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Abstract-Many mathematical and engineering algorithms are dealing with path finding and 
path planning problems which arise for a mobile navigating robot or the endeffector of a manipulator. 
Natural mobile systems, like animals navigating in their everyday surroundings, are faced with the 
same problems and normally generate adequate solutions. For this reason we performed psychometric 
experiments with human probands [1,2] to investigate both decision-making and path generation 
in the case of full information. In this paper we present several methods which can be used to 
generate path forms roughly comparable to those produced by the human probands. The computer 
simulations proposed here concentrate on algorithms which use local rules and work upon a parallel, 
cell-based architecture. On the basis of the ‘dynamic-system metaphor,’ we define a framework for the 
investigation of several algorithms. A diffusion-algorithm proposed in [3,4] is modified and combined 
with a so-called relative potential field. This diffusion in potential fields (DIP) provides a method to 
influence the smoothness of the forms of the path during the development of the gradient field. Once 
a path has been found, the relative potentials can also help to gradually modulate the first found 
path with a time-saving mechanism called Tube-Diffusion. In addition to the DIP-algorithm, we 
investigated two wave-spreading algorithms which generate cost-optimal paths. These are a further 
development of the path planning approach used in [5] and a new approach which we called Inclusive 
Or-algorithm (IOR). 

Keywords-Path planning, Diffusion, Potential field, Local rules, Parallel architecture. 

1. INTRODUCTION 

Research in path planning and path finding is encountered in such different disciplines as oper- 

ations research, robotics, artificial intelligence, psychology, and biology, and is concerned with 

finding the least-cost path between two states of a system and applied to abstract problems like 

finding the best way in financial management of a company, as well as to more concrete topo- 

graphic navigation problems. For a navigating autonomous agent, like a robot in a warehouse or 

an animal in its everyday surroundings, the knowledge of how to plan trajectories on the basis of 
information provided by the environment is of great importance for fitness and survival. In this 

paper we confine our interest to path planning with complete information. 
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Mathematical and engineering theories use mainly analytical top-down approaches to solve this 
problem, for example, the configuration space method [6], a kind of edge-following algorithm, and 

the free-space approaches, like generalized cones [7], Voronoi-diagrams [8] or C-cells [9] which 

belong to the convex decomposition methods. All of these algorithms generate a network of 
decision points with graph search algorithms working upon it, which possibly presents a bottleneck 

in the performance of the path planning algorithm as a whole. 

An alternative approach makes use of the properties of natural dynamic systems. It comprises 

algorithms using an idea which may be called the ‘dynamic-system metaphor.’ The dynamic- 

system approach is explicitly used, for example, in the reaction-diffusion model of Steels [3,4], 

in the fluid-dynamics model described in [lo], in the retraction process in the neural network 

developed in [ll], and in the Hopfield network with fluid properties used in [12]. The use of 

potentials for obstacle avoidance, independently developed by Krogh [13] and Khatib [14], can 

also be classified as a kind of ‘dynamic-system approach’ since it involves the use of the metaphor 

of attractive and repulsive forces between electrostatic charges. 

This paper describes several path planning algorithms using the dynamic-system metaphor. 

The simulations show that the generation of path forms similar to those generated by the human 
probands is possible on the basis of local rules. We focus on the question of how to influence and 

manipulate gradually the form of the path. We also investigate the decision-making abilities of 

the algorithms in the case when they choose one out of several path alternatives. 

2. BASIC EXPERIMENTAL APPROACH 

The experimental paradigm and the results of the psychometric experiments are described in 

detail in [1,2] and are now sketched briefly. On a computer monitor the probands are confronted 

with 2-dimensional obstacle situations which have to be avoided while planning and executing 

a path from a defined start point to a defined goal point. The probands always have to judge 

two possible path alternatives, taking into account one of the three pre-specified decision criteria, 

namely, length, duration of movement, and comfort of the path. The difficulty of the imagined 

paths is characterized by a psychometric decision value, the point of subjective equality, which 

can be regarded as a turnover point in the decision-making process. In one series of experiments 

only the ‘mental trajectories’ are considered, while in another experiment real trajectories are 

registered on the monitor. Figure 1 shows schematically three examples using the same start and 

goal points, but three different criteria. As can be seen, the curvature depends on the criterion 

chosen. On the basis of earlier proposals, we developed several algorithms which can be used to 

solve the path finding problem. These algorithms will be presented here. They provide tools for 

later simulations of the results of our psychophysical experiments. 

3. MODELING FRAMEWORK 

This section outlines the general framework which we developed for path planning based on the 

dynamic-system metaphor, and which is used for the different computer simulations described 

in this paper. The dynamic-system approach is a bottom-up and synthetic approach where the 

path planning problem is mapped into the parameter configuration of a dynamic system. The 

dynamic properties and the system’s inherent capacities of self-organization should finally yield 
a numerical solution to the problem which, in the case of path planning, is a path connecting 

initial and final positions. 
All computations work on a 2-dimensional map, the cell-matrix M, which consists of i * j 

cells mij. This map can be regarded as a specialized world model. Each cell is connected to all 
its orthogonal and diagonal direct neighbors, represented by the set Nij, forming a chessboard 

connectivity. The state of each cell rnij at iteration cycle t is characterized by an activation value 
a(mij, t) and a marker, which indicates whether the cell is a border cell, an obstacle cell, a start 

cell mstart , a goal cell mgoal, or a ‘neutral’ cell, with no special meaning attached to it. Each 
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Figure 1. Typical obstacle situation as used in the psychometric experiments. Three 
examples of paths chosen by a human subject under three different prescribed decision 
criteria: select a short path (dashed line), a fast path (dotted line), or a comfortable 
path (continuous line). For all cases both path alternatives are shown. 

cell only knows about its own state and the states of its direct neighbors. The grid is updated 
iteratively until a pre-specified stop criterion is met. Consistent with the theory of cell automata 

(e.g., [151), the updating process follows local rules, where the new activation of a cell rnij is 
essentially a function of the old activations of rnij and its direct neighbors: 

4mij,t + 1) = f(a(mij,t),a(mkl,t)) (1) 

with rnkl belonging to the set of neighboring cells Nij. Using an appropriate function f, this up 
date rule causes a spreading-activation-like behavior which emerges from the system’s dynamics. 

Obstacles can be implemented by the definition of forbidden areas [6] or by the use of artificial 
repulsive potentials, mentioned above. We create forbidden areas to mark those cells which are 
not permitted to lie on a path. The initial activations of these cells are kept constant, but they 
still belong to the neighborhood Nij of all neighboring cells rnij. 

The activation values of the cells can be used for path finding in two different ways, depending 
on the definition of the update function f. If the resulting activation distribution produced by the 
algorithm represents a gradient field, a local path finding algorithm can be applied to the grid, 
following the gradient in the direction of steepest ascent. On the other hand, following the ideas 
described in [5], an ‘optimal area’ can be computed. This is a set of cells which contains all cells 
lying on an optimal path between start and goal. It can be filtered out quickly from the grid by a 
thresholding process. Further developments of this wave-spreading approach will be introduced 
in this paper. In principle all algorithms can be computed in parallel. Our calculations are 
simulated by conventional sequential programming methods. The simulation program is written 
in ‘C’ and runs on a PC and a SUN Workstation. 

4. DIFFUSION IN POTENTIAL FIELDS (DIP) 

Diffusion is a mechanism well known from the natural sciences. In physics and chemistry, it is 
important for the establishment and maintenance of concentration equilibriums. In biology, the 
dynamic properties of diffusion in nonequilibrium states are more interesting. The principle of 
diffusion is used by organisms for information transfer, for example, in the context of finding food 
or a partner. In ontogeny, diffusion mechanisms are used to explain pattern formation processes 
(see [IS]). Steels [3,4] h as shown the applicability of diffusion for path finding problems, not 
investigating in detail the form of the generated paths. This approach was also proposed in [17,18] 
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for the purpose of path planning. Issues of mathematical treatment and technical implementation 
of a diffusion gradient are discussed there in detail. In [17,18] the authors already thought about 

possibilities of modifying the form of the path. As a solution to the problem, they propose a 

strategy of modifying the steepest ascent strategy searching for a path in a second step after the 

generation of the diffusion gradient. In contrast to this approach, we will show in this chapter 

how to influence explicitly the development of the form of the diffusion gradient, so that the 

steepest ascent strategy can be kept constant. This method allows us to modulate gradually 
the form of the generated paths. We also followed the proposal of Steels [3,4]. But because the 

authors mentioned have not discussed some of the properties of the algorithms in detail, these 

properties will be illustrated in the form of some examples. This simplifies the discussion of our 

extended version of the algorithm presented below. 

The grid is initialized as follows. The goal point is kept constant and set to a high positive 

value d,,, and all other cells mij are set to 0. The obstacle and the border cells are specified as 
the forbidden cells and therefore maintain their zero activation throughout the computation. All 

other cells change their activations according to the update rule: 

a(mij,t+l) = ~*a(m,,,t)+C(a(mkl,t)) 
kl 

(2) 

with mkl belonging to the neighborhood Nij consisting of 8 units. Equation (2) calculates for 

each cell the arithmetic mean value of all activations in the direct neighborhood of mij, including 

its own activation. In this way a diffusion gradient is iteratively built up (see Figure 2a). 
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Figure 2. Results of diffusion. (a) Spreading diffusion front depicting the activation 
distribution at three different moments (clipped logarithmic transformation of the 
ordinate). To: the goal point is initialized with a high positive value, all other cells 
are set to zero. The start point is marked with an arrow, and the obstacle cells with 
bold lines. Tro, Tr4, and T23: situation after 10, 14, and 23 iteration cycles, showing 
the diffusion front shifting around the obstacles. T23: the diffusion front arrives at 
the start point. (b) Vector diagram calculated from the diffusion gradient at T23, 
each vector pointing in the direction of the steepest ascent. Points indicate that no 
neighbor with a larger activation value exists. (c) Generated path when following 
the arrows shown in (b), cell length = 24. 

The iteration continues until either the diffusion front has arrived at the start point mstart, 

using the arrival criterion a(m,ta,t, t) > 0, or it stops when the actual iteration number exceeds a 
pre-specified maximum value so that it is assumed that no path can be found. After the diffusion 
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process has finished, a path finding procedure using steepest-ascent search is applied to the grid. 

As an illustration, Figure 2b shows the steepest ascent for each cell of the obstacle situation used 

in Figure 2a. Following these vectors results in the path which is shown in Figure 2c (filled squares 

represent obstacles, circles belong to cells lying on the path connecting start 5’ and goal G). If 

alternative paths exist, all possible paths will be calculated subsequently. 

If the diffusion front arrives at the start point, and a path connecting start and goal can be 

found, then the number of cells constituting that path, the ‘cell length,’ is equivalent to the 

number of iteration cycles. Figure 3a demonstrates that the cell length does not necessarily 

correspond to the geometrical minimum. 
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Figure 3. Path generation with the diffusion approach. (a) Using the arrival criterion 
(12 iteration cycles). (b) Same obstacle situation as in (a), but with start and goal 
exchanged (11 iteration cycles). (c) Same obstacle situation as in (a), but with the 
iteration continued for 88 further time steps. (d) same situation as in (b), but with 
the iteration continued for 89 further time steps. 

Because of the zero-valued activations of the obstacle cells, the diffusion front emerging from the 

goal exhibits an inherent capacity of keeping some distance from obstacles and thereby smoothing 

the path form. This ‘distance-effect’ leads to smaller activations of cells close to the obstacles, 

depending on the number of obstacle cells in the direct neighborhood. The paths of Figures 2c 

and 3a show this effect, where the cells adjacent to the obstacles are influenced more strongly 

than those near a corner of the obstacle. 

Figure 3a also exemplifies another effect of the diffusion-algorithm. When several path alter- 

natives are possible, the diffusion front splits up in front of the obstacles and runs into different 

directions. The superimposition of those ‘branches’ influences the form of the resulting path. If 

no such superimposition had occurred, the part of the path behind the obstacle would have had 

a different form, as will be shown below (Figure 5). Another property of the diffusion-algorithm 

is its asymmetry. This means that, in general, different path forms are obtained when only start 

and goal points are exchanged; compare Figures 3a and 3b. (Figure 3c shows that the influence 

of the distance-effect can increase when the iteration is performed beyond the arrival criterion. 

The form of the path is generally smoother and also the global form of the path may change; 

compare Figure 3d and Figure 3b.) 

The diffusion-algorithm shows a specific decision behavior when there exist several, i.e., usually 

two, alternative paths. Two computer simulations very similar to those conducted with humans 

are shown in Figures 4a and b. Using the arrival criterion, one of the two possible paths is chosen 
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(Figure 4a). Changing the form of the obstacle by one unit, as marked by an open square, leads 

to a change in the path chosen (Figure 4b). 
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Figure 4. Simulation of the decision-making with the diffusion approach. (a) Using 
the arrival criterion, one (the upper) of two possible paths is chosen. (b) When the 
form of the obstacle is changed by one unit (see open square), the lower path is 
chosen. (c),(d) The same situation as in (a),(b) but using diffusion in potential fields 
(potential width 1). 

The pure diffusion algorithm seems, however, inappropriate for describing some qualitative 

effects found in the human experiments, such as, for example, more rounded path forms or 

other effects probably depending on the distance of the path from the obstacles. These results 

seem to require a more easily adjustable influence than the inherent distance effect. In order to 

achieve this, we integrated the idea of potential fields [13,14] in the diffusion approach as follows. 

Before diffusion starts, for each cell mij a potential value pij is calculated. The amount of the 

potential value depends on the number and distance of obstacle cells in the neighborhood which 

is defined through a potential-function. The use of Gauss-like functions, where the influence of 

the obstacle cells decreases with increasing distance from these cells, has proved to be reasonable. 

The potential function is defined up to a certain distance from the obstacle cell which is the 

origin of the potentials, called the potential width. The potential values pij are calculated locally 

for each cell mij by additively superimposing all potential influences of obstacle cells which lie 
within a circle around mij with a radius equal to the potential width. Two methods have been 

investigated, namely, ‘absolute’ and ‘relative’ potentials. 

When absolute potentials are used, negative potentials around each obstacle cell are computed, 

with the absolute maximum value pmax of the potential-function belonging to the obstacle cell 

itself. The absolute value of p,,, should be larger than d,,, at the goal, in order to prevent 

the positive diffusion front from overrunning the negative potentials. Each cell mij obtains a 

potential value poij. The update rule for the diffusion process changes to 

4m,j, t + 1) = P&j + 5 * a(mij, t) + C(u(mkl,t)) 
kl 
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with mkr belonging to the neighborhood Nij. Subsequent to each iteration cycle, a rectifying pro- 
cedure is used to cut off the negative activations. The absolute potential metaphorically stands 
for a sink into which a constant amount of the diffusion front falls and vanishes. The diffusion in 
the “landscape” produced by the potential fields changes the vector field in a way which qualita- 

tively leads to path forms which generally correspond to those found in the human experiments. 

However, the influence of the potentials depends on the amount of the arriving diffusion front. 

Therefore, absolute potentials have the disadvantage that their effects are great near the start, 

but much smaller near the goal point. As this does not correspond to our experimental results 
with human probands, an alternative method is investigated which uses relative potentials. They 
are defined as follows. The potential surfaces are obtained in a similar way to that described 
above. However, p,,, is set to 1 and all potential influences lie in the interval between 0 and 1. 
The potential values pij computed for each cell are obtained by multiplication of all potential 
influences of the obstacle cells lying within a distance equal to the potential width. Consequently, 
the potential values of the obstacle and the border cells maintain 1, but values in other cells go 
to 0 with increasing distance from the obstacles. A factor of (1 - prij) = 0 indicates that the 
cell rnij should not belong to the path, while a factor of (1 - prij) = 1 causes an undisturbed 
development of the diffusion front. Therefore, at each iteration cycle the diffusion activations are 
multiplied with the factor (1 - prij): 

U(mij,t + 1) = (1 -prij) * f * a (mij, t) + 1 (a(mkl, t)) 

kl J 

with mkl belonging to Nij. When using relative potentials, the number of iteration cycles observed 
until arrival criterion is the same as without potentials, although the resulting path is longer in 
the first case. The use of the absolute potential approach generally would have led to a higher 
number of iterations. 

Figures 4c,d show the same obstacle situation as Figures 4a,b, but now relative potentials are 
used to calculate the gradient. Both paths in Figures 4c,d maintain a larger distance from the 
obstacles compared to those of Figures 4a,b, thereby producing a longer path. This algorithm 
also simulates the decision behavior but in general shows a different turnover point. 

A disadvantage of the diffusion- and the DIP-algorithm is that superimposition of several 
diffusion fronts may lead to a gradient field which produces paths whose form appears somewhat 
unnatural (Figure 3a). After the alternatives have been detected, this could be prevented by 
letting the diffusion run over the grid a second time, but now blocking all but one path (Figure 5). 
This would lead to a more ‘natural’ path form. However, this has the disadvantage that global 
knowledge is necessary to decide as to how the other paths should be blocked. 
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Figure 5. The same obstacle situation as in Figure 3a, but now the right path is 
blocked by an additional obstacle. This changes the form of the gradient because no 
superposition occurs. 

As an alternative solution, one of the paths as shown in the example of Figure 3a can be 

used as a rough approximation to the final solution, and the form of this path could be refined 
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by applying ‘Tube-Diffusion.’ This means that, based on the original path P, a second diffusion 
process, using relative potentials and/or iteration beyond the arrival criterion, will be restricted to 
those cells which lie in the neighborhood of P up to a specified distance d, similar to constructing 
a tube with P as its central axis. As only a small part of the whole grid has to be updated, 
this method simplifies the computations. Especially with serial computations and short paths 
in large grids, this method may considerably save time. A Tube-Diffusion example is shown in 
Figure 6. Figure 6a shows the result after a normal diffusion. Tube-Diffusion in potential fields is 
shown in Figures 6b,c with two different forms of the potential function which show the increasing 
smoothness of the paths. 
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Figure 6. Tube-Diffusion. (a) A path obtained by normal diffusion without potentials 
using the arrival criterion. (b),(c) Tube-Diffusion in potential fields using the arrival 
criterion, d = 5. (b) Potential width = 1. Value of the potential function in the 
direct neighborhood of the obstacles: 0.7. (c) Potential width = 5, values of the 
potential function with increasing distance from the obstacles: 0.9, 0.6, 0.4, 0.2, 0.1. 

5. DIJKSTRA’S ALGORITHM 

The algorithm of Dijkstra [19] belongs to the class of blind or exhaustive search algorithms. 
It provides a solution to the ‘single-source shortest-path’ problem, working on a directed graph 
and using an arbitrary cost-function with positive values. Dreyfus [20] has classified it to be the 
one with the lowest complexity that is guaranteed to find the least-cost path from a start node 
to every other node. 

In [5] Hsssoun and Sanghvi have shown how to apply Dijkstra’s algorithm to a connectivity 
matrix instead of a directed graph. They apply the algorithm twice to the grid, automatically 
generating all path alternatives. Their formulation of the algorithm exhibits its relationship to 
dynamic programming techniques well known for solving operations research multistage opti- 
mization problems [21,22]. A similar algorithm running on a distributed array processor has 
earlier been described in [23]. Although these variations of the Dijkstra algorithm are tested 
due to their path finding abilities, no detailed attention has yet been directed to the form of the 
trajectories. This aspect will be pointed out in the following. 

We now briefly introduce the Dijkstra approach used in [5]. Figures 7a-h give a simple example. 
In addition to the matrix M with the cells rnij, this algorithm uses a second cell matrix C. Their 
cells cij have constant positive activations a(cij). C is considered as a cost map such that a(c%j) 
represents the costs belonging to a cell rnij. The sum of the cost values of all cells lying on the 
path from start to goal should be minimized. Repelling forces around the obstacles can directly 
be represented in the cost map by high values, which might be called cost-potentials. To initialize 
matrix M, the goal point is set to zero and kept constant. All other cells are set to a high positive 
value u,,, (see Figure 7b; u,,, = 500). Matrix C is initialized with the cost values belonging 
to the cells rnij (Figure 7a). All cells mij are updated with: 

a(mij,t+l) =~~(U(mij,t),a(mk~,t)+U(cij)) (5) 
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with mkl belonging to the neighborhood Nij. Thus, the new activation of a cell mij is the 
minimum of its own activation and all activations of its direct neighbors summed up with the 
cost value of cell mij. According to this rule, the updating is spreading away from the grounded 
cell. When numerical convergence is achieved, a gradient field results which is represented by the 
activation matrix Msoal at tend (Figure 7~). After convergence is obtained, e(mij, tend) represents 
the minimum cost for reaching the grounded cell starting from any cell mij. 
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Figure 7. Simple calculation example for Dijkstra’s algorithm applied to a 4 x 4 
grid. (a)-(h): Arbitrary cost map. (i)-(l): Obstacles are treated as forbidden areas. 
(a) Cost map C. (b) Initial state of Msoal. (c) Final state of A4soal. (d) Initial state 
of Mstart. (e) Final state of A4soal. (f) The sum Msoal + A&tart - C results m M,,, 
with umin = 7. (g) Using u,in as the threshold the optimal area can be computed. 

(h) Intermediate states of Msoai. (i) Cost map C. (j) Final state of Msoal. (k) Final 
state of &tart. (1) Optimal area. Start and goal points are indicated with bold 
numbers. Here the obstacle cells are assumed to have a value of 50. In the example 
of Figure 7a the free cells are chosen to have cost values which increase from the 
upper to the lower margin and thus form a ramp-like cost distribution. Figure 7h 
shows the development of the activations for the first four time steps. urnax = 500, 
cost values of obstacle cells: 50. 

In the second step of the calculation, the start cell instead of the goal cell is set to zero 
(Figure 7d). Then the above described procedure is repeated until a second gradient surface 
M start has been built up (Figure 7e). Both activation matrices and the cost matrix are combined, 
in short: M,,, = Mstart + Msoal - C. The result is shown in Figure 7f. The activation at the start 
point and the goal point in M,,, is identical to the minimal activation value U,in in Mr,,. Umin 

can be used to threshold M,,, to build up a matrix Mb with the following activations of the cells 
bij: a(bij) = 1 if a(mij, tend) = Umin, a(bij) = 0 otherwise. Figure 7g shows Mb where only the 
cells bij with a(bij) = 1. These constitute the so-called optimal areas. The optimal areas include 
all cells lying on a least-cost path from start to goal or vice versa, comprising all alternative paths 
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with the same costs. Umin + u(cstart) + u(cgoal ) is equivalent to the minimum cost of any optimal 
path connecting start and goal, summing up the costs cij of all cells lying on the path. 

This variant of Dijstra’s algorithm described up to this point will be referred to in the following 

as ‘Parallel Implementation of Dijkstra’s algorithm’ (PID). We want to introduce a modification 

of this algorithm which shortens the computation time. This modification requires the activation 

value of the obstacle cells to be held constant at the initial value u,,,. This will be shown here 

for the case where all nonobstacle cells obtain the same cost value a(~+) = 1. This means that the 

paths found will have the shortest cell length. The iteration stops at i&d if a(m,, tend) differs from 

zlmaX indicating that the ‘wave-front’ has arrived at the start (arrival criterion, see Figure 7j). 

If the activations in the grid are constant over time but the start point has not been reached, 

then the algorithm stops automatically, indicating that no path can be found since start and/or 

goal are enclosed by obstacles. Figure 7k shows the result of the second iteration procedure 
and Figure 71 shows the generated optimal area which indicates that two path alternatives are 

possible. Since all cells on the path have the same cost value, U,in + 1 is equivalent to the 

number of iteration cycles until the arrival criterion is fulfilled. This procedure can be even more 

accelerated if only those cells with an activation less than u,,, in Mgoal are taken as the basis for 

the second iteration step, because only these cells are candidates for the optimal area (compare 

Figure 7j with Figure 71). Especially in large grids with a small distance between start and goal, 

this can shorten the computation time considerably. We will call this accelerated version PIDac. 

As was shown above for the DIP-algorithm, PID and PIDac are also able to simulate the 

decision-making (Figure 8). The obstacle situation is the same as in Figure 4 for the analysis of 

the diffusion-algorithm. 
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Figure 8. (a) An obstacle situation where PIDac chooses an optimal area containing 
the upper of two alternatively possible paths. (b) When the obstacle is prolonged by 
one unit, an optimal area is chosen which contains both alternatives. The length of 
the right vertical obstacle line in this situation can be regarded as a turnover point in 
the decision-process of the algorithm. (c) Another prolongation by one unit results 
in an optimal area which only contains the lower path. 

6. INCLUSIVE-OR 

In the following, a further development of the PIDac-algorithm, the so-called Inclusive-Or- 

algorithm (IOR), is described. It is only applicable to maps where the cells are either free or 
forbidden. This means that the introduction of potentials is not possible. This algorithm is 
simpler and computationally faster than PID and PIDac. 

IOR works on a cell matrix M. Activated cells are indicated by an activation value greater 

than zero, obstacle cells are prohibited to become activated. Grid M is initialized at to with the 

goal point set to 1 and all other cells set to zero (Figure 9a). Obstacle cells do not take part in 

the updating process. They are shown by a dash in Figure 9. The activation of the other cells is 
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calculated as follows: 

f1 
if a(mij, t) = 0 and there exists a cell rnkl 

U(WLij,t+ 1) = 
belonging to Nij with a(mkl, t) > 0, 

o (7&j, t) + 1 if a(77Qj, t) > 0, 
(6) 

I a (mij, t) otherwise. 

That means that mij becomes activated at t + 1 if mij is not activated at t but there exists 

an activated direct neighbor. If mij was already activated at t, it increases its own activation 

value by one. If none of these condition is fulfilled, m,Lj remains unactivated. Consequently 

more and more cells get caught by the activation front (see Figure 9g). At each moment t, 

a(mij, t) shows, in the sense of iteration cycles, how long the cell mij was already activated. The 

updating terminates if the activation front has reached the start point so that a(m,) > 0 (arrival 

criterion). The result is a gradient field Mgoal (Figure 9b). If the arrival criterion is not fulfilled 

but no up to now inactive cell becomes activated during the updating of the grid, the algorithm 

stops automatically since no path can be found. 

Figure 9. Simple calculation example for the IOR algorithm applied to a 4 x 4 map 
with 4 obstacles. (a) Mgoal at to. (b) Mgoal at &d. (c) Mstart at to. (4 Mstart at 
t end. (e) Sum of the values shown in (b) and (d). (f) Resulting optimal area which 
shows two path alternatives with the same minimal cell length. (g) Intermediate 
states of Mgoal. 

Such wave-spreading results in a gradient to which a local path search algorithm must be 

applied. This, however, suffers from a computation time problem in search for alternatives. As 

a solution to these problems, we extend the algorithm by adding a second updating process 
similarly as it was proposed in [5] for Dijkstra’s algorithm. 

For this second step the start point is set to 1 and all other cells are grounded (Figure 9c). 

If we update this matrix, a gradient field M start results (Figure 9d). Both gradient surfaces are 

combined to a resulting gradient M,,, = Mstart + Mgoal (Figure 9e). Then all cells in M,,, with 

the maximum activation are set to one and all other cells are set to zero. Only the ones are shown 

in Figure 9f. (IOR can be accelerated by restricting the second activation wave, which generates 

M start, to the area occupied by the activated cells in Mgoal.) 
IOR automatically generates an optimal area which contains all paths of which the cell length 

corresponds to the maximum activation in M,,, minus one. The optimal area is identical to that 
which is obtained from PIDac but can be produced in much less time for the following reasons. 
Instead of the minimum-operator of PIDac, which has to inspect the activations of all direct 
neighbors of a cell rnij, the inclusive-or-operator of IOR must only find one activated neighbor. 

PIDac always continues to apply the minimum-operator. The IOR-algorithm starts slowly, since 
the inclusive-or-operator has to be applied to all cells. But as more and more cells become 
activated, the algorithm works faster. 
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The PID- and the IOR-algorithms do not provide a path but only an optimal area. Therefore, 
the following question arises. If the optimal area includes more than one optimal path, how can 
we choose a single one? As an easy solution to this problem one can apply the DIP-algorithm as 
described above only to the optimal area using the arrival criterion. 

7. DISCUSSION AND OUTLOOK 

The diffusion-algorithm, which is similar to that proposed in [3,4], provides a gradient field 
which can be used to find one or several paths connecting start and goal. An advantage of the 
diffusion-algorithm for a technical utilization is that once a gradient is calculated, it can be used 
for any starting position. The diffusion approach is therefore applicable to problems such as 
finding the nearest power source for a mobile agent at a defined position, which is taken as the 
goal point in the diffusion-algorithm, in the grid. This is a main advantage over the potential 
approach described in [26] which iteratively builds up a potential surface from start to goal. 
The diffusion mechanism has the inherent property of keeping a distance from the obstacles. 
Thereby path forms can be obtained which qualitatively correspond to those produced by human 
probands. This distance-effect can be increased by applying the diffusion in a potential field 
(DIP). 

By using the algorithms PID/PIDac and the IOR-algorithm instead of a single path, an optimal 
area is found which consists of all cells comprising all possible optimal paths. The optimality 
criteria must be specified explicitly in advance. The IOR-algorithm which is computationally 
much simpler than the algorithms based on Dijkstra’s approach can only be applied to the 
optimality criterion to find the shortest path between start and goal. In order to find the actual 
path, these algorithms can be combined with the diffusion or the DIP-algorithm which can then 
be applied to this optimal area. When the geometrical shortest path and not the path with the 
shortest cell length should be calculated, the PID-algorithm can be used by weighting the costs 
of diagonal neighbors with the square root of 2. This method has also been used in [23]. 

Once a path has been found with one of the above described methods, its form can also be 
modified later on with the Tube-Diffusion algorithm. The algorithms are also successful in finding 
all possible path alternatives which are equivalent either according to explicitly pie-specified costs 
(PID and IOR) or according to the implicit optimality criterion inherent in the dynamics of the 
DIP-algorithm. 

In contrast to the diffusion approach, both PID/PIDac- and IOR-algorithms exhibit direction- 
invariance, i.e., exchanging start and goal does not influence the optimal area. While the diffusion 
gradient can be influenced by all properties of the obstacle situation, including the size of the 
grid, the PID/PIDac- and IOR-algorithms produce the same solutions, as long as the optimal 
area is not effected by the modifications. 

The previous chapters have shown that all investigated local algorithms can be used to generate 
different path forms and therefore might be appropriate to qualitatively simulate the path gen- 
eration of human probands. The path forms produced by the algorithms described here depend 
on the obstacle configurations and some pre-specified parameters (e.g., the potential width or 
the potential function) which can represent the decision criteria in the psychometric experiments 
described in [1,2]. Especially if all other path alternatives are blocked so that no superimposi- 
tion of the diffusion fronts deriving from different path alternatives can occur, the forms of the 
‘naturally’ generated paths can be approximated in their main characteristics. Figure 10 shows 
an example for one test person used in the experiments described in [1,2]. The parameters of 
the DIP-algorithm in this example are adjusted in such a way that the algorithms produce path 
forms comparable to those generated by the test person. Although there is qualitative agreement, 
the paths produced by humans are still smoother. 

For a more detailed modeling of the paths forms generated by the test persons, a better 
adjustment of the relative potentials and the parameters of the DIP algorithm would be helpful. 
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Figure 10. Comparison of path forms generated by a human proband (left) and the 
diffusion-algorithm (right). The paths are shown for three obstacle situations and 
the decision criterion comfort. The resulting path is taken as the initial path P for 
Tube-Diffusion with 500 iteration cycles and the parameter d = 5. The potential 
width is set to 3 and with increasing distance from the obstacle cells the distance 
values are 0.75, 0.3 and 0.1. 

It might also be necessary to include one or the other global parameter. Up to this point our 

computer simulations already generate adequate solution on a qualitative and somewhat coarse 

level of description. For example, it might be an interesting approach to investigate a two-step 

mechanism, where global information is used to build up a temporary path composed of landmarks 

at a low level of resolution, which is then taken as the input of a second process of relaxation 

on the basis of local information as they are described in this paper. Such two-step relaxation 

processes have already been used for the sake of path planning, for instance, in potential field 

approaches [24,25]. In this way the results of the computer simulations described in this paper 

provide the basis for the development of algorithms modeling human path planning behavior 

using mainly local rules working upon a cell-based architecture. 
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