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1 Introduction

The problem of modeling an exchange economy with money and credit as a
non-cooperative game has been investigated for more than three decades (see
e.g. [7] for an early contribution, and [3] for a survey and introduction to a
recent issue of the Journal of Mathematical Economics devoted exclusively
to strategic market games). While this substantial literature led to deep
understanding of many issues, it is fair to observe that several key di�culties
still need resolving.

Thus, it would be desirable to have a model for an exchange economy in
which i) there exists money, serving both as a mean of exchange and as
a store of value; ii) agents are price makers (and not just price takers); iii)
there exists a central bank who issues money, accepts deposits, and lends; iv)
bankruptcy is not ruled out, but is penalized. To the best of our knowledge,
no model encompassing all these desiderata is available as yet. The early
paper [7] does not discuss credit. The fairly recent study [2] deals with a
continuum of agents. It turns out that agents behave like price takers and
the system is in a (competitive) equilibrium.

A possible model including elements i) through iv) consists of a �nite set
of agents involved in trade of a Shapley-Shubik type ([5], [6]), along with a
central bank able to issue money, distribute it as loans, and accept deposits.
The central bank has the authority to determine the various interest rates.
Agents would derive a negative utility from being bankrupt, whereas positive
cash holdings at the end of the period have positive utility, the latter pre-
sumably deriving from subsequent use of money at a later period. We o�er
here such a one-shot model, and plan to construct a multi-period extension
in subsequent work.

Our model is described in detail in Section 2. Each agent is endowed with
positive amounts of a consumer nondurable commodity and money. Agents
issue bids in terms of money towards purchasing a quantity of the consump-
tion good. (Agents cannot consume directly their commodity endowment in
whole or parts.) Agents may exceed their endowment (and thus take a loan
from the bank), or else they may bid less than their endowment, their money
surplus going to the bank as a deposit. There is a central bank in the mar-
ket which controls the interest rates for deposits and loans and increases the
total amount of money, if the books cannot be balanced otherwise. As soon
as bids are announced, the price of the commodity is given by the equation
(2.5) as the ratio of the aggregate bid to the aggregate supply of the good.
Each agent then receives for consumption the good bought by his bid and
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the money proceeds of the selling of his commodity endowment. In addition,
our agent receives returns from her bank deposit or has to pay the loan (with
interest).

At the end of the day, each agent has 1) consumed an amount of the com-
modity (deriving from it a positive amount of utility), 2) is unable to repay
his loan with the prescribed interest, so that he is bankrupt and derives a
negative utility from this fact, or else 3) has a positive amount of cash left,
from which she derives positive utility. These three components of the total
utility are given in (2.3) of De�nition 2.1. Besides the usual monotonicity
and concavity assumptions we also require that the penalty for bankruptcy
be su�ciently large so as to o�set the positive utility of high consumption,
and impose on the utility functions several technical assumptions in order to
facilitate certain existence proofs. We do not try to optimize the bankruptcy
rule. We trace the �ow of cash in the economy and show that the bank never
has to withdraw funds out of the economy.

The bank announces a policy concerning interest rates on deposits and loans.
Formally, this policy is a (vector-valued) function of the agents' bids. The
agents, in turn, may take into account the bank's policy. In this manner a
well de�ned game (the �nancial market game) is speci�ed. (As usual in this
literature, bids play the role of strategies). The bank may try to achieve cer-
tain objectives through its policies. One such objective could be the wish to
eliminate unnecessary bankruptcies. Another might be the desire to combat
in�ation. We exhibit a policy which leads to certain desirable outcomes.

In Section 3 we establish the existence of a Nash equilibrium for the �nancial
market game. (An essential element of the proof is the construction of a
compact set of strategies which is mapped into itself by the best response
correspondence.) Under certain regularity conditions we demonstrate the
existence of a (Nash) equilibrium in mixed strategies. For a speci�c policy
we prove existence of an equilibrium in pure strategies.

Our original goal was to put forward a multi-period model where the utility
for holding cash reserves at the end of the j-th period is derived from the
utility of having this reserve as an endowment for the j + 1-st period, and
obtaining (using backward induction) a subgame-perfect equilibrium in pure
strategies. We plan to achieve this goal in a sequel to this paper.
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2 The Model

We consider an economy with a �nancial market. There is a central bank
which is responsible for the supply of money and which has to support eco-
nomic growth as well as to prevent in�ationary development. The economic
agents or players issue bids for consumption and are allowed to ask for loans
from the bank. Following each period, the bank has to balance its books.
Within this section we restrict the discussion to one period.

De�nition 2.1. A �nancial market (with one commodity and money) is
a tripel of data

(2.1) M := (I, A, U)

with the following speci�cations and interpretations.

1. I = {1, . . . , n} is a �nite set, the set of players or agents.

2. The n× 2-matrix
A = (a1, a2) > 0

re�ects the initial assignments of commodities and money to the
agents. In particular, the i − th coordinate of the vector a1 ∈ Rn

+,
written ai

1, denotes the initial endowment of player i ∈ I with the
consumption good. Similarly, the vector a2 ∈ Rn

+ indicates the initial
allocation of money to the agents.

3. Finally, U = (U i)i∈I denotes the utility functions of the players;
each one of them is a mapping

(2.2) U i =: R3
+ → R.

The utilities are separable. That is, there are functions ui : R+ → R+,
wi : R+ → R+, and V i : R+ → R+ such that the utilities can be
written

(2.3) U i(α1, α2, α3) = ui(α1)− wi(α2) + V i(α3) (α1, α2, α3) ∈ R3
+.

The functions ui,−wi, and V i are continuous and strictly monotone
(hence almost surely di�erentiable), moreover ui and −wi are concave
and second derivatives exist up to �nitely many points.
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The a.s. derivative of V i satis�es the following conditions: There is
t0 > 0 and ε0 > 0 such that

(2.4)
V ι′(t) ≥ ε0 (t ≤ t0) ,

V i′(t) ≥ ε0

t
(t ≥ t0)

holds true. Moreover, we require ui(0) = wi(0) = 0, (ui)′ < (wi)′ (i ∈
I), so that −wi is negative for all arguments (�debts�).

The agents derive utility from consuming the good as well as from having a
cash balance. The consumption utility is represented by the functions ui.

On the other hand, the agents derive utility from money in a two-fold fashion.
On one hand, they may be punished for leaving the game being unable to
pay their debts. This is is expressed by the functions wi, which re�ect the
�bad reputation� or uneasiness of a player for being broke. Furthermore, the
agents appreciate acquiring a large fortune. This component of the overall
utility is taken care of by the functions V i.

The monetarian part V i re�ects future possibilities resulting from holding
money with the purpose of spending it in later periods.

Basically, the agents are allowed to act strategically in a very simple way.
They issue bids in terms of money towards acquiring a quantity of the con-
sumption good. Thus, at this stage, the action space of each agent is R+

and an action is denoted by bi ∈ R+ for agent i ∈ I. (There is at present
no di�erence between actions and strategies of the players or agents.) The
bids are nonnegative. Agents may exceed their endowment (and thus take a
loan from the bank) in which case they are called debtors . Or else agents
may also bid less than their endowment, their money surplus then goes to
the bank as a deposit and we call the corresponding agent a depositor .

There is a central bank in the market which is required to take two types
of actions (not independently): it will control the interest rates and increase
the total amount of money in order to balance its books.

The price generating mechanism is modeled in a rather straightforward fash-
ion. Given that all agents made their bids, the price of the commodity is set
to be

(2.5) p :=

∑
i∈I bi∑
i∈I ai

1

.
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Introducing abbreviations

(2.6) ā1 :=
∑
i∈I

ai
1, ā2 :=

∑
i∈I

ai
2, b̄ :=

∑
i∈I

bi, etc.

this reads also

(2.7) p =
b̄

ā1

.

Now, if the bank has determined the interest rates to be r1 = ρ1 + 1 ≥ 1 for
loans taken by the agents and r2 = ρ2 + 1 ≥ 1 for deposits from the agents,
then agent i's income is determined by

(2.8) ci := pai
1 − r1(b

i − ai
2)

+ + r2(a
i
2 − bi)+ .

This should be interpreted as each agent selling his share of the consumption
good, receiving the appropriate monetarian equivalent, while spending his
bid entirely. He also receives the yield of his deposit with the bank or pays
the returns of his debts.

Note that each agent's income may well be negative. He will feel these debts
in his utility function but, at the end of the period, his debts will be cancelled.

On the other hand, each agent consumes his share of the consumption good
determined by his bid and the prevailing price, that is, assuming a positive
price, agent i receives

(2.9)
bi

p

units for consumption.The total utility derived is now

(2.10) U i(
bi

p
,−(ci)−

p
, (ci)+) = ui(

bi

p
)− wi(−(ci)−

p
) + V i((ci)+)

One of the main tasks of the bank is to balance the books in order to control
the total amount of money available in the economy. Inevitably, this may
require to add a certain amount of money. Thus the balancing equation is
now

(2.11)
∑
i∈I

(
pai

1

∧
r1(b

i − ai
2)

+
)

+ π =
∑
i∈I

(bi−ai
2)

+ + ρ2

∑
i∈I

(
ai

2 − bi
)+

This relation equates the money �ow input and output as viewed by the bank.
On the left hand side each term re�ects the cash in�ux from a player who
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either returns his debts or, if he is unable to do so, leaves his total fortune
acquired from turning in his commodities and receiving the corresponding
payment given the prices.

On the right hand side we observe the money out�ux: the bank issues loans
to those agents with bids exceeding their initial money endowment. Agents
who did not use up their initial money endowments receive the interest paid
for the remainder.

It is now a simple exercise to verify that we have a law of conservation of
money for our economy. This is expressed by the following lemma.

Lemma 2.2. The balancing equation (2.11) is satis�ed if and only if

(2.12)
∑
i∈I

(ci)
+

=
∑
i∈I

ai
2 + π

is satis�ed.

Proof: For any pair (p, b) ∈ R+×Rn
+ and for any interest rate r1 ≥ 1 denote

by

(2.13) Br1 :=
{
i ∈ I | pai

1 < r1(b
i − ai

2)
+
}

the set of agents who are bankrupt in the situation re�ected by these data.
Now, the total sum of surviving capital is

(2.14)
∑
i∈I

(ci)+ =
∑

i/∈Br1

pai
1 − r1

∑
i/∈Br1

(bi − ai
2)

+ + r2

∑
i∈I

(ai
2 − bi)+ .

The balancing equation (2.11) in turn can be written

(2.15)

∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(ai
2 − bi)+ =∑

i∈Br1

pai
1 + r1

∑
i/∈Br1

(bi − ai
2)

+ + π .

Adding up both equations and observing r2 = 1 + ρ2 we obtain

(2.16)
∑
i∈I

(ci)+ =
∑
i∈I

pai
1 +

∑
i∈I

(ai
2 − bi)+ −

∑
i∈I

(bi − ai
2)

+ + π ,

or

(2.17)
∑
i∈I

(ci)+ = pā1 + ā2 − b̄ + π .
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Comparing the price setting equation (2.7) we obtain the desired result.
q.e.d.

It is an essential feature of the model that the total amount of money within
the economy has been increased by just the monetary corrections the bank
issued in terms of booking money in order to balance its books.

At this stage it should be explained how the bank achieves the various goals
that are assigned to it. The additional amount of booking money injected into
the market for balancing will eventually have an in�ationary e�ect. Interest
rates should be determined so as to keep in�ation low on one hand and to
avoid unnecessary bankruptcy of agents on the other hand. It is not obvious
a priori that all these goals are achievable simultaneously.

Observe that balancing the in�ux and out�ux of money cannot always be
achieved just by manipulating the interest rates, without an in�ationary
input of money. One might conjecture that, for π = 0, interest rates could
be determined by the balancing equation (2.11). However, it is easy to see
that this may fail, as the left side of (2.11) may be strictly smaller then the
right side. We will come back to this problem below (Remark 2.4). Also,
the interest rates may not be uniquely determined by (2.11), assuming that
π = 0. Thus, it will be necessary to adjust the additional money input of
the bank in view of the reactions of the players to the interest rates.

To this end the bank should take the strategically motivated bids of the agents
into account. Hence, its behavior should be expressed as a reaction function
de�ned on action n−tuples. Consequently, as prices depend on bids, there
are some obvious coupling e�ects to be observed (and formulated) between
the actions of the players and the banks policy.

Therefore, let us now present a precise description of the banks advanced
planning, resulting in announcements concerning its reactive policy, ahead of
the players bidding.

To this end, we consider n−tuples b ∈ Rn
+ of actions of the players and

hypothetical price levels denoted by p ∈ R+.

Recall de�nition (2.13) of Br1 . For any ρ2 ≥ 0, it is obvious that

(2.18)
∑
i∈I

(
pai

1

∧
(bi − ai

2)
+
)
≤

∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(
ai − bi

)+
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holds true. Hence, we may de�ne the quantity
(2.19)

1 ≤ r̄1 = r̄1(p, b, ρ2) := sup

 r1 ∈ R+ Br1 = B1,

∑
i∈I

(
pai

1

∧
r1(b

i − ai
2)

+
)

≤
∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(
ai

2 − bi
)+

}
,

where the value ∞ is permitted, e.g., if bi ≤ ai
2 holds for all agents i ∈ I,

that is, if no one's bid exceeds his endowment.

Consider the lowest possible interest rate r1 = 1. Then r̄1 is the largest rate
the bank could choose without increasing the set of bankrupt agents, subject
to balancing the books with a possibly positive amount of added booking
money.

Let us collect a few simple relations concerning interest rates and the �nancial
situation of agents.

Lemma 2.3. Let (p, b) ∈ R+ ×Rn
+ be such that

(2.20) pā1 ≥ b̄

and let r1 ≥ 1 be an interest rate such that the balancing equation (2.11) is
satis�ed with some π ≥ 0. Then, not all players are bankrupt, i.e.,

(2.21) Br1 6= I .

Proof: Assume that, on the contrary,

(2.22) 0 ≤ pai
1 < r1(b

i − ai
2)

is valid for all i ∈ I. Then the balancing equation (2.11) reads

(2.23)
∑
i∈I

pai
1 + π =

∑
i∈I

(bi − ai
2).

In view of (2.20) , it is clear that

(2.24)
∑
i∈I

bi ≤ p
∑
i∈I

ai
1 + π =

∑
i∈I

(bi − ai
2) <

∑
i∈I

bi
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yields a contradiction. q.e.d.

Next, given b ∈ Rn
+, we denote by

(2.25) E :=
{
i ∈ I bi > ai

2

}
the set of those players whose bids exceed their endowments. Then we have

Remark 2.4. Let (p, b, r2) ∈ R+ ×Rn
+ × [1,∞) be arbitrary. Then the following

holds:

1. B1 ⊆ E.

2. If E = I and B1 = ∅ (i.e., E−B1 = I), then r̄1 = 1.

3. If E−B1 = ∅, then r̄1 = ∞.

4. If ∅ 6= E−B1 6= I, then r̄1 can be written

(2.26)

r̄1 = r̄1(p, b, ρ2) := sup

 r1 ∈ R+

∑
i∈B1

pai
1 +

∑
i∈E−B1

r1(bi − ai
2)

≤
∑
i∈E

(bi − ai
2) + ρ2

∑
i∈I−E

(
ai

2 − bi
)

,

r1(bi − ai
2) ≤ pai

1 (i ∈ E−B1)

 .

From this it follows that r̄1 can be expressed by a closed formula as follows:

(2.27)

ρ̄1 =
∑

i∈B1

((
bi − ai

2

)
− pai

1

)
+ ρ2

∑
i∈I−E

(
ai

2 − bi
)∑

i∈E−B1

(
bi − ai

2

)
∧

 ∧
i∈E−B1

pai
1 − (bi − ai

2)
bi − ai

2

 .

5. In particular, if all agents have excess demand (E = I) and n−1 of them are

bankrupt at interest rate 1 (i.e., |B1| = n − 1), then the remaining player,

say i0 ∈ E − B1 cannot be broke at any r1; this follows from Lemma 2.3.

Therefore the
∧
-term in formula (2.27) vanishes and as a result we obtain a

simpler formula for r̄1 which is

(2.28) ρ̄1 =

∑
i∈I−i0

(bi − ai
2)− pai

1

bi0 − ai0
.
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The last formula re�ects a situation in which the bank may be forced to set an

arbitrarily large interest rate if it wishes to balance its books without adding in-

�ationary money. In view of item 3 it is clear, however, that the situation may

deteriorate to the case in which no balancing is possible at all without in�ation.

Now, the bank's decision will be reached as follows. Given the data (p, b, ρ2)
the bank considers how much the interest rate r1 should be raised and con-
sequently how much additional booking money should be issued in order to
balance the economy.

However, the interest rate r2 = 1 + ρ2 is also controlled by the bank. Thus
we come up with a �rst de�nition concerning the bank's behavior:

De�nition 2.5. A policy of the bank is a pair of continuous functions
(R1, R2) such that

(2.29) R1 : R1
+ ×Rn

+ ×R1
+ → [1,∞], R2 : R1

+ ×Rn
+ → [1,∞],

(2.30) 1 ≤ R1(p, b, ρ) ≤ r̄1(p, b, ρ),
(
(p, b, ρ) ∈ R1

+ ×Rn
+ ×R1

+

)
.

Both functions admit of nonnegative partial derivatives outside a closed set
which is the union of �nitely many polyhedra of lower dimension.

With some abuse of notation we denote R2 − 1 by ρ2.

It follows from (2.19) that the two components of the banks policy, taken
together, satisfy

(2.31)

∑
i∈I

(
pai

1

∧
R1(p, b, ρ2(p, b))(bi − ai

2)
+
)

≤
∑
i∈I

(bi − ai
2)

+ + ρ2(p, b)
∑
i∈I

(
ai − bi

)+
.

The interest rate for depositors can be chosen arbitrarily. Thereafter the
bank may formulate a policy concerning interest charged from borrowers.
Then, �nally, it may still be necessary to �ll a gap in the balancing equation
by adding a certain amount of money.

We now consider p not as a free variable but as a function of agents' bids as
given by (2.5) or (2.7). Thus, we de�ne a function

(2.32) P : Rn
+ → R+,
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by

(2.33) P (b) :=
b̄

ā1

.

We may then de�ne the relevant policy functions of the bank in terms of
decisions of the players. The procedure permits the bank to determine, for
any action n−tuple b ∈ Rn

+ of the agents, the necessary increase in money
supply, provided its policy has been speci�ed. Formally,

De�nition 2.6. Let (R1, R2) be a policy of the bank. Then the resulting
banks' monetarian strategy is a triple S = (r1, r2,Π), given as follows:
The domains and ranges are described by

(2.34)
r1 : Rn

+ → [1,∞), r2 : Rn
+ → [1,∞),

Π : Rn
+ → R+ ,

and the �rst two functions are de�ned by the compositions

(2.35)
r2(b) := R2(P (b), b),

r1(b) := R1(P (b), b, r2(b)),

where P is given by formula (2.33). The function Π is given for every
b ∈ Rn

+ as the unique money supply

(2.36) π = Π(b)

satisfying

(2.37)

∑
i∈I

(
P (b)ai

1

∧
r1(b)(bi − ai

2)
+
)

+ π

=
∑
i∈I

(bi − ai
2)

+ + ρ2(b)
∑
i∈I

(
ai − bi

)+
.

Thus, the bank internally �xes a policy and then computes the functions
describing its behavior with respect to the setting of interest rates and the
increase in money supply. These functions depend on the bids of the agents
and will be announced publicly.

Hence, agents are made aware of consequences of their actions: they can
compute the increase in money supply, the prices and the various interest
rates, given everybody elses decision. In this manner, n−person game is
de�ned and may reason strategically. So may the bank.
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Remark 2.7. Given a policy of the bank, the income of an agent

is a function of the actions of all agents. We denote this function by

(2.38) Ci : Rn
+ → Rn

and compute it by inserting the action-dependent prices and interest rates, i.e., the

functions Π, r1, and r2 into formula (2.8). More explicitely, we have

(2.39) Ci(b) := P (b)ai
1 − r1(b)(bi − ai

2)
+ + r2(b)(ai

2 − bi)+ (b ∈ Rn
+).

Similarly, we obtain the utility functions of the players depending on bids by com-

posing the functions U i introduced in De�nition 2.1, 3 with the functions de�ned

above, and get

(2.40)
U i : Rn

+ → R+

U i(b) := U i(
bi

P
,−(Ci)−

P
, (Ci)+) = ui(

bi

P
)− wi(−(Ci)−

P
) + V i((Ci)+),

(omitting the argument b in P and Ci).

De�nition 2.8. Let M be a �nancial market and let R = (R1, R2) be a policy
of the bank. Then

(2.41) Γ = ΓM = ΓR
M := (Rn

+; U 1, . . . ,Un)

is the �nancial market game (the one-shot game) generated by M and R.

Remark 2.9. We would like to specify policies of the bank that result in monetary

strategies with certain desirable properties. For this purpose it may be useful to

study properties of the function r̄1 which is de�ned by (2.19) and computed in

some special cases in Remark 2.4.

Consider �rst two disjoint subsets J, L ⊆ I, none of which is the full set.

Then, regarding prices and bids as independent variables as in Remark 2.4, we

consider the convex polyhedron

(2.42){
(p, b) ∈ R1

+ ×Rn
+ | bi − ai

2 > pai
1 (i ∈ J), 0 < bi − ai

2 < pai
1 (i ∈ L),

bi − ai
2 ≤ 0 (i ∈ I − J − L)

}
Within such a polyhedron, the sets B1 and E are obviously the same as J and J∪L,
So the function r̄1 has the shape indicated in formula (2.27). The polyhedron has

a nonempty interior in which r̄1 is a fractionally linear function of bi and p (in fact

a linear function if i ∈ B1). If L = I, then r̄1 = 1, and if J = I then r̄1 = ∞.

When varying the index sets J, L, we observe that there is a decomposition of

R1
+ ×Rn

+ into �nitely many convex polyhedra with a nonempty interior, together
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with lower dimensional polyhedra (common boundaries). In each of these polyhedra

the function r̄1 is given by a formula of type (2.27) or else r̄1 equals 1 or ∞.

Hence, the function r̄1 has easily computable partial derivatives outside a set of

measure zero which consists of �nitely many closed lower dimensional polyhedra.

Let us now exhibit two �nice� policies of the bank such that the interest rate
r1 is monotone and has nonnegative partial derivatives with the exception of
�nitely many points.

Remark 2.10. Let R2 = r2 be a constant and de�ne R1 = RM
1 by

(2.43) R1(p, b, ρ) := r̄1(p, b, ρ) ∧M
(
(p, b, ρ) ∈ R1

+ ×Rn
+ ×R1

+

)
where M is large constant. This policy re�ects the banks intent to avoid in�ationary

generation of money as long as possible, that is, as long as the demand for money

does not exceed some huge amount. If this amount is exceeded, then the interest

rate will be bounded by M and the necessary amount of booking money will be

supplied.

Consider now the function r1 resulting from this policy via De�nition 2.6. Let

b ∈ Rn
+ be an n−tuple of bids such that some agent i ∈ I is bankrupt. We want to

demonstrate that the partial derivative ∂r1
∂bi

exists, given the bids b−i of the other

players, with the exception of �nitely many points.

Indeed, �x p = P (b) and r1 = r1(b) and consider the sets B1 and E. If E = B1,

then the same equation holds true in a small neighborhood of bi as well. Within

this neighborhood, the function r1 equals the large constant M and hence the

required partial derivative exists and equals zero.

Also, if B1 ⊆ E, B1 6= E, then the same relations are valid in a neighborhood

of bi and hence the derivative can be computed with the aid of formula (2.27),

substituting p by P (b) and applying the chain rule. This involves computing the

partial derivative with respect to bi of a function of the form

(2.44)
bi − P (b)ai

1

A
=

bi − b̄
ā1

ai
1

A
,

where A is a positive constant independent of bi as long as B and E do not vary.

Hence

(2.45)
∂r1

∂bi
=

(
1− ai

1

ā1

)
1
A

> 0 .

The constancy of b−i implies that the sets B and E change at most at �nitely many

values of bi. As long as E−B is nonempty, formula (2.27) is valid, the constant A
changes when passing a boundary. The only other case occurs when we pass from
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the region where E = B1 to the region where B1 ⊆ E. However, at this point the

right hand side partial derivative exists and equals 0, while the left hand side exists

and is positive.

Remark 2.11. Let us assume that the bank varies the interest rate for depositors

in proportion to the demand for loans demand. Hence, we set

(2.46) R2(p, b) := 1 + C0

∑
j∈E

(bj − aj
2)

(
(p, b) ∈ R1

+ ×Rn
+

)
.

where C0 is a positive constant.

The banks policy with respect to loan interest is the same as in (2.43). That

is, the function R1 is adapted until the interest rate exceeds a certain large and

�xed amount M , after which this constant is the rate. The arguments concerning

regularity of the functions involved are not a�ected, hence all statements concerning

di�erentiability of the (composite) functions remain true.
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3 Financial Market Equilibrium

Within this section we establish the existence of a Nash equilibrium of the
�nancial market game ΓR

M under rather mild conditions concerning the policy
R of the bank. Let M be a �nancial market as de�ned in De�nition 2.1 The
following conditions are imposed upon the policy of the bank.

De�nition 3.1.

1. We call the bank's policy regular if for the resulting monetarian strat-
egy, the function r1 is monotone and has nonnegative partial derivatives
up to �nitely many points.

2. The bank's policy is strictly regular if it is regular and:

(a) there exists b0 > 0 such that if bi ≥ b0 for some i ∈ I, then

(3.1)
(ui)′(0)ai

1

r1(b)− ai
1

ā1

< ε0

where ε0 is the constant appearing in formula (2.4);
(b) the function r1 is bounded by some constant M > 0;

(c) there is a neighborhood of 0 ∈ Rn
+ such that for b within this

neighborhood

(3.2) ρ2(b) <
ai

1

ā1

(i ∈ I)

is valid.

Theorem 3.2. Let M be a �nancial market and let R be a regular policy.
Then, a bankrupt player has a negative marginal utility of bids and no player
is bankrupt in a Nash equilibrium of ΓR

M.

Proof:

The utility of a bankrupt player is computed by adding his reward for con-
sumption and the punishment for being bankrupt; there is no capital left.
Note that the price is positive. Therefore, the utility of a bankrupt player
i ∈ I is given by

(3.3) ui(
bi

P
)− wi(−(Ci)−

P
),
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where we assume, w.l.o.g., that V i(0) = 0.

It su�ces to show that

(3.4) (ui)′
(

bi

P

)
∂

∂bi

[
bi

P

]
< (wi)′

(
−(Ci)−

P

)
∂

∂bi

[
−(Ci)−

P

]
holds. It follows from De�nition 2.1. item 3 that

(3.5) (ui)′
(

bi

P

)
< (wi)′

(
−(Ci)−

P

)
is always valid. Hence, it is enough to verify that the relation

(3.6) 0 ≤ ∂

∂bi

[
bi

P

]
<

∂

∂bi

[
−(Ci)−

P

]
,

is true.

In the sequel we denote the partial derivative ∂
∂bi by ′. Using this notation,

the middle term of (3.6) is

(3.7)
[

bi

P

]′
=

1

P
+ bi

(
1

P

)′

,

and the de�nition

(3.8) P =
b̄

ā1

=

∑
j∈I bj

ā1

implies that

(3.9)
(

1

P

)′

= − 1

P b̄

is true. Hence, (3.6) is

(3.10)
[

bi

P

]′
=

1

P
− 1

P

bi

b̄
=

1

P

(
1 − bi

b̄

)
so that the middle term of (3.6) is nonnegative.

Next we consider the rightmost term of (3.6). Observe that

(3.11)
(
−(Ci)−

P

)
=

r1

P

(
bi − ai

2

)
− ai

1
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and a simple computation yields the formula

(3.12)
[
−(Ci)−

P

]′
=

r′1
P

(
bi − ai

2

)
+

r1

P
+ r1

(
1

P

)′ (
bi − ai

2

)
for the derivative. Inserting

(
1
P

)′ from (3.9), we obtain

(3.13)
[
−(Ci)−

P

]′
=

r′1
P

(
bi − ai

2

)
+

r1

P

(
1− bi − ai

2

b̄

)
.

Now (3.6) is veri�ed if the right hand side of (3.13) exceeds the rightmost
term of (3.10). However, r′1 ≥ 0 and r1 ≥ 1 follows from our assumptions
and bi > bi − ai

2 is obvious.

q.e.d.

Theorem 3.3. Let M be a �nancial market. Suppose the policy of the bank
is strictly regular. Then there exists b1 > 0 such that, for any i ∈ I satisfying
bi > b1, player i′s marginal utility of bids is negative.

Proof: If player i is not bankrupt (but demanding a loan), then the price is
positive and this player's utility is given by

(3.14) U i(b) = ui(
bi

P
) + V i(Ci)

with

(3.15) Ci(b) = P (b)ai
1 − r1(b)(bi − ai

2) (b ∈ Rn
+).

Using ′ for ∂
∂bi we compute

(3.16) (Ci)′ =
ai

1

ā1

− r1 − r′1(b
i − ai

2) ≤
ai

1

ā1

− r1 .

Applying also (3.10) we can estimate player i's marginal utility, so as to
obtain

(3.17)
(U i)′ = (ui)′

(
bi

P

) (
bi

P

)′

+ (V i)′
(
Ci

)
(Ci)′

≤ (ui)′
(

bi

P

)
1

P

(
1 − bi

b̄

)
+ (V i)′

(
Ci

) (
ai

1

ā1

− r1

)
.
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In order to show that
(
U i

)′ is negative it su�ces, therefore, to verify the
inequality

(3.18) (ui)′ (0)
1

P
< (V i)′

(
Ci

) (
r1 −

ai
1

ā1

)
.

To this end we put t := Ci. Now choose b1 ≥ b0 such that for all bi > b1

the inequality

(3.19)
(ui)′(0)

P
< ε0

(
r1(b)− ai

1

ā1

)
is satis�ed (strict regularity). Now, if we have t ≤ t0 (cf. (2.4)), then we
have

(3.20) V i′(t) ≥ ε0

and (3.18) follows from (3.19). If, on the other hand, we have t > t0, then
we use Ci ≤ Pai

1 and by means of (3.1) we obtain the estimate

(3.21)

(V i)′(Ci) = (V i)′(t) >
ε0

t

≥ ε0

Pai
1

>
1

Pai
1

(ui)′(0)ai
1

r1(b)− ai
1

ā1

,

which is (3.18).

q.e.d.

Theorem 3.4. Let M be a �nancial market. Let (V i)′ be bounded on compact
subsets of R++. Then there exists a neighborhood of b = 0 ∈ Rn

+ within which
the marginal utility of at least n− 1 players is positive.

Proof: The utility of a player bidding a small amount is the same as in
equation (3.14), however, the function Ci for small b is

(3.22) Ci(b) = P (b)ai
1 + r2(a

i
2 − bi).

In analogy to (3.17) we get

(3.23) (U i)′ = (ui)′
(

bi

P

)
1

P

(
1 − bi

b̄

)
+ (V i)′

(
Ci

)
(Ci)′
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It follows from (3.22) that Ci is bounded and is bounded away from 0 for
small b, hence the derivative of V i is bounded. So is

(Ci)′ =
ai

1

ā1

− r2 + r′2(b
i − ai

2).

Thus, it su�ces to show that the �rst term in (3.23) is arbitrarily large for
at least one player in a neighborhood of 0.

Because of
∑

i∈I bi = b̄ there is, for every b ∈ Rn, at most one k ∈ I such
that bk ≥ (1− 1

n
)b̄ holds true. For all the others i 6= k we have

1− bi

b̄
≥ 1

n
.

Now an inspection of (3.23) shows that indeed the marginal utility of these
players is large whenever b̄ and P are small.

q.e.d. For convenience, let us summarize the results obtained by the
previous theorems as follows.

Corollary 3.5. Let M be a �nancial market and let the policy of the bank be
strictly regular. Then there exists a compact convex set of strateg ies B ⊆ Rn

+

with the following properties:

1. There is ε > 0 and β̄ ∈ Rn such that

(3.24) B =
{
b ∈ Rn

+ b̄ ≥ ε, b ≤ β̄
}

,

(and hence prices are positive for b ∈ B.)

2. For any b ∈ B, no player is bankrupt.

3. For any b /∈ B with bi > b̄ for some i ∈ I, the partial derivative of U i

is negative.

4. For any b /∈ B with 0 < b̄ < ε, the marginal utilities of at least n − 1
players are positive.

5. For any b /∈ B with 0 < b̄ < ε, the best responses of at least n − 1
players exceed ε.

6. The best response correspondence maps points on the lower boundary{
b ∈ Rn

+ b̄ = ε
}

,

into the interior of B. The same holds true for points close to the lower
boundary.
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In view of the Corollary 3.5 it is clear that existence of Nash equilibria can be
veri�ed. We consider the compact set speci�ed by the corollary and observe
the behavior of the best response correspondence.

Theorem 3.6. Let M be a �nancial market and let R be a strictly regular
policy of the bank. Then the corresponding one shot game ΓR

M has a Nash
equilibrium in mixed strategies.

Proof:

According to Corollary 3.5 there exists a compact convex domain B of strate-
gies such that for any strategy n-tuple within B, no player is bankrupt. The
marginal utility outside this domain is positive for smaller bids and negative
for larger ones. Also, zero bids are avoided so prices are well de�ned.

For every b ∈ B, consider the best response correspondence which necessar-
ily yields vectors in B. Introducing mixed strategies we �nd that the best
response correspondence necessarily yields probabilities with carriers inside
of B. This correspondence is now convex valued as a mapping from proba-
bilities on B into subsets of probabilities on B. A �xed point obtained by
the Kakutani Theorem yields the equilibrium. q.e.d.

For some policies of the bank we can establish an equilibrium in pure strate-
gies.Consider the policy established in Remark 2.10. Assume that, accord-
ingly, we have r2 = 1 while R1 = RM

1 is given by formula (2.43), i.e.,

(3.25) R1(p, b, ρ) := r̄1(p, b, ρ) ∧M
(
(p, b, ρ) ∈ R1

+ ×Rn
+ ×R1

+

)
.

Here, r̄1(p, b, ρ) is given by (2.27).

Theorem 3.7. Let M be a �nancial market. Assume that V i is concave for
all i ∈ I. If the bank adopts a strictly regular policy (R1, R2) given by (3.25),
then the game ΓR

M admits of a Nash equilibrium in pure strategies. The same
is true if the bank choses a strictly regular policy with constant interest rates
r2 ≤ r1.

Proof:

We prove that the second derivatives of the players utilities within the com-
pact set of strategies established by Corollary 3.5 are nonpositive. Within
this set no one is bankrupt, therefore we have to consider the functions

(3.26) ui

(
bi

P

)
+ V i

(
Ci

)
.
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The second derivative of this expression is given by

(3.27)
ui ′′

(
bi

P

) [(
bi

P

)′]2

+ V i ′′ (Ci
) [(

Ci
)′]2

+ ui ′
(

bi

P

) [
bi

P

]′′
+ V i ′ (Ci

) [
Ci

]′′
.

We know that the second derivatives of ui and V i are negative, hence the
�rst line in (3.27) is negative. Therefore, in order to obtain concave utilities,
it is su�cient to show that

(3.28) ui ′
(

bi

P

) [
bi

P

]′′
+ V i ′ (Ci)

) [
Ci

]′′
is nonpositive..

Now, the �rst derivatives of both utilitiy functions that appear in (3.28) are
nonnegative (positive for positive arguments). Also, the second derivative
within the left term is

(3.29)
[

bi

P

]′′
= − 2ā1

(b̄)3
(b̄− bi) < 0,

Hence, the �rst term in (3.28) is actually negative. In order to �nish the
proof it su�ces, therefore, to show that Ci ′′ is nonpositive.

Recall that we have

(3.30) Ci = Pai
1 − r1(b

i − ai
2)

+ + r2(a
i
2 − bi)+.

Now consider formula (2.27) which de�nes ρ̄1. It turns out that ρ̄1 = 0 as
no player is bankrupt and ρ2 = 0. Hence, in the case described by (3.25),
we have r̄1 = r̄2 = 1 within the critical domain described by Corollary 3.5.
Therefore, we have to treat the second case of our theorem, i.e., the one in
which both interest rates are constant and r2 does not exceed r1. In this case
we se from (3.30) that Ci is a piecewise linear function of bi with a possible
kink at ai

2. The �rst derivative is
ai

1

ā1
−r2 for bi ≤ ai

2 and
ai

1

ā1
−r1 for bi > ai

2.
This function is concave exactly if r1 ≥ r2 holds true.

Thus, we have completed the proof that players utilities are concave.

We now �nish the existence proof for a Nash equilibrium in a standard way.
According to Remark 3.5 there exists a compact convex domain B of strate-
gies such that for any strategy n-tuple within B, no player is bankrupt and
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the marginal utility outside this domain negative for large bids. Also, zero
bids are avoided and for bids with a small total sum the marginal utility is
positive for at least n− 1 players. Hence, prices within B are well de�ned.

For every b ∈ B, consider the best response correspondence, say D : Rn →
P(Rn). Setting e := (1, . . . , 1) ∈ Rn, we de�ne a function F := Rn → Rn

by

(3.31) F (b′) := b′ +
(ε− b̄

′
)+

n
e (b′ ∈ Rn

+).

This function projects all bids with total sum less than ε on the plane of all
bids with total sum equal to ε. The composition, say D? := F ◦D, is an
upper hemi continuous mapping from B to B.

This correspondence is convex valued. A �xed point of D? is obtained by the
Kakutani Theorem. This �xed point cannot be located on the lower boundary
of B, i.e., on {b ∈ Rn

+ eb = ε}, as all of the points on this boundary are
mapped into the interior of B. Hence the �xed point is actually a �xed point
of D, hence it yields an equilibrium.

q.e.d.
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