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Abstract

Three years after the seminal work of Black and Scholes [3] on the pricing of European options,

Scholes [18] presented a paper in which the impact of taxation on the value of an option is ana-

lyzed. We restart this discussion in a simple binomial setting emphasizing the economic principles

of replicating strategies under taxation. Two perspectives will be introduced. The first one focuses

on replicating payoff structures if the underlying assets are taxed. The second one discusses the in-

fluence of a tax system on a given contract specification. The limit results lead to a pricing formula

in closed form suggesting a modification of the partial differential equation derived by Scholes [18].

We claim that the value of the option is influenced by taxation even if gains of all relevant assets are

taxed with the same rate. Furthermore, we demonstrate that the difference between numerical and

closed form solutions are negligible in acceptable computing time. Thus the algorithmic schemes

can be used as a base for pricing of complex options under taxation.

Keywords: derivative, gains tax, option pricing, Black-Scholes model, binomial model, hedging

JEL Classification: G13, C60

* I like to thank Julia Frerking and Dennis Kirchhoff for valuable comments. All errors remain with the author.



1

1 Introduction

The theory of pricing derivatives is methodologically sound if the payoff of the claim can be replicated

by assets on frictionless markets. Most publications in this area abstract from trading fees, taxes and

regulatory restrictions, though one can expect a considerable influence of theses imperfections on the

value of derivatives. There have been several approaches to relax the strict assumptions of standard

derivative pricing. Some attempts have been made to integrate taxes, transaction costs and short-sale

restrictions, nevertheless literature in this field remained rare.

The discussion of the influence of taxes on the value of derivatives began in 1976 with a paper of

Scholes [18] presented on the 34th annual meeting of the American Finance Association. Ross [17] an-

alyzed taxes in the context of the arbitrage theory. His discussion was performed in a rather abstract

framework, though he was able to point out parallels to the main ideas of Miller and Scholes [14], Con-

stantinides [4, 5], Ross [16] and Constantinides and Ingersoll [6] ranging from the debt/equity decision

via tax options to dividends and taxes.

In the 90s, there have been some new approaches to embed tax schemes into financial applications.

However, most of these publications are directed to analyzing the impact of taxation in a portfolio op-

timization context. Dammon and Spatt [8] focus on asymmetries in a tax system, in which tax rates on

capital gains differ with respect to the holding period of the investment. The approach extends similar

models by Constantinides [4], Williams [21] and Schultz [19].

Dammon, Spatt, and Zhang [9] investigated the optimal consumption/investment decision of a private

investor over his lifetime. The tax base was calculated as the weighted average purchase price, which kept

the dimensionality of the problem low. Nevertheless, they were not able to obtain analytical solutions

and had to perform numerical analysis to get results. However, they illustrate that the tax system can

have a substantial impact on the investor’s decision, particularly if asymmetric tax rules are considered.

Similar models have been developed by Gallmeyer, Kaniel, and Tompaidis [10] and Garlappi, Naik, and

Slive [11].

The overview shows that there is active research on the impact of taxation on decisions in a dynamic

portfolio problem. Moreover, we have seen various analysis in all kinds of financial applications. In

contrast, papers integrating tax issues into a derivative pricing framework are rare. This has motivated us

to review the problem on a sound foundation.

This paper is organized as follows. In section 2 the tax system is modelled in a discrete-time frame-

work. The idea is based on the famous binomial model by Cox, Ross, and Rubinstein [7] but performed

in a modern version using numeraire processes and martingales. The tax terminology is introduced and

the general concepts of replicating payoffs are adapted to taxation. Although taxation can induce some

path-dependencies, the value of the derivative can always be computed in efficient recombining trees.
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In section 3 limit results are obtained. The closed form solution can be considered as a Black-Scholes

formula under taxation with different tax rates. The special case of equal tax rates — often discussed

against the background of decision neutral tax schemes — is reviewed. Furthermore, sensitivity functions

used for approximating hedging in discrete time are derived. They confirm the partial differential equa-

tion that follows from the no-arbitrage or martingale condition of the price process of the standardized

tradeable asset.

Numerical results are presented in section 4. The converging results of the discrete models are

compared with the value of the closed form solution. We show that acceptable results are obtained

within a computation time of no more than 1 second.

2 Capital gains taxes in a discrete-time model

In this section a capital gains tax scheme is modelled in a discrete-time framework. There are several

reasons for using this simplified approach. First, we can introduce the basic terms and the tax-specific

modifications in a traceable environment. Secondly, we can analyze different aspects of taxation and

compare the limit of each version with the continuous-time model. Finally, discrete-time models are

very popular among practitioners — and taxes are a highly relevant aspect in real-life problems. Bino-

mial models can easily be modified and adapted to a wide range of derivative contracts. Though most

scientists would recommend taking partial differential equations as the starting point for modifications,

the binomial model is still a widely-used approach.

2.1 The modelling framework

Assume there is a market that is open at certain discretely spaced trading dates contained in the naturally

ordered set

T := {t0, t1, . . . , tN} .

The uncertainty about the evolution of future prices on this market is captured by a probability space

(Ω,F,P) ,

where Ω is the (countable) sample space, F a σ-algebra, and P a probability measure. The probability

space is equipped with a filtration (Fti)
N
i=0 representing the evolution of information over time. The

filtration satisfies the usual conditions.
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The basic principle of pricing derivatives is to determine a portfolio strategy formed of elementary

assets whose price dynamics can be described with high precision. These assets are combined such that

the resulting portfolio payoff replicates exactly the derivative payoff in any state at any time. The value

of the derivative is defined as the price of the replicating strategy. If the market is arbitrage-free, which

is assumed in this model, then the price of the derivative must be equal to its value.

In this discrete-time modelling framework it is assumed that two assets are traded on the financial

market, a stock and a money market fund. The stock prices are driven by a binomial process such that

the next period price can only adopt two values. A more concrete specification of the process is given in

the next section. The evolution of the prices of the money market fund is deterministic and henceforth

known in advance.

A trading strategy φ is a sequence of portfolios φti = (αti ,βti) , i = 0, . . . ,N−1, indicating the number

of stocks and money market funds, respectively, held in period (ti, ti+1]. The price of a portfolio φti that

has to be paid immediately after ti, i = 0, . . . ,N−1, is given by

Π+
ti := αtiSti +βtiBti . (1)

The price of the trading strategy φ in t0 is defined as

Πt0 := αt0St0 +βt0Bt0 ,

such that Πt0 = Π+
t0 is always satisfied.

The introduction of taxes requires a refinement of notation, the modification of some basic principles

and a clear formulation of the payoff to be replicated. Let us start with the payoff structure and assume

that we are to build a portfolio in the last but one period that replicates the payoff at maturity. We

have to consider tax payments, so we cannot realize αtN−1StN + βtN−1BtN at maturity. Furthermore, if we

have to deduce the payment from a contract, say X̃tN , then the taxation of the derivative has to be taken

into account. Finally, taxation will generally lead to a modified strategy, which we will denote φ̃ in the

following. Thus, the replicating strategy under taxation has to satisfy

α̃tN−1

(
StN (ω)−TS

tN (ω)
)
+ β̃tN−1

(
BtN (ω)−TB

tN (ω)
)

= X̃tN (ω)−TX
tN (ω) .

T P
ti (ω) is the absolute tax amount related to asset P and payable in ti. The dependence of the state of the

world is induced by the stochastic price behavior of the corresponding asset, which directly influences

the tax base.

There still remains the question what payment should be replicated. We will analyze two cases or

— as it is labelled in this paper — two views on the taxation of contingent claims. The first view is
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directed to payoffs. The underlying question of this perspective is: What is the price of a portfolio

exactly replicating a given payoff after a certain tax scheme has been introduced? The given payoff we

are interested in is the payoff that would be realized in a world without taxes, so the complete impact of

the tax is incorporated in the modified value. If this case is analyzed, then the after-tax payoff is equal to

the given pre-tax value, i.e.

X̃tN (ω)−TX
tN (ω) = XtN (ω) .

This question will always be the decisive one if the economic consequences of a contract are relevant —

not its formal specification. This is true for example if someone wants an uncertain payoff to be hedged.

The second view is aimed at the economic consequences of the introduction of a certain tax scheme

on a certain contract. This perspective focuses on the tax system and its impact on investments. Another

case where this question becomes relevant is the situation in which an investor already owns a contract

and the tax system is supposed to be changed. Hence, the investor is interested in the economic conse-

quences on the contract he owns and not in the payoffs he cannot realize anymore. If these aspects are

analyzed, then we set

X̃tN (ω)−TX
tN (ω) = XtN (ω)−TX

tN (ω) ⇔ X̃tN (ω) = XtN (ω) ,

i.e. the payoff before taxes corresponds to the contractual payoff. The problem with this approach is that

we have to replicate an after-tax payoff we do not know in advance. The way to solve this problem is

explained in detail below.

Let us shortly review the cyclic actions that take place in each trading date in � \ {t0}. To lighten

the notation, the state of the world is omitted if the realization of the corresponding period is known

or of minor relevance. Furthermore, it is assumed that the price evolution of the money market fund is

deterministic. If at any date ti new prices are observed, the portfolio built in ti is dissolved yielding the

pre-tax price (or value)

α̃ti−1Sti (ωi)+ β̃ti−1Bti = Π̃ti (ωi) .

Then, taxes are raised immediately resulting in an after-tax portfolio value

α̃ti−1S τ
ti (ωi)+ β̃ti−1B τ

ti = Π̃ τ
ti (ωi) , (2)

which is the economically relevant variable. Unless the final period is reached, the after-tax value is
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reinvested in portfolio φti+1 at the price

Π̃+
ti (ωi) = α̃tiSti (ωi)+ β̃tiBti . (3)

Since we assumed that only two states can occur after a subperiod has passed, say u and d, the

number of stocks must satisfy

α̃ti =
Π̃ τ

ti+1
(u)− Π̃ τ

ti+1
(d)

S τ
ti+1 (u)−S τ

ti+1 (d)
(4)

and the number of money market funds

β̃ti =
S τ

ti+1
(u)Π̃ τ

ti+1
(d)−S τ

ti+1
(d)Π̃ τ

ti+1
(u)

B τ
ti+1

(
S τ

ti+1 (u)−S τ
ti+1 (d)

) (5)

in order to be a replicating strategy. However, in general

Π̃ti (ωi) , Π̃+
ti (ωi) ,

so this sequence of portfolios is not self-financing in the classical sense. Since the government obtains or

pays a certain cash flow after each period, the concept of self-financing strategies has to be reformulated

if portfolios are analyzed in a world with taxes. This is done in the following definition:

Definition 2.1 (self-financing trading strategy under a tax regime T) A trading strategy φ̃ is called

self-financing under a tax regime T if the after tax value of φ̃ti−1 in ti equals the price of the newly

formed portfolio φ̃ti held in period (ti, ti+1], i.e.

α̃ti−1S τ
ti + β̃ti−1B τ

ti = α̃tiSti + β̃tiBti (6)

or

(
α̃ti − α̃ti−1

)
Sti +

(
β̃ti − β̃ti−1

)
Bti =−

(
α̃ti−1T

S
ti + β̃ti−1T

B
ti

)
. (7)

The second formulation in equation (7) underscores the constraint that the taxes to be paid (or received)

have to be completely financed by or absorbed by the change of the portfolio value.

As mentioned above, only the classical capital gains tax is reviewed, i.e. if prices Pti−1 and Pti are

observed in ti−1 and ti, respectively, then the tax payable in ti is determined according to

TP
ti = τP

(
Pti−1 −Pti

)
.
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The range of values the tax rate τP can adopt will be important in economical interpretations. For that

reason, we assume that

0≤ τP < 1

will be satisfied for any tax rate.

2.2 A decision-neutral tax: a fallacy in discrete time

One might be tempted to replace the portfolio value in ti by the value of its components α̃tiSti and β̃tiBti .

Proceeding this way, one obtains an after tax portfolio value

Π̃ τ
ti+1

(ωi+1) = (1− τX)Π̃ti+1 (ωi+1)+ τX

(
α̃tiSti + β̃tiBti

)

in period ti+1. Inserting the possible prices, the portfolio structure can be resolved. Hence, the number

of stock is given by

α̃ti =
1− τX

1− τS
· Π̃ti+1 (u)− Π̃ti+1 (d)

Sti+1 (u)−Sti+1 (d)
,

the number of money market funds by

β̃ti = (1− τX)

(
S τ

ti+1
(u)− τX Sti

)
Π̃ti+1(d)−(

S τ
ti+1

(d)− τX Sti
)

Π̃ti+1(u)(
B τ

ti+1 − τX Bti
)(

S τ
ti+1(u)−S τ

ti+1(d)
)

=
1− τX

1− τB
·

(
Sti+1(u)− τX−τS

1−τS
Sti

)
Π̃ti+1(d)−

(
Sti+1(d)− τX−τS

1−τS
Sti

)
Π̃ti+1(u)

(
Bti+1 − τX−τB

1−τB
Bti

)
(Sti+1(u)−Sti+1(d))

.

One obtains the famous result that the decision variable, i.e. the complete portfolio process, remains

unchanged if the tax rate of interest-bearing assets τB equals the tax rate of dividend paying assets τS.

Unfortunately, the trading strategy that has just been determined does not have the properties we

required. Since

α̃tiSti + β̃tiBti

is the price one has to pay for a portfolio held from (ti, ti+1], it corresponds to the after tax portfolio value

in ti which does not determine the base for taxation. Instead, the pre-tax price α̃ti−1Sti + β̃ti−1Bti has to be

inserted. To put it the other way round, in general the trading strategy cannot be self-financing under a

tax regime.
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2.3 The payoff view of replication under taxation

As mentioned in the introduction, the impact of taxation on derivative values is analyzed from two

perspectives. We start the discussion concentrating on a given payoff. In other words, in this section

we try answer the question: If we want to have a certain payoff structure (e.g. the payoff structure of a

certain derivative in a world without taxes), what is the value of a derivative that offers the same payoff

after taxes have been paid?

The basic principles are still valid. First, a trading strategy has to be found such that the payoff is

replicated by the payoffs of the market traded assets. The only difference to standard derivative pricing

is the taxation of the assets contained in the portfolio strategy. As before, the value of the derivative is

defined as the price one has to pay for initializing the portfolio strategy.

Since the value at maturity is known and equal to the given payoff, i.e.

Π̃ τ
tN = XtN ,

equation (4), the number of stocks, and equation (5), the number of money market funds, can directly be

applied to determine the replicating portfolio structure in each period.

Inserting the portfolio structure of (4) and (5) into equation (3), the price of a portfolio right after

taxation, yields

Π̃+
ti =

Π̃ τ
ti+1

(u)− Π̃ τ
ti+1

(d)
S τ

ti+1(u)−S τ
ti+1(d)

Sti +
S τ

ti+1
(u)Π̃ τ

ti+1
(d)−S τ

ti+1
(d)Π̃ τ

ti+1
(u)

B τ
ti+1

(
S τ

ti+1(u)−S τ
ti+1(d)

) Bti . (8)

It is well known since Harrison and Kreps [12] and Harrison and Pliska [13] that the value of a derivative

can be represented as an expected value under an equivalent martingale measure. Since this method

allows for pricing derivatives in a very elegant way, we analyze the consequences of the tax system on

the martingale method and its characteristics.

Following the idea of Harrison and Kreps [12], equation (8) can be rewritten as

Π̃ τ
ti =

StiB
τ
ti+1
−S τ

ti+1
(d)Bti

S τ
ti+1(u)−S τ

ti+1(d)
(
B τ

ti+1

)−1 Π̃ τ
ti+1

(u)+
S τ

ti+1
(u)Bti −StiB

τ
ti+1

S τ
ti+1(u)−S τ

ti+1(d)
(
B τ

ti+1

)−1 Π̃ τ
ti+1

(d)

or equivalently as

B−1
ti Π̃ τ

ti =
StiB

−1
ti B τ

ti+1
−S τ

ti+1
(d)

S τ
ti+1(u)−S τ

ti+1(d)
(
B τ

ti+1

)−1 Π̃ τ
ti+1

(u)+
S τ

ti+1
(u)−StiB

−1
ti B τ

ti+1

S τ
ti+1(u)−S τ

ti+1(d)
(
B τ

ti+1

)−1 Π̃ τ
ti+1

(d)

= q τ
ti

(
B τ

ti+1

)−1 Π̃ τ
ti+1

(u)+
(
1−q τ

ti

)(
B τ

ti+1

)−1 Π̃ τ
ti+1

(d)
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where the factors

q τ
ti :=

StiB
−1
ti B τ

ti+1
−S τ

ti+1
(d)

S τ
ti+1(u)−S τ

ti+1(d)
(9)

satisfy the properties of (transition) probabilities under suitable restrictions on the growth factors of the

price processes. If we consider B τ
ti+1

to be a numeraire, then the portfolio process expressed in units of the

numeraire is obviously not a martingale. However, we can find a numeraire such that all price processes

in units of the numeraire are martingales.

Define for all ti ∈T the numeraire process by

Nti :=





Bt0 , ti = t0;

Bt0

i
∏

s=1

B τ
ts

Bts−1
ti > t0;

(10)

Bt0 > 0, then the process

Π̂ τ
ti := N−1

ti Π̃ τ
ti

is a martingale. The following proposition summarizes the main result of this section.

Proposition 2.1 Let (Nti)
N
i=0 be the price process of a numeraire. Let the price process of a tradeable

asset under taxation be given by

Zti :=





St0 , ti = t0;

St0

i
∏

s=1

S τ
ts

Sts−1
ti > t0.

(11)

Assume that the price processes behave in a way that the two state market is complete at any time. Define

a measure Qτ such that the transition probabilities are given by (9) and the price process of the tradeable

asset in units of the numeraire by

Ẑti = Ẑt0

i

∏
s=1

(
B τ

ts

)−1 S τ
ts

B−1
ts−1Sts−1

.

Finally, assume that E
[|Ẑti |

]
< ∞ is satisfied for all ti ∈ T.

Then the process
(
Ẑti

)N
i=1 is a martingale and the value of a derivative in t0 — expressed as units of

a numeraire — generating a payoff XtN under a tax regime T is given by

V̂ τ
t0 = EQ τ

[
X̂tN

∣∣Ft0
]
.
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2.4 The contract-centric view

In this section the view changes from payoffs to fixed contract specifications. The question that is to be

answered in this section is: What is the value of a contract with given specifications after a tax system

has been introduced?

The main problem that is to be solved first is the fact that the final after-tax value is not known. We

just know the pre-tax value from the contract but the value that investors are actually interested in is the

after-tax value. However, the final value has to be known if the basic principle of replication is to be

applied.

The strategy is to formulate an arbitrary pre-tax portfolio value as a function of the current after-tax

value, all preceding after-tax values and the value of the initial portfolio at time t0. Hence, this pre-tax

portfolio value can be replaced by values that, in turn, can be substituted by the corresponding after-tax

portfolio values. Thus, we first show that the relation in the following lemma is true.

Lemma 2.1 Let Vt0 be a start value and consider the scheme

V τ
ts = Vts − τX

(
Vts −Vts−1

)
,

then for any ti ∈ T, the pre-tax value can be written explicitly as

Vti = ρi,0Vt0 +
i

∑
s=1

ρi,s
V τ

ts
1− τX

, (12)

where

ρi,s := ρi−s =
( −τX

1− τX

)i−s

. (13)

The straightforward proof is given in the appendix.

The strategy we mentioned above is applied to a European style contract. The value of the derivative

at maturity, VtN , equals the payoff generated by the contract, which is denoted XtN . Consequently, the

replicating portfolio must have an after-tax value

Π̃τ
tN = V τ

tN = XtN −TX
tN

at the end of the contract’s lifetime. The standard technique, backwards induction, cannot be applied

directly to the problem since the tax amount depends on the price of the previous period which depends

implicitly on the tax amount of the previous period and so on.
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Since a gains tax is assumed, the after-tax value can be written as

Π̃ τ
tN = V τ

tN = Xtn − τX
(
XtN −VtN−1

)

= (1− τX)XtN + τXVtN−1 ,

where VtN−1 is the pre-tax value of the derivative implicitly determined such that the after-tax value of the

derivative is equal to the after-tax value of the replicating portfolio. Whereas

Π̃ τ
ti = V τ

ti

must be satisfied in all points of time to avoid arbitrage,

Π̃ti = Vti

will not be true in general.

The idea is to express the pre-tax value Vti by those components that are of economic relevance, i.e.

by the after-tax values and the initial price. Though it is possible to substitute the variable in a single step

according to (12), we do it iteratively using the relation

VtN−1 =
1

1− τX
V τ

tN−1
− τX

1− τX
VtN−2 .

To build a replicating portfolio held from tN−1 to tN the following equation has to be satisfied,

α̃tN−1S τ
tN + β̃tN−1B τ

tN = (1− τX)XtN +
τX

1− τX

(
α̃tN−1StN−1 + β̃tN−1BtN−1

)
− τ2

X

1− τX
VtN−2 ,

where the after-tax value V τ
tN−1

on the right hand side has been replaced by the after-tax value of the

replicating portfolio. If we define

Π̄ τ
tN := (1− τX)XtN

and

δtN := τX ,

then this condition is equivalent to

α̃tN−1

(
S τ

tN −
δtN

1− τX
StN−1

)
+ β̃tN−1

(
B τ

tN −
δtN

1− τX
BtN−1

)
= Π̄ τ

tN +δtN ρ1VtN−2 .
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Π̄ τ
tN and δtN have been defined in a way to outline a general structure occurring in each iteration. This

should become clear in the course of this section.

Solving for the portfolio components yields

α̃tN−1 =
Π̄ τ

tN (u)− Π̄ τ
tN (d)

S τ
tN (u)−S τ

tN (d)

=
1− τX

1− τS
· XtN (u)−XtN (d)

StN (u)−StN (d)

and

β̃tN−1 =

(
S τ

tN (u)− δtN
1−τX

StN−1

)
Π̄ τ

tN (d)−
(

S τ
tN (d)− δtN

1−τX
StN−1

)
Π̄ τ

tN (u)
(

B τ
tN −

δtN
1−τX

BtN−1

)(
S τ

tN (u)−S τ
tN (d)

)

+δtN ρ1
BtN−1

B τ
tN −

δtN
1−τX

BtN−1

VtN−2

BtN−1

= γtN−1 +δtN−1

VtN−2

BtN−1

,

where

δtN−1 = δtN ρ1
BtN−1

B τ
tN −

δtN
1−τX

BtN−1

.

Some characteristics are worth being mentioned at this step. The number of stocks can be computed

directly, though the structure will not be that simple in the next iterations. The formula for the number of

money market funds is more involved. However, β̃ti always can be separated into a part independent of

the past and a part that directly depends on the previous value. The same statement hold for the after-tax

value that can be split up into a part adapted to FtN−1 ,

Π̄ τ
tN−1

:= α̃tN−1StN−1 + γtN−1BtN−1 ,

and a part depending on the portfolio values of the past and hence unknown at this step in the recursive

algorithm. So we get the decomposition

Π̃ τ
tN−1

= α̃tN−1StN−1 + γtN−1BtN−1 +δtN−1VtN−2

= Π̄ τ
tN−1

+δtN−1VtN−2 ,

which is useful since the unknown part can be rolled back until the portfolio value does no longer depend

on the past.
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We can now proceed and obtain

α̃tN−2S τ
tN−1

+ β̃tN−2B τ
tN−1

= Π̄ τ
tN−1

+δtN−1VtN−2

= Π̄ τ
tN−1

+δtN−1

(
1

1− τX
(α̃tN−2StN−2 + β̃tN−2BtN−2)−

τX

1− τX
VtN−3

)

or

α̃tN−2

(
S τ

tN−1
− δtN−1

1− τX
StN−2

)
+ β̃tN−2

(
B τ

tN−1
− δtN−1

1− τX
BtN−2

)

= Π̄ τ
tN−1

− τX

1− τX
δtN−1VtN−3 .

If we go on in the same manner, the algorithm ends up with

Π̃ τ
t1 = Π̄ τ

t1 +δt1Vt0 ,

so we have

α̃t0
(
S τ

t1 −δt1St0
)
+ β̃t0

(
B τ

t1 −δt1Bt0
)

= Π̄ τ
t1 ,

which is true for

α̃t0 =
Π̄ τ

t1(u)− Π̄ τ
t1(d)

S τ
t1(u)−S τ

t1(d)

and

β̃t0 =

(
S τ

t1(u)−δt1St0
)

Π̄ τ
t1(d)−(

S τ
t1(d)−δt1St0

)
Π̄ τ

t1(u)(
B τ

t1 −δt1Bt0
)(

S τ
t1(u)−S τ

t1(d)
) .

The following proposition formulates the general result:

Proposition 2.2 Define

S̄ τ
ti := S τ

ti − δ̃tiSti−1

and

B̄ τ
ti := B τ

ti − δ̃tiBti−1 ,
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where

δ̃ti :=





δt1 , ti = t1;
δti

1−τX
, ti > t1;

and

δti = τX ρN−i

N−i

∏
s=1

BtN−s

B̄ τ
tN−s+1

.

Then the portfolio process with

α̃ti =
Π̄ τ

ti+1
(u)− Π̄ τ

ti+1
(d)

S̄ τ
ti+1(u)− S̄ τ

ti+1(d)
(14)

and

β̃ti =





γt0 , ti = t0;

γti −δti
Vti−1
Bti

, ti > t0;
(15)

where γti is given by

γti =
S̄ τ

ti+1
(u)Π̄ τ

ti+1
(d)− S̄ τ

ti+1
(d)Π̄ τ

ti+1
(u)

B̄ τ
ti+1

(
S̄ τ

ti+1(u)− S̄ τ
ti+1(d)

) , (16)

defines a strategy replicating the pre-tax value of a given contract with payoff XtN .

It is important to note that we do not need to specify the complete portfolio price process. To deter-

mine the value of the taxed option one can concentrate on the part

Π̄ τ
ti = α̃tiSti + γtiBti .

Inserting (14) and (16) into the equation yields

Π̄ τ
ti =

Π̄ τ
ti+1

(u)− Π̄ τ
ti+1

(d)
S̄ τ

ti+1(u)− S̄ τ
ti+1(d)

Sti +
S̄ τ

ti+1
(u)Π̄ τ

ti+1
(d)− S̄ τ

ti+1
(d)Π̄ τ

ti+1
(u)

B̄ τ
ti+1

(
S̄ τ

ti+1(u)− S̄ τ
ti+1(d)

) Bti .

This can be rewritten as

B−1
ti Π̄ τ

ti =
B−1

ti B̄ τ
ti+1

Sti − S̄ τ
ti+1

(d)
S̄ τ

ti+1(u)− S̄ τ
ti+1(d)

(
B̄ τ

ti+1

)−1 Π̄ τ
ti+1

(u)+
S̄ τ

ti+1
(u)−B−1

ti B̄ τ
ti+1

Sti

S̄ τ
ti+1(u)− S̄ τ

ti+1(d)
(
B̄ τ

ti+1

)−1 Π̄ τ
ti+1

(d) ,
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where the factors

q τ
ti =

B−1
ti B̄ τ

ti+1
Sti − S̄ τ

ti+1
(d)

S̄ τ
ti+1(u)− S̄ τ

ti+1(d)
(17)

satisfy the properties of (transition) probabilities under suitable restrictions on the growth factors of the

price processes.

Define for all ti ∈T the numeraire process as

Nti :=





Bt0 , ti = t0;

Bt0

i
∏

s=1

B̄ τ
ts

Bts−1
, ti > t0;

then the process

Π̂ τ
ti := N−1

ti Π̄ τ
ti

is a martingale. We can formulate a result similar to proposition 2.1, only the numeraire process has

changed.

3 Binomial model implementation and limit results

3.1 The structure in binomial models

We get more concrete now and assume that trading only takes place at equidistant points in time such

that the set T can be written as

T= {t0, t0 +∆, . . . , t0 +N ·∆} (18)

with the overall time interval between 0 and T being fixed. Suppose that the price of the money market

fund is determined by the non-stochastic one-period interest rate r ≥ 0, such that its price evolution can

be described by

Btn =





Bt0 , if tn = t0,

Btn−1 exp(r∆), if t0 < tn ≤ tN ,
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where Bt0 > 0 for economical reasons. The stochastic process that governs the evolution of the stock

price is given by

Stn =





St0 , if tn = t0;

Stn−1 exp(µ∆+σ
√

∆Xtn), if t0 < tn ≤ tN ;
(19)

where St0 > 0 and Xtn is a sequence of independently identically distributed (i.i.d.) Bernoulli random

variables

Xtn : (Ωtn ,Ftn)→ (Xtn ,Btn)

with outcomes in the state space Xtn = {−1,1}. Given the information at tn, the probability that Xtn+1 = 1

is p and that Xtn+1 = −1 is (1− p). The parameter µ ∈ � is referred to as the drift coefficient and the

parameter σ > 0 as the diffusion coefficient of the process.

First, the transition probabilities induced by the martingale measure Qτ are analyzed under the addi-

tional assumptions introduced in this section. Though the structure of the transition probabilities seems

to be quite different, it turns out that they are actually equal. We state this result as a proposition. The

applied technique is similar to the one in Amin [1]. The transition probabilities are chosen such that a

stock process with a given drift coefficient, say α, is a martingale.1 Though this drift parameter is of no

significance in the limit, the additional degree of freedom is used to improve numerical properties and to

guarantee value of qτ in the interval (0;1). This idea is resumed in section 4.

Proposition 3.1 Let α be the drift term of the stock price process in a binomial model such that the

process is a martingale. The transition probabilities without taxation are given by

q(α) =
er∆− eα∆−σ

√
∆

eα∆+σ
√

∆− eα∆−σ
√

∆
,

accordingly. Define q τ
p(α) as in equation (9) and q τ

c (α) as in equation (17).

Then the transition probabilities satisfy

q τ
p(α) = q τ

c (α) =: q τ(α) .

1 The binomial model by Cox, Ross, and Rubinstein [7] is contained as a special case in this model class. We obtain this
specification if we set α equal to 0.
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Moreover, the equality

q(α) = q τ(α)

is given if and only if τB = τS .

Proof. For the transition probability in (17) we obtain

q τ
c (α) =

B−1
ti B τ

ti+1
− δ̃ti+1

−S−1
ti S τ

ti+1
(d)+ δ̃ti+1

S−1
ti S τ

ti+1(u)−S−1
ti S τ

ti+1(d)

=
(1− τB)er∆ + τB− (1− τS)eα∆−σ

√
∆− τS

(1− τS)
(

eα∆+σ
√

∆− eα∆−σ
√

∆
)

=
1−τB
1−τS

er∆ + τB−τS
1−τS

− eα∆−σ
√

∆

eα∆+σ
√

∆− eα∆−σ
√

∆
(20)

and in (9) immediately

q τ
p(α) =

B−1
ti B τ

ti+1
−S−1

ti S τ
ti+1

(d)

S−1
ti S τ

ti+1(u)−S−1
ti S τ

ti+1(d)

=
1−τB
1−τS

er∆ + τB−τS
1−τS

− eα∆−σ
√

∆

eα∆+σ
√

∆− eα∆−σ
√

∆
, (21)

so the equality q τ
p(α) = q τ

c (α) is always satisfied. The equality

q(α) = q τ(α)

holds iff

τB− τS

1− τS
=

(
1− 1− τB

1− τS

)
er∆ ,

which is satisfied if and only if τB = τS.

3.2 An explicit pricing formula

Now that we have a deep economic insight into the payoffs and the replicating strategies, we can derive

the limit results. First, the limit of the numeraire, i.e. the taxed money market fund, is analyzed. We

will concentrate on the payoff view modelling and only consider the process in equation (10). The

differences between the payoff and contract view in the limit are discussed in section 4 as part of the

numerical analysis.
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Proposition 3.2 Let T be a discretization of the real line as in (18) and set t0 = 0 and tN = T . Let

(Nti)
N
i=0 be a sequence of real numbers given by

Nti = Bt0

i

∏
s=1

B τ
ts

Bts−1

.

Then the sequence converges for a fixed T and N → ∞ to

NT = N0e(1−τB)rT . (22)

The next step is to determine the limit distribution of the stock price at an arbitrary but fixed date T . We

obtain the following result:

Proposition 3.3 Let T be a discretization of the real line as in (18) and set t0 = 0 and tN = T . Let the

process (Sti)
N
i=0 be given by (19) with transition probabilities defined by (20) or (21).

Then the sequence of distribution functions FN(x) of random variables

RN :=
N

∑
n=1

ln
(

Stn

Stn−1

)

converges for a fixed T and N →∞ to the distribution function Φ
(

x ;
(

1−τB
1−τS

r− 1
2 σ2

)
T,σ2T

)
of a normal

distributed variable RT with mean
((

1−τB
1−τS

r− 1
2 σ2

)
T

)
and variance σ2T , i.e.

FN(x)→Φ
(

x ;
(

1− τB

1− τS
r− 1

2
σ2

)
T,σ2T

)
(23)

or symbolically,

RN
d→ R .

The proofs of both propositions can be found in the appendix.

We are now able to determine an explicit pricing formula for a European call option under the capital

gains tax regime.

Theorem 3.1 (Black-Scholes pricing formula under a capital gains taxation) Let the price process of

a numeraire be given by (22). Assume that the price process of the underlying under a martingale mea-

sure Qτ can be described by the stochastic process

ST = St0e
(

1−τB
1−τS

r− 1
2 σ2

)
(T−t0)+σ(WT−Wt0) ,

such that the distribution of the logarithmic return is given by (23).
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Then the money value of a European call option is given by

VC
t0 = St0 exp

(
τS(1−τB)

1−τS
r (T − t0)

)
Φ(d τ

1 )−K exp(−(1− τB)r (T − t0))Φ(d τ
2 ) , (24)

where

d τ
1 :=

ln
(

St0
K

)
+

(
1−τB
1−τS

r + 1
2 σ2

)
(T − t0)

σ
√

T − t0

and

d τ
2 = d τ

1 −σ
√

T − t0 .

Proof. Since the distributional structure of the Black-Scholes world is valid, we can use the general

pricing formula

V̂C
t0 = EQ τ

[(
ŜT − K̂

)+
∣∣∣Ft0

]

= EQ τ
[

ŜT
∣∣Ft0

]
Φ




ln
(

EQ τ [ ŜT |Ft0 ]
K̂

+σ2 (T − t0)
)

σ
√

T − t0


− K̂Φ




ln
(

EQ τ [ ŜT |Ft0 ]
K̂

−σ2 (T − t0)
)

σ
√

T − t0


 .

We know that

EQ τ
[

ŜT
∣∣Ft0

]
= Ŝt0 exp

(
τS(1−τB)

1−τS
r (T − t0)

)

is valid under the martingale measure, so the result of the theorem follows immediately.

We can now review the discussion if the value of an option remains unchanged if the tax rates τB and

τS are equal. Thus, let us assume that the tax rates satisfy

τB = τS = τ .

Then the pricing formula reduces to

VC
t0 = eτr(T−t0)VC,BS

t0 ,

where VC,BS
t0 is the value of a European call due to the standard model by Black and Scholes.
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The value of a European put can be determined using the put-call parity (cf. Stoll [20]). Since

EQ τ

[(
K̂− ŜT

)+
∣∣∣Ft0

]
= EQ τ

[(
ŜT − K̂

)+− ŜT + K̂
∣∣∣Ft0

]

the value is given by

V P
t0 = VC

t0 −St0 exp
(

τS(1−τB)
1−τS

r (T − t0)
)

+K exp(−(1+ τB)r (T − t0))

= St0 exp
(

τS(1−τB)
1−τS

r (T − t0)
)

[Φ(d τ
1 )−1]−K exp(−(1− τB)r (T − t0)) [Φ(d τ

2 )−1] ,

so the well-known structure of the put pricing formula — adapted to taxes — is obtained.

3.3 Hedging and Sensitivity Analysis

In this section the economic aspects are analyzed, i.e. we investigate those relations that leads to a

riskless portfolio. Consider the value of a derivative in units of a numeraire to be a function of time and

stock price level, thus

V̂t = V̂t (t,St) .

Applying Itos Lemma yields

dV̂t =
(

∂V̂t

∂t
+

1− τB

1− τS
rSt

∂V̂t

∂St
+

1
2

σ2S2
t

∂2V̂t

∂S2
t

)
dt +σSt

∂V̂t

∂St
.

Since on an arbitrage-free market this process must also be a martingale, the drift must vanish. In

conjunction with

∂V̂t

∂t
=

∂N−1
t Vt

∂t
= (1− τB)rN−1

t Vt +N−1
t

∂Vt

∂t

one obtains the partial differential equation

∂Vt

∂t
+

1− τB

1− τS
rSt

∂Vt

∂St
+

1
2

σ2S2
t

∂2Vt

∂S2
t

= (1− τB)rVt . (25)

A comparison with equation (15) in Scholes [18] points out the modification we made. Scholes formed

a portfolio consisting of a stock and a European option such that any risk is eliminated. This procedure

leads to the left hand side of equation (25). The term was equated to rτBVt , the return of a riskless portfo-

lio. However, gains from interest-bearing investments are taxed with rate τB, so it seems consequent to

equate the riskless portfolio return to (1− τB)rVt . This finally leads to the formulas derived in this paper.
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The partial derivatives in the differential equation correspond to the sensitivity functions Θτ
C, ∆τ

C and

Γ τ
C, also known as the Greeks. ∆ is the first derivative of the pricing formula (24) with respect to the

stock price. Calculating this derivative yields

∆τ
C = exp

(
τS(1−τB)

1−τS
r(T − t0)

)
Φ(d τ

1 )

+ exp
(

τS(1−τB)
1−τS

r(T − t0)
) φ(d τ

1 )
σ
√

T − t0
− K

St0
exp(−(1− τB)r (T − t0))

φ(d τ
2 )

σ
√

T − t0
.

Since

φ(d τ
2 ) =

St0

K
exp

(
1−τB
1−τS

r(T − t0)
)

φ(d τ
1 ) (26)

the expression reduces to

∆τ
C = exp

(
τS(1−τB)

1−τS
r(T − t0)

)
Φ(d τ

1 ) ,

which corresponds to the number of stocks held in the replicating portfolio. If τB ≥ τS; τB,τS > 0, the

portfolio contains more stocks compared to the case without taxation. If the opposite relation holds, no

general statement can be made.

The second derivative is known as Γ. Applied to the pricing formula, we obtain

Γτ
C = exp

(
τS(1−τB)

1−τS
r(T − t0)

) φ(d τ
1 )

σSt0
√

T − t0

=
∆τ

C

σSt0
√

T − t0

φ(d τ
1 )

Φ(d τ
1 )

.

Finally, we take the derivative with respect to time to maturity, Θ. Note that the differential equation

contains the derivative with respect to time, so the relation is

Θτ
C =−∂Vt

∂t
.

We obtain

Θτ
C = St0 exp

(
τS(1−τB)

1−τS
r (T − t0)

)(
τS(1−τB)

1−τS
rΦ(d τ

1 )+φ(d τ
1 )

(
∂d τ

2
∂(T − t0)

+
σ

2
√

T − t0

))

+ exp(−(1− τB)r(T − t0))K
(

(1− τB)rΦ(d τ
2 )−φ(d τ

2 )
∂d τ

2
∂(T − t0)

)
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or equivalently using (26),

Θτ
C = (1− τB)r

(
τS

1− τS
St0 exp

(
τS(1−τB)r(T−t0)

1−τS

)
Φ(d τ

1 )+K exp(−(1− τB)r(T − t0))Φ(d τ
2 )

)

+
σSt0φ(d τ

1 )
2
√

T − t0
exp

(
τS(1−τB)

1−τS
r (T − t0)

)
.

Inserting these functions into the partial differential equation (25) yields

−Θτ
C +

1− τB

1− τS
rSt∆τ

C +
1
2

σ2S2
t Γτ

C = (1− τB)rVt

and henceforth confirms the previous result.

4 Numerical Analysis

In this section the economic consequences of taxation on the value of a European option are exemplified.

We mainly focus on two topics. First, the difference between the payoff view and the contract view is

investigated. Secondly, the limit results of both discrete-time approaches are compared to the closed

form solution derived in a continuous-time setting.

Consider a stock price trading at 100 and a money market fund at 1. Assume that the stock’s log

volatility is .4 and the riskless interest .05. We demonstrate the consequences of taxation on a European

option written on the stock with a strike price of 90 and a time to maturity of .5 years. The option

value due to the Black Scholes formula is VC,BS = 17.7629. The results in column payoff centric and

tax rates payoff centric contract centric BS with taxes
τB = .00 τS = .00 17.7628 17.7628 17.7629
τB = .00 τS = .25 18.3752 18.3751 18.3749
τB = .00 τS = .50 19.6385 19.6385 19.6388
τB = .25 τS = .00 17.4220 17.4219 17.4211
τB = .25 τS = .25 17.8742 17.8741 17.8742
τB = .25 τS = .50 18.8029 18.8029 18.8031
τB = .50 τS = .00 17.0818 17.0818 17.0818
τB = .50 τS = .25 17.3811 17.3811 17.3799
τB = .50 τS = .50 17.9862 17.9862 17.9863

Table 1: Taxation: algorithmic and closed form solutions

contract centric were determined according to the numerical algorithms in sections 2.3 and 2.4 under

the specifications introduced in 3.1. The drift of the stock price was chosen such that the transition
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probabilities implied by the martingale measure were q = 1
2 , i.e. α was set to

α =− 1
∆

ln


(1− τS)cosh

(
σ
√

∆
)

(1− τB)er∆ + τB− τS


 ,

since in general this specification yields good results. The routine was written in Java and performed on

base of 2,000 periods. The average computing time2 to determine the option value under taxation was

.239 seconds (payoff view) and .245 seconds (contract view), respectively, so the procedure could even

be applied in an option trading environment.

Figure 1: Convergence of discrete-time models to the continuous-time model

The data in table 1 indicate that all values are very close. The convergence process is illustrated in

figure 1. It can be observed that the option value from the payoff perspective is always higher than the

value from the contract view if there are only few trading periods. However, both values converge to the

value determined by the continuous-time model (Black Scholes under taxation). The convergence is not

monotone but shows the typical pattern of a sequence of binomial model values (cf. Reimer [15] for a

detailed analysis of the convergence of binomial models).

Figure 2 summarizes and visualizes the main characteristics of the Black Scholes model under tax-

ation. The plane parallel to the τB-τS-plane represents the value of the standard Black Scholes formula.

The inclined plane reflects the values of the option pricing formula that incorporates taxation. One can

clearly recognize that the intersection of the planes is not a straight line through the points
(
0,0,VC,BS

)

and
(
.5, .5,VC,BS

)
. This would have been the case if the taxation was neutral under equal tax rates.

We can also observe that for any tax rate τB the option value increases when τS increases. On the

other hand, for any τS the option value decreases when τB increases. This is true for any input parameters

2 Computation was performed on a PC with an AMD AthlonT M XP 1700+, 1.48 GHz processor. The average computation
time was calculated from 100 samples with 2,000 iterations each.
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Figure 2: The impact of taxation on the option value

and can be shown as follows. Let us express the ratio of the tax rates as

γ :=
τB

τS

and substitute τB in equation (24) by γ τS. Calculating the derivative of the option value with respect to

the tax rates ratio yields

∂Vt0

∂γ
=−

(
τ2

Sr(T − t0)
1− τS

)
St0 exp

(
τS(1− γτS)

1− τS
r(T − t0

)
Φ(d τ

1 )

− (τSr(T − t0))K exp(−(1− γτS)r(T − t0))Φ(d τ
2 )

Since the derivative is negative, the above mentioned statements are already shown.

5 Conclusion

We have analyzed the impact of a gains tax regime on the arbitrage-free valuation of options on a sound

basis and in great detail. The discrete-time approaches have been motivated by consequently applying

the replication principle to the valuation problem under taxation. The limiting behavior of market prices

under the stated assumptions could be determined for the payoff view. Numerical results gave a strong
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hint that the difference with respect to the contract view is negligible in the limit.

The limit results could be used to determine a closed form solution for the value of a European

option. The formula allows for the analysis of tax rates that differentiate between gains from interest-

bearing instruments and capital gains, respectively. If both rates are equal, the tax system is not neutral.

We have shown that the trading strategy and henceforth the value of the derivative is influenced under

this assumption.

Both approaches, the binomial framework and the partial differential equation provide an access point

for those modifications that can only be managed using numerical schemes. This might be necessary

when more realistic tax scheme are to be modelled.
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Appendix

Proofs

Proof of lemma 2.1. We will prove the lemma by induction. First, note that the assertion is true for

i = 1 since we get

Vt1 =
−τX

1− τX
Vt0 +

1
1− τX

Vt1 ,

which is true according to the prerequisites. Furthermore, note that Vts+1 satisfies

Vts+1 =
V τ

ts+1

1− τX
− τX

1− τX
Vts .

Let us assume that equation (12) is valid for an arbitrary i. Then

Vti+1 =
(−τX)i+1

(1− τX)i+1Vt0 +
i+1

∑
s=1

(−τX)(i+1)−s

(1− τX)(i+1)−s

V τ
ts

1− τX

=
(−τX)i+1

(1− τX)i+1Vt0 +
i

∑
s=1

(−τX)(i+1)−s

(1− τX)(i+1)−s

V τ
ts

1− τX
+

V τ
ti+1

1− τX

=− τX

1− τX

(
(−τX)i

(1− τX)iVt0 +
i

∑
s=1

(−τX)i−s

(1− τX)i−s

V τ
ts

1− τX

)
+

V τ
ti+1

1− τX
,

which completes the proof.

Proof of proposition 2.1. We have to show that the process

Ẑti := N−1
ti Zti = Ẑt0

i

∏
s=1

(
B τ

ts

)−1 S τ
ts

B−1
ts−1Sts−1

satisfy the condition

Ẑti−1 = E
[
Ẑti |Fti−1

]

for all ti ∈ T\{t0}. Calculating the conditional expectation of Ẑti
Ẑti−1

given the information in ti−1 yields

Sti−1B−1
ti−1B τ

ti −S τ
ti (d)

S τ
ti (u)−S τ

ti (d)

(
B τ

ti

)−1 S τ
ti (u)

B−1
ti−1Sti−1

+
S τ

ti (u)−Sti−1B−1
ti−1B τ

ti
S τ

ti (u)−S τ
ti (d)

(
B τ

ti

)−1 S τ
ti (d)

B−1
ti−1Sti−1

= 1 .

Since E
[∣∣Ẑti

∣∣] < ∞ is satisfied by assumption, this implies that Ẑti is a Qτ-martingale.

The probability measure is unique, since the market is complete. It follows from the fundamental
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theorem of asset pricing (cf. Bingham and Kiesel [2], pp. 96-102) that the value of a derivative in units

of the numeraire generating payoff XtN is given by

V̂ τ
t0 = EQ τ

[
X̂tN

∣∣Ft0
]
.

Proof of proposition 3.2. Fix the point T = tN and define

NtN := Bt0

N

∏
s=1

B τ
ts

Bts−1

the value of the numeraire. Define the logarithmic return of the numeraire over [0,T ] as

YtN := ln
(

NtN

Nt0

)
=

N

∑
s=1

ln
(
(1− τB)er∆ + τB

)

= T
1
∆

ln
(
(1− τB)er∆ + τB

)
.

The limit of this sequence as N → ∞ is

lim
∆→0

YtN =
r(1− τB)er∆

(1− τB)er∆ + τB
T = r(1− τB)T .

Thus, the price of the numeraire converges to

NT = N0er(1−τB)T .

Proof of proposition 3.3. For tn ∈T\{t0}, let

Rtn := ln
(

Stn

Stn−1

)

be the one-period logarithmic return of stock price, then Rt1 ,Rt2 , . . . ,RtN is a sequence of i.i.d. random

variables with characteristic function

χRtn
(θ) := EQ

[
eiθRtn

]

= q τ(α)eiθ(α∆+σ
√

∆) +(1−q τ(α))eiθ(α∆−σ
√

∆) .
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Defining

YN :=
N

∑
n=1

Rtn = ln
(

ST

S0

)

yields the overall logarithmic stock return whose distribution under the martingale measure is to be

determined. Since the random variables of the sequence (Rtn) are independent, the characteristic function

of the sum can be expressed as the product of the components’ characteristic functions. We obtain

χYN (θ) = EQ

[
eiθYN

]
=

N

∏
n=1

χRtn
(θ) ,

the characteristic function of the overall return. Its logarithm, which we use for convenience, is given by

ln(χYN (θ)) =
1
∆

ln
(

q τ(α)eiθ(α∆+σ
√

∆) +(1−q τ(α))eiθ(α∆−σ
√

∆)
)

T

= αiθT +
1
∆

ln
(

q τ(α)eiθσ
√

∆) +(1−q τ(α))e−iθσ
√

∆)
)

T . (27)

Now, the second term of (27) can be expressed by a Taylor series at θ = 0 according to

g∆ (θ) :=
1
∆

ln
(

q τ(α)eiθσ
√

∆) +(1−q τ(α))e−iθσ
√

∆)
)

T

=
∞

∑
n=0

1
n!

g(n)
∆ (0)θn .

In the following, the limit of each term of the sum is analyzed as ∆ tends to 0. Starting with

lim
∆→0

g∆ (θ) = lim
∆→0

T
∆

ln(1) = 0

reveals that the first term can be neglected. For the second term, one obtains

g′∆(θ) =
1√
∆

q τ(α)eiθσ
√

∆− (1−q τ(α))e−iθσ
√

∆

q τ(α)eiθσ
√

∆ +(1−q τ(α))e−iθσ
√

∆
iσT

immediately. Using the definitions

cosh(x) :=
exp(x)+ exp(−x)

2

and

sinh(x) :=
exp(x)− exp(−x)

2
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the transition probabilities can be substituted by the decomposition

q τ(α) =
1
2

+
1
2

1−τB
1−τS

e−(α−r)∆ + τB−τS
1−τS

e−α∆− cosh
(

σ
√

∆
)

sinh
(

σ
√

∆
)

=:
1
2

+
1
2

η τ(α)

and henceforth the first derivative by

g′∆(θ) =
1√
∆

sinh
(

iθσ
√

∆
)

+η τ(α)cosh
(

iθσ
√

∆
)

cosh
(

iθσ
√

∆
)

+η τ(α)sinh
(

iθσ
√

∆
) .

Evaluated at point θ = 0 the expression reduces to

g′∆(0) =
1√
∆

η τ(α)iσT . (28)

The limit of (28) as ∆ tends to 0 is given by

lim
∆→0

g′∆(0) = lim
∆→0

1−τB
1−τS

e−(α−r)∆ + τB−τS
1−τS

e−α∆− cosh
(

σ
√

∆
)

√
∆sinh

(
σ
√

∆
) iσT

= lim
∆→0

−
1−τB
1−τS

(α− r)e−(α−r)∆ + τB−τS
1−τS

αe−α∆− sinh
(

σ
√

∆ σ
2
√

∆

)

1
2
√

∆
sinh

(
σ
√

∆
)

+ cosh
(

σ
√

∆
)

σ
2

iσT

=
(

1−τB
1−τS

r− 1
2 σ2

)
iT ,

where the theorem of de l’Hospital and the relation

lim
∆→0

1√
∆

sinh
(

σ
√

∆
)

= σ

has been used.

The second derivative is given by

g′′∆(θ) =−


1−

(
sinh

(
iθσ

√
∆
)

+η τ(α)cosh
(

iθσ
√

∆
))2

(
cosh

(
iθσ

√
∆
)

+η τ(α)sinh
(

iθσ
√

∆
))2


σ2T
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Evaluating at θ = 0 and taking the limit leads to

lim
∆→0

g′′∆(0) = lim
∆→0

−
(

1− (η τ(α))2
)

σ2T

=−σ2T

since

lim
∆→0

η τ(α) = 0 .

It is not difficult to see that all higher derivatives vanish as ∆ tends to 0. Therefore the limit of the

characteristic function is

χY (θ) := lim
N→∞

χYN (θ) = exp
((

1−τB
1−τS

r− 1
2 σ2

)
Tiθ− 1

2 σ2T θ2
)

,

which is the characteristic function of a normal distributed random variable Z with expected value
1−τB
1−τS

rT − 1
2 σ2T and a variance σ2T . From the uniqueness theorem for characteristic functions we know

that a distribution function is uniquely determined by its characteristic function.
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