SIAM J. SCI. STAT. COMPUT. © 1981 Society for Industrial and Applied Mathematics
Vol. 2, No. 1, March 1981 0196-5204/81/0201-0009 $01.00/0

STABILITY AND MULTIPLICITY OF SOLUTIONS
TO DISCRETIZATIONS OF NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS*

WOLF-JURGEN BEYNt AnDp EUSEBIUS DOEDEL#%

Abstract. A large class of consistent and unconditionally stable discretizations of nonlinear boundary
value problems is defined. The number of solutions to the discretizations is compared to the number of
solutions of the continuous problem. We state conditions under which these numbers must agree for all
sufficiently small mesh sizes. Various examples, including bifurcation problems, illustrate our theoretical

results.
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1. Introduction. We consider a large class of discretizations for the nonlinear
boundary value problem

(1.1) Nu=u"+fx,u,u®, -, 4" =0, 0=x=1,
with boundary conditions
n-1 n—1
(1.1a) Blu= Y bu™®0)+ ¥ bru®1)=0, 1s!=n
k=0 k=0

The discrete approximations all satisfy the conditions for consistency and stability, even
on nonuniform meshes without the assumption of a bounded mesh ratio. These approx-
imations are defined in § 2, where we also summarize their convergence properties.

Then, in § 3, we consider the relation between the number of solutions to the
discrete problem and the number of solutions to the continuous problem. In general
these need not be the same, not even asymptotically, as the mesh size goes to zero. The
results of [2] indicate that these numbers of solutions can be guaranteed to agree only
under rather restrictive assumptions on the differential equation. Essentially, the result
in [2] is that extraneous solutions must disappear, as the mesh size approaches zero,
when the lower order part of the differential operator in (1.1) is a sublinear function of
its main arguments. We recover this result in § 3 with simple proofs adapted to the
special nature of the approximations considered in this paper.

A variety of examples are given in § 4. In addition to problems that do not satisfy
the sublinearity condition and that exhibit extraneous solutions, no matter how small
the mesh size, we also give examples of discretized bifurcation problems that have
extraneous solution branches. One of these examples shows that even if a bifurcation
problem does satisfy the restrictive assumption of sublinearity, it still may have
extraneous solution branches for large mesh sizes. Our theoretical results then explain
why these branches must disappear (or straighten out) as the mesh size decreases. A
final example illustrates the effect that discretization may have on the bifurcation
diagram associated with a Hopf bifurcation problem.

2. Definitions and basic convergence properties. The discretizations studied can
be defined as follows. Introduce a mesh {0 =x,<x;<:--<x; =1}, with h;=x;~x;_,
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h=(hy, hy, -+ -, h;) and |}h|=max h;. To each mesh point x; (0=j =J — n) associate a
polynomial p; € P, n-1. Here P, is the space of all polynomials of degree less than or
equal to d. Define p, ={p;}/25. Let Pi"™ = Py " [u1, 2, - * + » un ) denote the linear space
of all p, satisfying the boundary conditions (1.1a), in the sense that

(2.1) z boips’ (0)+ z bup“" (1)=0, 1=i/=n,

as well as matching conditions of the form
(2.2) Pi(Xjene) = Pie1(Xjr ) 1=k=n, 0=j=J-n-1,

where 1= u; S pr = - - = u, = n. If notallintegers u, are distinct, then we define this to
imply that derivatives also match, in the obvious manner. The discrete method now
consists of finding p, € P;’™ satisfying the collocation equations

(23) . NPI‘(Z,",‘):O, 1§i§m, Oéjé.f—n,

where for each j the z;; are distinct points in [x}, x;.,.. ]. The z;; are assumed to be locally
semiuniform, i.e., ming»;,|z;i— 2,5,/ = Clxjs,., —x;|, for some constant C which is
independent of j and A. This assumption is not strictly necessary (e.g., [6]), but it
simplifies the argument somewhat. Note that it does not impose any restrictions on the
mesh, if the z;; are chosen systematically with respect to [x;, x;.,, |-

Examples. The orthogonal collocation methods correspond to taking u, =1,
1 =i =n,and Gauss z;; [1],[4]. Spline collocation methods can also be viewed as having
wi=1,1Si=n,butwithm =2, z;; = x;, z;>=x;.1 [17]. For a survey of such projection
methods see [16]. The generalized finite difference methods of [5], [6], [13], [14], [15],
[18] are obtained for general m and u, =k, 1=k =n.

The essential characteristic of all methods included in the present framework is the
fact that all derivatives up to order n —1 of each pair of consecutive polynomial
components p; and p;.; match somewhere in [x;., x;+,.,]. But derivatives of order
greater than n — 1 are not required to match. f u, = 1 (1 =k = n), this is clear, since this
is the case where all derivatives up to order n — 1 of each p;, p;»1 match identically at x;. ;.
If not all u, are equal, this matching follows from repeated application of Rolle’s
theorem. :

Introduce the following norm: If w,, € P’™, then

i k)
lwal, = max ~ max = max jw;(x))

Also, for w e C?[0, 1] we use the notation

lwn — WIIP— max _ max max _{wi(x)—w®(x).
Osksp OSjsJ-n  xe€lxp Xjep,

The proof of the following lemma is very similar to that of [6, Lemma 2.1] and will be

omitted.

LEMMA 2.1. Let {h*}. -1 be a sequence of meshes with |h”|-> 0 as v - co. For each v
let wyr € PR, with |lwu|l. = C. Then there is a subsequence {wy-}, -1 and a function
w e C" [0, 1] such that [lwy> —wll,—, >0 as v - co,

Remark. For simplicity we do not notationally distinguish between sequence and

subsequence.
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Rewrite the collocation equations (2.3) in operator form as
Niupr =0,

where N, maps Pi™ into Ry™=R™ """ For T eRY™, n={ri:0=jsJ—n
1=i=m} let| r;,]],,,-max,, |r;i]. (This is the usual max norm on R"‘”ﬁ"“) )Let L,[wh]
be the Fréchet derivative of Nj, at wi € Pr'™. Thus L,[ws] maps P linearly into
RR™ as follows: Ly[wi]qr = rp, where

n—1
ris =q§-”’(zi,f)+k§0 Foe(Zi wilzi), -+ -, Wit (2,005 (21.),
1=i=m, 0=sj=J-n
Here the arguments of f are indicated as f=f(x, yo, y1,* " *, ¥»-1). The induced
operator norm is given by

ILnlwall= | Pl‘lax Lr[wnlgn lleo.

Let up={y; (x)}Z i—0 € Py'™ interpolate a solution « of (1.1), (1.1a) at the mesh points and
at certain additional points ¢;; € [x;, x;.,, ] as follows:

Ui( X)) = W (Xj ), O0=k=n 0=j=J-n,

u,-(t,-‘,i)=u(t,-_.—), l=si=m-1, 0=j=J-n,
where repeated points, if any, denote Hermite interpolation. Also define

B (un) ={wn e PF™: lwr — unlln = €}.

We say that f(x, yo, 1, * * *, Yn—3) has Lipschitz continuous derivatives with respect to
Yo» V1s* * * » Yn—1 in a p-neighborhood of ve C" 1[0, 1] if
Ifyk(X, @0, * 5 0n 1) =~ fy (6 Bo, - 5 Bu1)| KL o Jhax i = Bil,

ma
OSké

for all {a;, B} with max; |a, —v”(x)| =p, max, |8 — v (x)|=p, and for all x {0, 1].
Here K; =K;[v] and p = p(v) are positive constants that do not depend on x.

LEMMA 2.2. Let [ have Lipschitz continuous partial derivatives with respect to
Yo, ¥1,* * * s Yu-1 in a p-neighborhood of u. Here uc C"* ™[0, 1] is an exact solution of
(1.1), (1.1a). Then for all sufficiently small {h| we have

ILalonl—Lilwall= nKillon — walla-1,
whenever
Un, Wa € B2 (un).

A solution u € C"[0, 1]of (1.1), (1.1a) is called an isolated solution if the linearized
problem

n—1
Liulo=0""+ ,,Zofn(x, uyu?, - u" P =0,

subject to the boundary conditions B 'v =0, 1 =1=n, admits only v{x) =0 as solution.
Below it will also be assumed that each f,,(x, yo,* * -, y»-1) is continuous in x, in a
p-neighborhood of u. By this is meant continuity in x for |y, —u(x)|=p, 0=/=
n—1, x €[0, 1]with p = p[u}independent of x. We can now state the following stability

result:
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THEOREM 2.3. Let f have Lipschitz continuous derivatives with respect to
Yo, Y1, * " » Yn-1 as in Lemma 2.2 and let each f, be continuous in x, all in a
p-neighborhood of an isolated solution ue C""™[0, 1] of (1.1), (1.1a). Then there are
positive constants 8, € and K such that

llvn — walln = KlINwws — NaWh o

for all vy, wi € B (uy) and for all meshes h with |h|e (0, §].

For a proof of the statement above, one can first appeal to the general theory in [9].
This simplifies the problem to that of finding a corresponding stability result for the
linearized problem. The linear case has been dealt with in [6], using a technique from
[11]. Actually the discretizations in this work are slightly more general than those in [6],
but this would be hardly noticeable in the proof.

A more direct approach is equally well possible and outlined below.

Sketch of proof. Suppose that the conclusion of the theorem does not hold. Then
there exists a sequence of meshes {h"}., and corresponding ¢ >0, K" >0, and
v, Wi € Biv(upv), with |h¥| >0, € » 0 and K” - o as v - %0, such that

Nwar = warlla > K*INp-vn> — Npowaolloo.
By the generalized mean value theorem
Nipvwr = Npwne = Ly [vns, Wi X one —wa),

where

1

Ly-[vns, wn]= j Ly-[ton + (1~ )wy-] dt.
0 .

Thus, if we let g = (Jon — warlla) "' (v — wi»), then |lea-|l. = 1 and |Lu+[vi, whrlen o<
(K*)™'. We may assume that ¢”=p/2 for all », so that p,-, wy» € B} (uy-), and
also that |k "] is sufficiently small for all », so that the estimate of Lemma 2.2 is valid.
Therefore :

NLn [znJentoo = | Lav{tn>Jen — Lu+[onr, wrvlen|lo +|Lav[vny wilen o
! 1

<I NLwe[tuns + (1 = e ]~ Liltonr + (1 = ) wpe|| dt + (K) 7!
0 . _

1 .
éJ' K ||lt(unr — vne) + (1= D — W a1 dH‘(Ky)_l
: 0

=nK;ie”"+(K*) '>0 asv->00.

Since llex+]l, =1 for all », it follows from Lemma 2.1 that there is a function
e(x)e C"7'[0, 1] and a subsequence {h*};- such that |le,~ —e|l,_; > 0 as » - c0. Using
the techniques of [6] it is then not difficult to show, that in fact e € C"{0, 1], e # 0 and
Llule =0. Also e(x) satisfies the homogeneous boundary conditions (1.1a). This
contradicts the assumption that u is an isolated solution. Thus the statement of the

theorem must be true, 0
Given the result of Theorem 2.3, it is easy to establish convergence. For this

purpose define the truncation error t, € R;™ by

Th = Nplip.
7 ,

Thus 74 has components 7;; = Nu;(z;,). In general, if u € C"*"[0, 1] then T, satisfies an
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estimate of the form
I7allo = Mu[udjh|™,
but the order can normally be improved by suitable choice of the collocation points [4],

- [5],[13], [15]. For example the order is at least m + 1 if for each j the z;; are chosen to
coincide with the roots of - o

d" n m—1
(2 e e 16510
dx"/ Lk=o ‘ k=1

Below we also need a bound on the error in interpolating an exact solution u of (1.1),
(1.1a) by us, € Pi’™ in the manner indicated before. For this we have

lun ~ ull, = Ma[ulih|™,

provided again that u e C"" ™[0, 1].
THEOREM 2.4. Assume that the conditions of Theorem 2.3 are satisfied. Then there

is a positive constant 8 such that Nyp, =0 has a unique solution
pn€ Py inBi(wn) andsuchthat’
lpn —ull. = (KM [ul+ My[uDlh|™, whenever |h|€ (0, 5].

Proof. The existence proof is identical to the corresponding part of the proof of
[9, Thm. 3.6]. The error estimate is obtained as follows:

lpx —ulla =l pa — tnlln +llun — ulln
§K”Nh£’h = Nuttn |l +M2[u]lh,m
= K||Nuttalln + M[u]ln|™
= (KM [u]+ MLuDih|™

3. Multiplicity of solutions. Theorem 2.4 in the preceding section guarantees that
every isolated solution of the continuous problem is approximated by a solution of the
discrete problem. Such a discrete solution is then itself necessarily isolated for all
sufficiently small |k|, because stability implies isolation. The proof of this fact is
essentially the same as the proof of [9, Thm. 2.5], where it is given for the continuous
problem. Not much can be said if the continuous problem has a solution that is not
isolated. For example, in such a case it is possible that the discretization has no solutions
that converge to the given nonisolated solution of the continuous problem. Most of
these difficulties can be avoided however by considering solution branches instead of
single solutions, and following these with a continuation procedure.

Below we state a global convergence theorem. It does not exclude the possibility of
existence of extraneous solutions to the discrete problem, not even for small |A].
However, under some mild continuity assumptions, the theorem shows that if such
extraneous solutions exist, they must tend to infinity in the appropriate norm as ||~ 0.
The proof of this fact bears resemblance to that of Thm. 2.3, although it deals directly
with the nonlinear equation.

THEOREM 3.1. Assume that the problem (1.1), (1.1a), has exactly N solutions
u(x)e C"*™[0, 1], N <, each of which is isolated. Let f have Lipschitz continuous
derivatives f,,, 0=k=n~—1, and let each f, be continuous in x; all in a p[u'"]-
neighborhood of each u'". In addition assume that f is continuous in all its variables
in a p-neighborhood of every veC" '[0,1]; p[v]>0. Then for each R>
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max;<=n|ju ”H,,, there exists a 8r > 0 such that the discrete problem Nypy =0 has exactly
N solutions p;, Ve Pi™ in BR(0), for all h with |h|€ (0, 8g].

Proof. The assumptions above include those of Theorem 2.4. Hence each u is
approximated by a solution p;. of Ni.p,. = 0. For all sufficiently small |4} these p%! must
be distinct, due to the isolated nature of each of the u!'. Also, since R > max;, ||u[ ||, the
pﬁ'] must eventually (for small |A]) lie in B%(0). Assume now that we can find a

uence of meshes {h*},-, with |h"|>0 as v >, and for each » solutions p,- #
' ,1=1/=N, of Ny-pu =0, with [[pa]l.=R. Then by Lemma 2.1 there is a
subsequence {pn~ }2.1 and a function p € C"'[0, 1], such that lprr — pll-1=>0as y->co.

Let s €[0, 1], and for each » let j =, be such that s € [x;, x,.,.. ]. For each fixed j let
the polynomials w, ;... denote the Lagrange interpolating coefficients for the points
zi=z,,i=1,2, -, m. Since the collocation points are assumed to be locally semi-
uniform throughout this work, we have

max =max |lg.i(x)) = K,

for some constant K, that does not depend on k. Write w*=(w, w’, - - w®™),

Consider now the following estimate:

lpf"’<s)+f(s, * (shl
I 3 B " (20)+6.p * o))

}: G p * )~z B (z.-))}]

=mK, max {|f(s,p * ()~ f(zs p * ()
+ |f(Zi, P * () —f(z: p; * (5))| + If(zi, Pi * (5))—f(z Pi * (Zi))!}-

The added continuity assumptions can now be used to show that the right-hand side of
this final inequality tends to zero uniformly in s as v —»> 0. From integration, letting
v » o and differentiation it follows that p e C"[0, 1], Np =0 and B'p = 0. Again the
details proceed much like those given in the proof of {6, Thm. 2.2]. Thus p;- tends to
another solution p of the continuous problem. This new solution p must be distinct from
the other N solutions, for otherwise the stability result of Thm. 2.3 is violated for one of
the ©!"’. Hence we have derived a contradiction. 0

Under rather restrictive assumptions on the form of the differential operator it is
sometimes possible to derive a priori bounds of the form || Prll- = K for all solutions of
Ni.p = 0 and for all meshes h with || sufficiently small. It then follows from Theorem -
3.1 that extraneous solutions must disappear as |h|- 0. This is the case, for example, in
the following class of problems:

THEOREM 3.2. Assume that the conditions of Theorem 3.1 hold. Also assume that
for all h with |h| sufficiently small (say {h|€ (0, 8], § >0) we have

(i) Nu =Ly + Gy, Ly, linear, invertible , |L,'||= K,, and

(ii) For each £ >0 there exists a positive number K (e) such that

(3.1 NGnpallo = K (e) + €l pall. for all solutions p, of Nups = 0.

Here K, K (¢) and ¢ are independent of h. Then there is a 8,>0 suoh that the discrete
problem Nyp, = 0 has exactly N solutions for all meshes h with |h|€ (0, 8,].
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Proof. We need only establish that all solutions of N, p, = 0 are uniformly boun-
ded. But this is trivial since

lonlle ZILw" Gupall. =K. Ghpallo = K,[K () + €] palln ).
Thus if we choose ¢ <1/K; then
K.K(¢)
1-Ke'

COROLLARY 3.3. In the problem (1.1), (1.1a) let Lu Eu("’, and assume that the
linear homogeneous problem Lu =0, subject to (1.1a), admits the trivial solution only.

_Also assume that
If(x’ Yo, Y1, " Yn—1)l'§ Cl +C2 {0;{}2:{‘1 'ykl}a’ X E[O’ 1]a Yk € Rv

lpull. <

with 0= a < 1. Further, let the conditions of Theorem 3.1 be met. Then the discretization
Ni.pn = 0 cannot have extraneous solutions on meshes h with |h| sufficiently small.

" Proof. We need only verify that a bound of the form (3.1) holds. For this purpose
we shall make use of the following elementary inequality. For each given £ >0 there
exists a constant M (¢) such that

r*=M(@E)+ér forall r=0.

Now let € >0 be given. Then

”Gh-?h”w = mffx If(zpi P (233D
=Ci+C; max {(,gf,"‘lg,{‘_, i (.0l
=G+ CZ"P}:":LI

=Ci+ Cillpalln = K (e) + £l palls W““K(E)EC‘*QM(ZE:)‘ .
] 2

Note that Corollary 3.3 applies in particular if a = 0; i.e., extraneous solutions must
disappear as |h|-> 0 when the lower order part of the operator is bounded.

4. Examples. One can easily construct examples of discretizations that have
extraneous solutions on a given mesh. It is somewhat more difficult to find a problem
where the discretization has extraneous solutions on each of an infinite sequence of
meshes with mesh size tending to zero. For stable discretizations of the type treated in
[2]and in this work, such examples cannot be found for operators with a sublinear lower
order part. The following example is given in [7]. The boundary value problem

u"+u'lu’|=0, xe(0,1],
u(@)=u()=1
has u(x)=1 as its unique solution, while the discretization
(41— 205+ ;1) h* + (u; — w; 1) /R l(u; — u;1) /A1 = 0, l=j=J-1,

4.1)

ug=u;=1

has in addition to u; =1 (0= =J) also the zig-zag solution u; = (—1)’ for all uniform
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meshes with J even. Of course this difference approximation is only first order accurate.
But this is not essential, as the following example indicates.
Example 4.1. To approximately solve

u'+2ulu'T =0, x €[0, 1],

4.2)
uO)y=u(l)=1, -

consider the second order finite difference scheme

3 (Uje1 =20+ u; 1)/ h* + 2u;[ (U541 — u;-1) /2R =0, 1sj=J-1,

. Up= Uy = 1.
The discretization (4.3) has in addition to the constant solution u; =1 (0=j=/J) also
the solution

._{ 1 ifj=00r3, mod4,-
“T1-1 ifj=10r2, mod4,

provided J =3 mod 4. This can be verified directly by substitution. However, the
continuous problem (4.2) has u(x)=1 as its unique solution. For if v(x) is another
solution of (4.1) with v(s) # 1 for some s €[0, 1], then there exists a t € (0, 1) such that
v(t)#1, v'(¢)=0. Hence v(x), as well as the constant function u(x) v(t), x€[0, 1],
solve the initial value problem

u"+2ulu'P =0, “xelo, 1],
u(t)=v(t), u'(t)=0.

Therefore v(x)=uv(¢) for all x [0, 1], which contradicts the fact that v(1)=1. (A
similar argument can be used for (4.1).) Thus the solution u(x)=1 is unique. It is also
clearly isolated.

For nonlinear problems containing a parameter, it can be instructive to compare
the bifurcation diagram of a discretization to that of the continuous problem as is done,
e.g., in [3]. As a simple numerical example consider the following:

Example 4.2. Discretize the nonlinear boundary value problem

W+ A sin(u+ut+u)=0, xe€[0,1)],
u(@®=u(l)=0

by the 4th order accurate, 3 point Numerov formula, with uniform mesh and mesh size
h = 4. Using the continuation and branch switching techniques of [10], one obtains the
bxfurcahon diagram of Fig. 4.1. In the diagram the vertical axis represents a discrete
L,-norm of the approximate solution. Observe that u(x)=0 is a solution for all A.
Bifurcation points have been circled. The branches originating from the secondary
bifurcation points are actually double branches that coincide in the diagram due to some
symmetry. If the mesh size is decreased to h =75, then the diagram changes to that of
Fig. 4.2. This of course can be expected to be more like the actual diagram of the
continuous problem. Extraneous solutions, which are abundant in Fig. 4.1, must
disappear when the mesh size goes to zero, provided A is such that the continuous
problem has only isolated solutions. This follows from the boundedness of the lower
order part of the continuous operator. However, we have observed that within the limits
of the given bifurcation diagram, extraneous solutions do not disappear untll the
number of meshintervals J is taken greater than 50.
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1.2
Je8
1
Hup ity
0.
0.
17.
¥
Huhl |2
g ]

FiG. 4.1a. Bifurcation diagram of Ihe discretization in Example 4.2 (J = 8).

[Tupdi,

7.5 - b 17.

F1G. 4.1b. Local enlargement of the bifurcation diagram in Fig. 4.1a. '
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J=70

{i“hllz

FIG. 4.2. Bifurcation diagram of the discretization in Example 4.2 (J =70).

Next we give an analytic example where the bifurcation diagram of a discretization
has an extraneous bifurcation point and associated extraneous solutions, no matter how

small the mesh size.
Example 4.3. The solutions of the one parameter nonlinear problem

v"+(1+[0GPIuv =0, . xe[0,1],
v(0)=0v(1)=0 |

are homeomorphically related to those of the linear problem

4.4)

u"+Au =0, x [0, 1],

4.5
4-3) ul@=u{l)=0

through the transformation A =u(1+[v(3)]?), u=v. The same is true for their
respective discretizations

(Ui+1 "'2Ui +'Uj_1)/h2+(1 + v(zl/g);)uv,- e O, 1 §]§J— 1,

(4.6)
vo=0, 4v;.1~30,=0, Jeven,
and
&7 (u,-+1—2u,+u,-_1)/hl2+/tu,-:0, Il=sj=7-1,

uo=0, 4”1_]"—31,{_, =O’

both of which are consistent and stable for isolated solutions. We claim that (4.7) has an
eigenvalue A that is asymptotically (as 4 - 0) given by Az =—1/12k°. Thus, unlike the
eigenvalues A, = (k) of (4.5), which are all positive, the discrete problem (4.7) admits
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a negative eigenvalue. To prove this, we note that an eigenvalue of (4.7) has the form
U =ci1zi +cazh,

where z;(A) and z,(A) are the roots of the characteristic equation

(4.8) 2P 2z+1+ ARz =0,

Now if z, is a root of (4.8) then so is z1'. Moreover, the boundary condition 1o=0
implies that ¢; = —c,=c. Thus .
w=clz'-z7"].

The second boundary condition yields the equatioh
4.9) : 4[z7 ' -z P -3[T -z ]=0.

Notice that for large J (4.9) has a root z =2z(A) with |z|> 1. This root asymptotically
satisfies 427713z’ =0; i.e., z =% The corresponding eigenvalue Ag = -1/12h% is
obtained from (4.8), and the associated eigenvector is u; = c[(%)’ —(3)']. Note that u #0

ifc#0andj#0.
The corresponding solution branch of the nonlinear discrete problem (4.6) is

therefore asymptotically (as i - 0) given by
(n(c), v(c)), —©<c<oo,

where

() =17t
T -0

and

vi(c) =c[GY -@)].

(For related techniques see [8, 20].) The extraneous solution branch is shown in Fig. 4.3
for the case J =16. This solution branch exists for all meshes with even J and is
extraneous, since the continuous problem (4.4) has no nonzero solutions for negative
w. In particular, for any # <0 one can choose h sufficiently small so that Az <u. For
such u the discretization (4.6) evidently has three solutions, unlike the continuous
problem (4.4).

Finally we give a numerical example, where the objective is to determine time
periodic solutions to an autonomous system containing a parameter. It is generally
necessary to reformulate the problem as a boundary value problem on a fixed interval,
say [0, 27]. This allows the numerical computation to proceed past turning points and
makes the computation of asymptotically unstable solutions possible. A general code
for the bifurcation analysis of autonomous systems has been developed by the second
author and will be described more completely in a forthcoming paper.

Example 4.4. The dynamic behavior of a single first order chemical reaction in a
continuously stirred tank reactor can be modeled by the ordinary differential equation
ui=—ui+BDa(l-us)e" —Bu,,

(4.10)
us =—us+Da(l—uy)e™,

where B, g and Da are dimensionless parameters.



118 WOLF-JURGEN BEYN AND EUSEBIUS DOEDEL

extraneous
branch

FiG. 4.3. Graph of the extraneous branch in Example 4.3.

For previous computations with initial value techniques, see [19]. Using vector
notation and scaling the period to the interval [0, 27 ], we can write (4.10) as

4.11) W(t)=Lfu@),r), A=Da,
2mr

(4.12) u(0)=u(2m).

Further, we use the specific values 8 =3, B = 14. To remove the nonuniqueness, due
to the fact that a periodic solution can be freely translated in time, we impose the

orthogonality condition
(4.13) ((0) = u6(0)) F(uo(0), Ao) = 0.

Here (uo, Ao, po) denotes a given solution, while (4, A, p) is the solution to be deter-
‘mined from (4.11), (4.12), (4.13) and

(4.14) lu = udl® + (A —A0)* + (p — po)” = As>.

This procedure is repeated stepwise along a branch of periodic solutions. We discretize
(4.11) by the method of collocation at Gauss points, using the piecewise polynomial
space whose elements are globally continuous and quadratic polynomials in each mesh
interval. With an adaptive mesh, 71 mesh points and two collocation points per mesh
interval, the corresponding bifurcation diagram in [19] is recovered. (See Fig. 4.4.) The
primary solution branch is a branch of steady states, while the secondary branch consists
of periodic solutions. Along a significant portion of the periodic branch the solution
changes very rapidly in a very small interval. Moreover, the location of this smallinterval
does not remain fixed along the branch. The adaptive mesh is for this reason a necessity.
For example, 71 uniformly spaced mesh points do not reproduce Fig. 4.4. A typical
result is given in Fig. 4.5. Here an insufficient number of 10 uniformly distributed
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4.0
flutl,
8 = 3.0
B = 14.0
NTST = 70
adaptive mesh
0. *
0. - Da D.4
F1G. 4.4. Bifurcation diagram for {4.10).
4.0
g = 3.0
: B = 14.0
Huall,
R HTST = 10
uniform mesh
0. + Da 0.4
0.

FIG. 4.5. Effect of an inaccurate discretization on the bifurcation diagram of (4.10).
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mesh points is used. Note the abundance of extraneous solutions. The ability of the
method to compute past turning points is especially well illustrated, although the
resulting diagram may have little physical significance.

Remark. Although the side condition (4.13) is theoretically sound, i.e., local
existence theorems can be based upon it, for practical numerical computation the
integrated form

27
[ =y a0, Ao} i =0

is preferable. The modified condition minimizes motion of regions of rapid change in u
when progressing along a branch of periodic solutions. This property significantly aids
the efficiency of automatic mesh selection. Details will be presented elsewhere.
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