi_0 (E/\varepsilon E))$$

Proof: Let $\eta = 1 - \varepsilon$ in $\pi_0 E$. Let $E \to E[\frac{1}{\eta}]$ be the localization. Since as rings

$$(\pi_0 E) \left[\frac{1}{\eta} \right] \cong \pi_0 E / \varepsilon \pi_0 E$$

we can take $E\left[\frac{1}{n}\right]$ for $E/\varepsilon E$.

Proof of Theorem 3: We have a commutative E-algebra group spectrum

$$E[\mathbb{Z}/p^n] = E \wedge (\mathbb{Z}/p^n)_+$$

by taking the small smash product with $(\mathbb{Z}/p^n)_+$. Let $t \in \mathbb{Z}/p^n$ be a generator and $x = t^q$, $q = p^{n-1}$. Then

$$\varepsilon = \frac{1}{p}(1 + x + \ldots + x^{p-1}) \in (\pi_0 E)[\mathbb{Z}/p^n] = \pi_0(E[\mathbb{Z}/p^n])$$

is an idempotent and $E(\zeta) = E[\mathbb{Z}/p^n]/\varepsilon(E[\mathbb{Z}/p^n])$ is the required spectrum.

Remark: The automorphism group G of \mathbb{Z}/p^n acts on $E[\mathbb{Z}/p^n]$ leaving the idempotent ε fixed. Hence, if we work in the category of G-spectra in the naive sense, we have the Galois group of the extension operating on $E(\zeta)$, and the map $E \to E(\zeta)$ is equivariant with the trivial action on E.

Corollary 6: Let $R \subset \mathbb{Q}$ be a subring and ζ a primitive p^n -th root of unity, p a prime which is invertible in R. Then

$$THH_*^{\mathbf{S}}(R(\zeta)) \cong HH_*^{\mathbb{Z}}(R(\zeta)) \otimes_{\mathbb{Z}}^{\mathbb{L}} THH_*^{\mathbf{S}}(\mathbb{Z})$$

This determines $THH_*^{\mathbf{S}}(R(\zeta))$ by [1] and the following result from [3]:

$$HH_k^R(R[X]/(f)) = \begin{cases} R[X]/(f) & \text{if } k = 0 \\ R[X]/(f, f') & \text{if } k \text{ odd} \\ Ann(f') \text{ in } R[X]/(f) & \text{if } k > 0 \text{ even} \end{cases}$$

for a monic polynomial $f \in R[X]$ over a commutative ring R.

Acknowledgement: It is our pleasure to acknowledge the support of the Deutsche Forschungsgemeinschaft during the preparation of this paper.

References

- [1] M. Bökstedt, The topological Hochschild homology of \mathbb{Z} and \mathbb{Z}/p , Preprint University of Bielefeld (1985).
- [2] A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, modules, and algebras in stable homotopy theory, Amer. Math. Soc. Surveys and Monographs 47 (1997).

- [3] J.A. Guccione, J.J. Guccione, M.J. Redondo, A. Solotar, O.E. Villamayor, Cyclic homology of algebras with one generator, K-Theory 5 (1991), 51-69.
- [4] M.J. Hopkins, Notes on E_{∞} ring spectra, Typed Notes (1993).
- [5] A. Lindenstrauss, The topological Hochschild homology of the Gaussian integers, Amer. J. Math. 118 (1996), 1011-1036.
- [6] R. Schwänzl, R.M. Vogt, and F. Waldhausen, A note on topological Hochschild homology of classical rings, to appear.