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Abstract

In the past decades several versions of the binomial model for option pricing, origi-

nally introduced byCOX, ROSS, AND RUBINSTEIN, have been discussed in the finance

literature. Some of these approaches model an arbitrage-free market in the discrete setup

whereas others attain this property only in the limit. We analyze the interrelation between

the drift coefficient of price processes on arbitrage-free financial markets and the corre-

sponding transition probabilities induced by a martingale measure. As a result, we obtain a

flexible setting that encompasses most arbitrage-free binomial models and provides modi-

fications for those that offer arbitrage opportunities. It is argued that the knowledge of the

link between drift and transition probabilities may be useful for pricing derivatives such as

barrier options. A simple example is presented to illustrate this idea.
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JEL Classification: G13, C60
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1 Introduction

WhenCOX, ROSS, AND RUBINSTEIN [3] developed the binomial model for pricing options

in the late seventies, they tried to attain two major objectives. The first one was of didactic

nature. They clarified the basic principles underlying the state-of-the-art valuation methods for

derivatives at that time using a modelling framework with reduced mathematical requirements

compared to techniques introduced e.g. byBLACK AND SCHOLES [2] or MERTON [11] some

years before. The second thought was directed to implementing efficient numerical algorithms

for pricing contracts with arrangements that can trigger payments before maturity. Indeed,

their procedure is suitable to determine, or at least to approximate, the arbitrage-free price of

an American option. Similar approaches have been devised bySHARPE [17] andRENDLE-

MAN AND BARTTER [15] nearly at the same time. Subsequent works modified the stochastic

processes of the basic securities to improve their properties in numerical applications. Those

adjustments were suggested byJARROW AND RUDD [9], TRIGEORGIS[19], andTIAN [18].

Besides the contributions dealing with numerical issues, the pricing of contingent claims

was enhanced by the theoretical ideas ofHARRISON AND KREPS [4] and HARRISON AND

PLISKA [5]. Based on the assumptions of an arbitrage-free and complete security market they

reformulated the valuation principles transferring elements of the martingale theory to topics in

finance. The so-calledmartingale methodhas extremely influenced the pricing of financial in-

struments, especially in continuous-time models. TheGirsanov theorem, which they introduced

into mathematical finance, is one of the most relevant tools in financial engineering today.

This paper is aimed at comprehensively embedding the binomial model into the martingale

pricing methodology. It focuses solely on versions based on the classical market parametersµ

(drift coefficient) andσ (diffusion coefficient). The framework contains the models ofCOX,

ROSS, AND RUBINSTEIN [3] andAMIN [1] as special cases. Furthermore, the methodology

is capable to adjust the processes of those numerical models that violate the assumption of an

arbitrage-free security market. The emphasis of idealized market properties makes the frame-

work a basis for discussing discrete models against a theoretical background. In addition, it has

desirable convergence properties and can be easily calibrated to market price data.

The following representation is based on articles byAMIN [1], JARROW [8] as well as

HEATH, JARROW, AND MORTON [6, 7]. AMIN emphasizes the algorithmic character of his

model while the latter authors apply the martingale methodology exclusively to interest rate

processes. All three aforementioned approaches deal with the special case of equal transition
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probabilities under the martingale measure. In some cases one might wish to deviate from

this specification. Therefore, in this paper the transition probabilities are not fixed in advance,

and the interrelation between the drift parameter of the underlying processes and the martingale

probabilities are exhaustedly explored. In some applications it is quite useful to have a thorough

understanding of the link between the decisive quantities. The valuation of a barrier option is an

example where it might be adequate to first fix the step size of the process and to then determine

the corresponding transition probabilities. An illustration is given in the sixth section.

2 The Valuation Framework

It is assumed that the participants of a financial market have clear and homogenous ideas on the

price evolution of some securities (basis securities). In accordance with the modelling ofCOX,

ROSS, AND RUBINSTEIN [3], the future prices are expressed as the outcome of a binomial

process. Each path can be associated with an element in the sample spaceΩ. Together with aσ-

AlgebraA and a probability measureP it forms a probability space(Ω,F,P). The probability

space is equipped with a filtration{Ftn}N
n=0 having the characteristic property

Ft0 ⊆ Ft1 ⊆ . . .⊆ FtN = F

representing the evolution of information on the market, where no piece of information gets lost

over time.

Trading only takes place at certain equidistant points in time contained in the set

T = {0 = t0, t1, . . . , tN = T}
= {t0, t0 +∆, . . . , t0 +N ·∆}

with the overall time interval from0 to T being fixed. Suppose that the price of the money

market fund is determined by the non-stochastic one-period interest rater ≥ 0, such that its

price evolution can be described by

Btn =





Bt0, if tn = t0;

Btn−1 exp(r∆), if t0 < tn≤ tN.
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The stochastic process that governs the evolution of the stock price is given by

Stn =





St0, if tn = t0;

Stn−1 exp(µ∆+σ
√

∆Xtn), if t0 < tn≤ tN;

whereXtn is a sequence of independently identically distributed (i.i.d.) Bernoulli random vari-

ables

Xtn : (Ωtn,Ftn)→ (Xtn,Btn)

with outcomes in the state spaceXtn = {−1,1}. Given the information attn, the probability

that Xtn+1 = 1 is p andXtn+1 = −1 is (1− p). The parameterµ∈ � is referred to as the drift

coefficient and the parameterσ > 0 as the diffusion coefficient of the process.

Under the specified assumptions the local expected value of the logarithmic return equals

EP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
= µ∆− (1−2p)σ

√
∆

and the local variance of the logarithmic return is

VarP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
= 4p(1− p)σ2∆ .

Note that the diffusion parameterσ has no influence on the local expected value if and only if p

equals1
2. In this case the local variance reduces to

VarP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
= σ2∆ .

Equal probabilities play a prominent role when interpretingµ andσ as distribution coefficients

in a binomial model. Therefore, we frequently split a probabilityp into this reference probabil-

ity and a resulting deviation according to

p =
1
2

+
1
2

ηp ,ηp ∈ (−1,1) ,
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which leads to

EP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
= µ∆+ηpσ

√
∆

and

VarP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
=

(
1−η2

p

)
σ2∆ .

For the fixed period from0 to T, one obtains an expected return of

EP

[
ln

(
S0

ST

)∣∣∣∣Ft0

]
= N

(
µ∆+ηpσ

√
∆
)

= µT+ηpσ
√

N ·T

and a variance of

VarP

[
ln

(
Stn

Stn−1

)∣∣∣∣Ftn−1

]
= N

(
1−η2

p

)
σ2∆ =

(
1−η2

p

)
σ2T .

The expected value does not depend on the number of trading days if and only ifηp = 0, which

again underlines the importance of this specification.

3 Martingales

Since the market is arbitrage-free and complete, there is a unique probability measure under

which all price processes formulated in units of a suitable numeraire are martingales. Any

security can be used as a numeraire as long as its prices are positive in every state that occurs

with positive probability. Although both processes satisfy this property in our model, we follow

HARRISON AND KREPS[4] and use the riskless security as the numeraire. Let

Ŝtn := B−1
tn Stn

be the price of the stock in timetn formulated in units of the money market fund, then

Ŝtn = EQ
[
Ŝtn+1

∣∣Ftn

]
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is satiesfied for alltn ∈ T \{tN}. Applying the martingale condition to the binomial model, one

obtains

B−1
tn Btn+1 = EQ

[
S−1

tn Stn+1

∣∣Ftn

]

⇔ exp(r∆) = qexp
(

α∆+σ
√

∆
)

+(1−q)exp
(

α∆−σ
√

∆
)

⇔ exp(r∆) = exp(α∆)
[
qexp

(
σ
√

∆
)

+(1−q)exp
(
−σ

√
∆
)]

(1)

and thus a constraint for the drift parameterα given by

α = r− 1
∆

ln
[
qexp

(
σ
√

∆
)

+(1−q)exp
(

σ
√

∆
)]

. (2)

If the transition probabilityq under the martingale measure is split into

q =
1
2

+
1
2

ηq ,ηq ∈ (−1,1) ,

condition (1) can be rewritten as

exp(r∆) = exp(α)
[
cosh

(
σ
√

∆
)

+ηqsinh
(

σ
√

∆
)]

,

where the definitions

cosh(x) :=
exp(x)+exp(−x)

2

and

sinh(x) :=
exp(x)−exp(−x)

2

have been used to simplify the notation. Finally, the restriction on the drift term is given by

α = r− 1
∆

ln
(

cosh
(

σ
√

∆
)

+ηqsinh
(

σ
√

∆
))

. (3)



6

4 Change of Measure and Drift Transformation

Equation (3) reveals a strict relationship between the drift coefficient and the transition prob-

abilities if assets are priced on a complete and arbitrage-free security market. If we choose a

particularα̂, we get a uniquêηq that in turn determines the transition probabilities. Solving for

ηq and regarding this quantity as a function ofα results in

ηq(α) =
exp(−(α− r)∆)−cosh

(
σ
√

∆
)

sinh
(

σ
√

∆
) , (4)

which we refer to as a probability spread.

Thus, the probabilities under the martingale measureQ are given by

q(α) =
1
2

+
exp(−(α− r)∆)−cosh

(
σ
√

∆
)

2sinh
(

σ
√

∆
)

=
exp(−(α− r)∆)−exp

(
−σ

√
∆
)

exp
(

σ
√

∆
)
−exp

(
−σ

√
∆
) . (5)

Of course,α cannot be chosen completely arbitrarily. It must be ensured that the resulting

probabilities lie within the range of 0 to 1. The condition that forcesq(α) and1−q(α) to be

positive probabilities is

−1 <
exp(−(α− r)∆)−cosh(σ

√
∆)

sinh(σ
√

∆)
< 1,

and implies that

α∆−σ
√

∆ < r∆ < α∆+σ
√

∆

must be satisfied. Note that there is a natural assignment ofα that guaranteesq(α) to have the

required properties in any specification. Settingα = r will always lead to positive transition

probabilities, though other drift coefficients will do in special constellations. On the other hand,

one can always choose a probabilityq ∈ (0,1) and calculate the corresponding arbitrage-free
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drift coefficient by

α(q) = r− 1
∆

ln
(

cosh
(

σ
√

∆
)

+(2q−1)sinh
(

σ
√

∆
))

.

4.1 Drift Shift Under a Measure Inducing Equal Probabilities

In section 2, the prominent role of a probability measure that generates equal transition proba-

bilities has been emphasized. Although the specification was discussed in terms of the proba-

bility measureP and drift coefficientµ, a martingale measureQ 1
2

with equal probabilities can

also be constructed transferring the properties to the valuation world. We get a combination(
Q 1

2
,α

(1
2

))
with

α
(

1
2

)
= r− 1

∆
ln

(
cosh

(
σ
√

∆
))

. (6)

This specification can be found quite frequently in the finance literature. It has been applied

to stock processes in option pricing models byAMIN [1] and to interest rate processes in term

structure models by Jarrow [8] andHEATH, JARROW, AND MORTON [6, 7]. Although the

usage of this combination is not compelling its symmetry, shared with the limit distribution,

might be advantageous.

4.2 Change of Measure Under the Drift of the Riskless Asset

In many continuous time models the stock process formulated in units of a money market fund

has a drift coefficient ofr. Moreover, we gave reasons for the usage of that specification in

discrete time models above. So, setting

α != r

yields, in combination with the definition

tanhx :=
sinh(x)
cosh(x)

,
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a probability spread of

ηq(r) =
1−cosh

(
σ
√

∆
)

sinh
(

σ
√

∆
) =

1−exp
(

σ
√

∆
)

1+exp
(

σ
√

∆
) = tanh

(
−σ

√
∆

2

)

and consequently a transition probability of

q(r) =
1

1+exp
(

σ
√

∆
) . (7)

4.3 The Relation to the CRR Binomial Model

By settingα = 0, there is another parameter constellation that is frequently used in the literature.

However, this does not seem to be an obvious choice at first glance. As already mentioned, it is

not the stock process itself that is driftless in continuous-time models but the stock process in

units of a numeraire.

This setting is used if the state dependent payments can be derived more easily in a symmet-

ric tree. Indeed, the (logarithmic) stock process has some symmetry properties if it is driftless.

One major application is the valuation of barrier options where the reflection principle is used

in a symmetric binomial tree. We will come to this point later in an example. Using equation

(4), one obtains

η(0) =
exp(r∆)−cosh

(
σ
√

∆
)

sinh
(

σ
√

∆
)

and correspondingly, the transition probabilityq(0) is given by

q(0) =
1
2

+
exp(r∆)−cosh

(
σ
√

∆
)

2sinh
(

σ
√

∆
)

=
exp(r∆)−exp

(
−σ

√
∆
)

exp
(

σ
√

∆
)
−exp

(
−σ

√
∆
) .

It coincides with the parameter setting of the approach byCOX, ROSS, AND RUBINSTEIN [3].

Thus, we just get the result presented in their seminal article, apart from the fact that we use a

continuously compounded interest rate here instead of a one-period compounded rate.
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5 Limit Results

So far we have only analyzed the behavior of binomial option pricing models in a discrete

setting. We now address to the investigation of the convergence behavior if the number of

trading days in the fixed interval[0,T] increases without bounds. It turns out that the distribution

originally developed byBLACK AND SCHOLES [2] is obtained. Considering the limit behavior

of approximations to diffusion processes analyzed byNELSON AND RAMASWAMY [13], this

is no surprise. The results presented here emphasize the role the probability spread plays in the

convergence process.

For tn ∈ T \{t0}, let

Ytn := ln

(
Ŝtn

Ŝtn−1

)
,

thenYt1,Yt2, . . . ,YtN is a sequence of i.i.d. random variables with a characteristic function

χYtn
(θ) = EQ

[
eiθYtn

]

= q(α)eiθ(α∆+σ
√

∆) +(1−q(α))eiθ(α∆−σ
√

∆) .

Defining

ZN :=
N

∑
n=1

Ytn = ln

(
ŜT

Ŝ0

)

yields the overall logarithmic stock return whose distribution under the martingale measure

we are interested in. Since the random variables(Ytn)
N
n=1 are independent, the characteristic

function of the sum can be expressed as the product of the components’ characteristic functions.

We obtain

χZN(θ) = EQ
[
eiθZN

]

=
N

∏
n=1

χYtn
(θ) =

(
q(α)eiθ(α∆+σ

√
∆) +(1−q(α))eiθ(α∆−σ

√
∆)

)N
,
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the characteristic function of the overall logarithmic return. Its logarithm is given by

ln(χZN(θ)) =
1
∆

ln
(

q(α)eiθ(α∆+σ
√

∆) +(1−q(α))eiθ(α∆−σ
√

∆)
)

T

= αθTi+
1
∆

ln
(

q(α)eiθσ
√

∆ +(1−q(α))e−iθσ
√

∆
)

T (8)

where we use this monotonic transformation for convenience.

Proposition 1 Let T = {0 = t0, . . . , tN = T} be a discrete index set representing equidistant

points of time. Let the price process ofSin units of the numeraireB be given by

Ŝtn =





Ŝt0, if tn = t0;

Ŝtn−1 exp
(

α∆+σ
√

∆Xtn

)
, if t0 < tn≥ tN;

whereXt1, . . . ,XtN is a sequence of i.i.d. random variables with

Xtn =





1, with prob q(α);

−1, with prob1−q(α).

Then the distribution functionsFN(z) of a sequence of random variables

ZN :=
N

∑
n=1

ln

(
Ŝtn

Ŝtn−1

)
= ln

(
ŜT

Ŝ0

)

converge for a fixedT and N → ∞ to the distribution functionΦ
(
z;

(
r− 1

2σ2
)

T,σ2T
)

of a

normal distributed variableZ with mean
(
r− 1

2σ2
)

T and varianceσ2T, symbolically

FN(z) d→Φ
(

z;

(
r− 1

2
σ2

)
T,σ2T

)
.

Equation (8) gives some further insights with respect to a given drift term and the necessary

correction to obtain a martingale. For a given number of trading periods the first moment can
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be evaluated (cf.MORAN [12], p. 257) as

EQ

[
ln

(
ŜT

Ŝt0

)]
=−i

∂χZN(θ)
∂θ

∣∣∣∣
θ=0

= αT− 1√
∆

(2q(α)−1)σT

= αT− ηq(α)√
∆

σT .

Considering the limit,

lim
∆→0

EQ

[
ln

(
ŜT

Ŝt0

)]
= αT + lim

∆→0

ηq(α)√
∆

σT

results — after applying thetheorem of de l’Hospital— in

lim
∆→0

EQ

[
ln

(
ŜT

Ŝt0

)]
= αT− lim

∆→0

(α− r)exp(−(α− r)∆)+sinh
(

σ
√

∆
)

σ
2
√

∆
1

2
√

∆
sinh

(
σ
√

∆
)

+ σ
2 cosh

(
σ
√

∆
) σT

= αT−
(
α− r + 1

2σ2
)

σ
σT .

If the original drift coefficientµ is chosen (provided it is allowed to do so), then the correction

term is given by

γTσ
√

T =

(
(µ− r)T + 1

2σ2T

σ
√

T

)
σ
√

T .

γT is called the market price of risk (of the logarithmic process) and is weighted with the corre-

sponding risk measured by the standard deviation of the overall logarithmic stock return. This

result is due toGIRSANOV and is one of the most important tools in the modern theory of

derivative pricing.
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6 The Valuation of Derivatives: An Example

It is assumed that a money market fund can be purchased promising a fixed interest rate quoted

as an instantaneously compounded rate

r = 0.06.

Moreover, a stock is traded whose price evolution is governed by the process

Stn = Stn−1 exp
(

0.12∆+0.3
√

∆Xtn

)
.

In t0 one share of the money market fund is normalized to a price of1, the stock quotes at a

price of20. As already mentioned, the money market security serves as a numeraire. Suppose

a European down-and-out barrier option is introduced to the market maturing in3 months with

a strike priceK = 18.40. The hurdle, at which the writer is released from the obligation to

purchase the stock, is atH = 18.40. Trading takes place once a month, i.e.∆ = 1
12, the resulting

trading dates are contained in

T = {t0, t1, t2, t3} .

Let us start with the specification that has been mentioned several times in the preceding

sections. We choose a probability measure inducing constant transition probabilities, i.e. we

assign

q =
1
2

.

Given the example data the drift coefficient results in

α
(

1
2

)
= r−12· ln

(
cosh

(
σ

√
1
12

))

≈ 0.015056

according to equation (6). It is interesting to compare this result with the specifications already

developed in the literature.JARROW AND RUDD [9] have chosen equal transition probabilities
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as well, but set the drift coefficient to the limit result given by

νJR
(

1
2

)
= r− 1

2
σ2

≈ 0.015.

Although the difference betweenνJR andα does not seem to be substantial, this model offers

arbitrage opportunities in a time discrete setting. Since it is not difficult to avoid these arbitrage

opportunities, there is no reason to refrain the correction.

Figure 1 shows the process of the stock price in monetary units(Stn) and in units of the

numeraire
(
Ŝtn

)
as well as the evolution of the option value in units of the numeraire

(
Ĉtn

)

under the martingale measure. One obtainsĈt0 = 1.7740which corresponds to the option value

in monetary units since the numeraire is equal to1 in t0.

t0 t1 t2 t3

Stn

Ŝtn

Ĉtn

26.0314
25.6439
7.5178

0.5000�

23.8420
23.6047
5.4241

0.5000� 0.5000�

21.8366
21.7277
3.5481

21.8915
21.5656
3.4395

0.5000� 0.5000�
0.5000�

20.0000
20.0000
1.7740

20.0503
19.8507
1.7075

0.5000�
0.5000� 0.5000�

18.3639
18.2723
0.0000

18.4100
18.1359
0.0098

0.5000�
0.5000�

16.8616
16.6938
0.0000

0.5000�

15.4822
15.2517
0.0000

Figure 1: Binomial tree with equal transition probabilities
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The next choice of parameter settings appears to be an obvious alternative. Defining the

drift coefficient according to

α = r = 0.06

seems to cover the characteristic properties of the continuous time process in the sense that the

stock processes in units of the numeraire are driftless. Moreover, we have pointed out that a

martingale measure exists in any case. The resulting transition probabilities can be calculated

by (7) yielding

q(0.06) =
1
2

+
1
2

tanh


−

0.3
√

1
12

2




=
1

1+exp

(
0.3

√
1
12

)

≈ 0.478362886.

The second approach leads to an option value being23.8% higher than before. The extent

of this increase is due to the rough discretization of the time line. A closer look reveals the

reason for the shortcoming of one of the solutions. Either figure 1 and 2 shows that the stock

price in t1 given a decline is close to the hurdleH = 18.40. However, the consequences are

completely different. Whereas the stock price is above the hurdle in the binomial tree with

a drift coefficient equal to the riskless interest rate maintaining the obligation of the writer to

pay in the future, it has fallen below the hurdle in the binomial model with equal probabilities

removing this obligation and leading to a value of zero in this knot. In other words, the quality

of approximating the behavior of stock prices in the neighborhood of a hurdle depends largely

and somewhat accidentally on the parameter specification and on the contract data.

The last case analyzed in this paper faces up to this problem and demonstrates the useful-

ness of a thorough knowledge of the interrelationship between drift coefficients and transition

probabilities. In contrast to the aforementioned models, the parameters are not kept constant

over time but are fitted dynamically to satisfy some — possibly — advantageous properties.

The dependency of the approximation quality on the exogenous data prompt us to control the

behavior in the neighborhood of a hurdle, i.e. the drift in the first periods should be determined
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t0 t1 t2 t3

Stn

Ŝtn

Ĉtn

26.3255
25.9336
7.8076

0.4784�

24.0212
23.7822
5.5999

0.4784� 0.5216�

21.9186
21.8093
3.6284

22.1389
21.8093
3.6832

0.4784� 0.5216�
0.4784�

20.0000
20.0000
2.1963

20.2010
20.0000
1.8553

0.5216�
0.4784� 0.5216�

18.4328
18.3408
0.8831

18.6180
18.3408
0.2148

0.5216�
0.4784�

16.9883
16.8193
0.0000

0.5216�

15.6571
15.4240
0.0000

Figure 2: Binomial tree with a drift coefficientα = r

such that the hurdle is met exactly. If the drift coefficient is set to

α = 0.03865,

then one gets a stock price int1 of

St1 = St0 exp

(
2·0.03865· 1

12
−1·0.3

√
1
12

)
= 18.4,

which coincides with the hurdleH. From (5) the transition probability under the martingale
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measure can be calculated

q(0.03865) =
1
2

+
exp

(−(0.03865−0.06) 1
12

)−cosh

(
0.3

√
1
12

)

2sinh

(
0.3

√
1
12

)

≈ 0.494314.

First time the stock price meets the hurdle, the parameter are changed to attain a symmetric

binomial tree. Thus, assigning

α = 0

implies a symmetric logarithmic stock process and a transition probability of

q(0)≈ 0.507267

under the martingale measure. Figure 3 shows that one can imagine a line through the tree

separating those knots where the stock price is18.40or below from those where the stock price

is above18.40.

These results can finally be compared with the arbitrage-free price of a barrier option ob-

tained in a continuous-time model byMERTON [11] or RUBINSTEIN AND REINER [16]. One

gets a price of

Ct0 = St0

(
Φ(d1(K∨H))−

(
St0

H

)−1−α
Φ(g1(K∨H))

)

−Ke−r(T−t0)

(
Φ(d2(K∨H))−

(
St0

H

)1−α
Φ(g2(K∨H))

)

≈ 1.7723,

whereΦ(z) is the p.d.f. of a standard normal random variable,

α :=
2r
σ2 ,
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t0 t1 t2 t3

Stn

Ŝtn

Ĉtn

26.0173
25.6299
7.5039

0.5073�

23.8589
23.6215
5.4408

0.5073� 0.4927�

21.8796
21.7705
3.5902

21.8796
21.5539
3.4278

0.4886� 0.4927�
0.5073�

20.0000
20.0000
1.7543

20.0645
19.8649
1.7215

0.5114�
0.5073� 0.4927�

18.4000
18.3082

0.0

18.4000
18.1261
0.0000

0.4927�
0.5073�

16.8736
16.7057
0.0000

0.4927�

15.4738
15.2434
0.0000

Figure 3: Hurdle fitted binomial tree

d1/2(x) :=
ln

(
St0

xe−r(T−t0)

)
± 1

2σ2(T− t0)

σ
√

T− t0

and

g1/2(x) :=
ln

(
H2

St0xe−r(T−t0)

)
± 1

2σ2(T− t0)

σ
√

T− t0
.

The expressionK∨H denotes the maximum ofK andH, which is not relevant in this example

since we haveK = H.

The option values obtained from the binomial tree with equal probabilities and from the

fitted model are both very close to the limit results. However, there is a significant difference.

The first approach produces good results for the given data set, but it would perform poorly if

the hurdle was lowered toH = 18.30. Our approach performs well even if the input data change
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since the drift coefficient can always be fitted to meet the new requirements.

7 Concluding remarks

This paper is understood to be a link between the simple binomial model and the advanced

methods of state-of-the-art derivative valuation. A representation was chosen that introduces

the concept of the change of measure on a market being arbitrage-free for every way of dis-

cretization. The limit results lead to distributions known from the continuous-time financial

mathematics literature. Furthermore, we showed the influence of the probability spreadη at

each step of the analysis.

Besides this didactic view, the results can be used to develop pricing models that benefit

from a flexible setting of parameters. We illustrated the principles in a barrier option example,

though other applications are conceivable. We changed the parameters after periodt1, which

was easy to handle and appeared to be reasonable in this certain case. Sometimes there can be

an ambiguous situation when a decision between an adjustment of the transition probabilities

and the time of parameter change has to be made. This is of course a practical problem rather

than a theoretical one.

The question which of the approaches result in the most stable numerical algorithm was

not subject to this paper and needs to be analyzed in future research. We cannot even say that

models of the class formulated in this paper produce better results than the discrete-time models

using a drift coefficient obtained in the limit. From a theoretical point of view it seems to be

favorable to use processes that are martingales in any specification.

If there are no restrictions on the choice of transition probabilities and drift coefficient,

respectively, there remains the question which specification to chose. It might be possible that

the choice of equal probabilities is the most stable approach, since it has for every discretization

a symmetric distribution, a property it shares with its limit distribution.REIMER [14] has

developed a comprehensive methodology for analyzing the convergence behavior of binomial

models, especially the convergence speed. Though he analyzed just some special specification,

the approach should be directly applicable for the generalized formulation presented in this

paper.



19

Appendix

Proof of proposition 1 on page 10

Proof. Define the second term of expression (8) as

g∆(θ) =
1
∆

ln
(

q(α)eiθσ
√

∆ +(1−q(α))e−iθσ
√

∆
)

T ,

theng∆ can be expressed as a Taylor series atθ = 0 according to

g∆(θ) =
∞

∑
n=0

1
n!

g(n)
∆ (0)θn .

In the following, the limit of each term of the sum is analyzed as∆ tends to0. Starting with

lim
∆→0

g∆(0) = lim
∆→0

T
∆

ln(1) = 0

reveals that the first term can be neglected. For the second term one obtains

g′∆(θ) =
1√
∆

q(α)eiθσ
√

∆− (1−q(α))e−iθσ
√

∆

q(α)eiθσ
√

∆ +(1−q(α))e−iθσ
√

∆
iσT

=
1√
∆

sinh
(

iθσ
√

∆
)

+ηq(α)cosh
(

iθσ
√

∆
)

cosh
(

iθσ
√

∆
)

+ηq(α)sinh
(

iθσ
√

∆
) iσT

in general and

g′∆(0) =
1√
∆

ηq(α)iσT (9)

atθ = 0. The limit of (9) as∆ tends to 0 is obtained by applying thetheorem of de l’Hospitalto

lim
∆→0

g′∆(0) = lim
∆→0

exp(−(α− r)∆)−cosh
(

σ
√

∆
)

√
∆sinh

(
σ
√

∆
) iσT

= lim
∆→0

−
exp(−(α− r)∆)(α− r)+sinh

(
σ
√

∆
)

σ
2
√

∆
1

2
√

∆
sinh

(
σ
√

∆
)

+cosh
(

σ
√

∆
)

σ
2

iσT

=−(α− r) iT − 1
2

σ2iT ,
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where the result

lim
∆→0

1√
∆

sinh
(

σ
√

∆
)

= σ

has been used. Finally, the second derivative is given by

g′′∆(θ) =−


1−

(
sinh

(
iθσ

√
∆
)

+ηq(α)cosh
(

iθσ
√

∆
))2

(
cosh

(
iθσ

√
∆
)

+ηq(α)sinh
(

iθσ
√

∆
))2


σ2T .

Evaluated atθ = 0, one gets

g′′∆(0) =−
(

1− (
ηq(α)

)2
)

σ2T .

Taking the limit results in

lim
∆→0

g′′∆(0) = lim
∆→0

−
(

1− (
ηq(α)

)2
)

σ2T

=−σ2T

since

lim
∆→0

ηq(α) = lim
∆→0

exp(−(α− r)∆)−cosh
(

σ
√

∆
)

sinh
(

σ
√

∆
)

= lim
∆→0

−α−r
σ exp(−(α− r)∆)2

√
∆−sinh

(
σ
√

∆
)

cosh
(

σ
√

∆
) = 0.

It is not difficult to see that all higher derivatives vanish as∆ tends to0. Therefore the limit of

the logarithmic characteristic function is

ln(χZ(θ)) = lim
N→∞

ln(χZN(θ)) =
(

rT − 1
2

σ2T

)
iθ− 1

2
σ2Tθ2

or equivalently

χZ(θ) = exp

((
rT − 1

2
σ2T

)
iθ− 1

2
σ2Tθ2

)
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which is the characteristic function of a normal distributed random variableZ with an expected

value of
(
r− 1

2σ2
)

T and a variance ofσ2T. From theuniqueness theoremfor characteristic

functions (cf. Laha and Rohatgi [10],144-149) we know that a distribution function is deter-

mined uniquely by its characteristic function which completes the proof.
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