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Abstract 
Yet, the few existing models considering learning effects in scheduling concentrate on 
learning-by-doing (autonomous learning). But recent contributions to the literature on 
learning in manufacturing organizations emphasize the important impact of proactive 
investments in technological knowledge on the learning rate (induced learning). In the present 
paper, we focus on a scheduling problem where the processing times decrease according to a 
learning rate which can be influenced by an initial cost-inducing investment. Thus we 
integrate into our model both aspects of learning -autonomous and induced- and thereby 
highlight the management’s responsibility to invest in technological knowledge enhancement. 
We are able to derive some structural properties of the problem and present a polynomially 
bounded solution procedure which solves the problem to optimality by using these properties. 
The optimal solution of the scheduling problem contains -of course- information on the 
optimal level of proactive investments in learning.  
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1. Introduction and literature review 

In the light of rapid technological progress, shortening life cycles and an increasing diversity 

of products, see, for example, Higgins et al. (1996), the importance of learning as a 

competitive advantage becomes self-evident. A prominent example is the semiconductor-

industry where according to Webb (1994) the “dramatic improvement in efficiency accounts 

for the anticipation of price cuts of 10 to 30 percent each year as products mature.” While the 

older part of the literature concentrates on learning-by-doing (autonomous learning), recent 

studies emphasize the importance of proactive investments in technological knowledge 

(induced learning) in order to increase learning effects. Thus, the distinction between 

autonomous and induced learning and the analysis of their interrelation seems to be crucial 

for understanding improvements in the factor productivity of labour. Consequently, we 

structure the introduction as follows. Firstly, some remarks on autonomous learning are made, 

followed by a discussion on induced learning. As both kinds of learning occur simultaneously 

and intensify each other, we afterwards introduce our model showing how autonomous and 

induced learning interact in the context of scheduling. 

 

A decline in processing times usually can be observed when the same task is performed 

repeatedly. This means that the time needed to produce one product unit and thus the 

marginal and average costs per unit decrease in the cumulative production quantity. One of 

the pioneers discovering and describing this effect in a manufacturing setting was Wright 

(1936). Nevertheless, in psychology this phenomenon was known before, see Thurstone 

(1919, pp. 26), and an according theory has been developed there, see Mazur and Hastie 

(1978). Learning effects have received considerable attention in economics and management 

science, see the references given by Hatch and Mowery (1998, p. 1642). Among others the 

existence of learning effects was verified for different branches like machine building, the 
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production of music instruments or vehicle construction and for different divisions like 

servicing, construction or welding shops, see Hirsch (1952 and 1956), Conway and Schultz 

(1959), Nadler and Smith (1963), Hirschmann (1964) and Baloff (1971). In the recent 

literature the factor productivity’s increase caused by a quality improvement of labour due to 

repetitions is called autonomous learning or learning-by-doing, see Ittner et al. (2001, p. 563), 

Lapré and van Wassenhove (2001, p. 1312) or Lapré et al. (2000, p. 598). 

 

Frequently, autonomous learning is formalized by using the power form, ( ) ( ) aq1q τ=τ , with τ 

symbolising the required processing time for the last unit produced given the cumulative 

production quantity q; ( )1τ  is the processing time of the first unit and a is the learning index, 

see e.g. Zangwill and Kantor (1998, p. 912). Despite its general acceptance several well 

known shortcomings are inherent in this traditional functional form, see Lapré et al. (2000, p. 

598): 

• It assumes a constant learning rate over the whole product’s live. Prominent refinements 

relaxing this assumption are learning curves with an initial downward concavity, see 

Conway and Schultz (1959), curves allowing for the plateau effect, see Venezia (1985, p. 

197), or S-shaped learning curves, see e.g. Cochran (1960, pp. 323). Additionally, synergy 

effects obtained from experiences with related products have to be considered as well, see 

Ghemawat (1985) or Day and Montgomery (1983). Nevertheless, all these refinements 

have in common that the learning rate is externally given and cannot be controlled.  

• The power form suggests the decreasing costs per unit to be an automatism. However, it 

does not provide management with hints how to reduce costs beyond cost reductions 

resulting from learning-by-doing, see Zangwill and Kantor (1998, p. 910).  

• The widely varying learning rates within industries or even plants indicate that the 

personnel’s attitude towards learning has an impact on the learning rate as well, see 
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Sterman (1994, p. 293). The same is true for the personnel’s knowledge diversity, see 

Lapré and van Wassenhove (2001, p. 1323). These facts are not reproduced adequately by 

an exogenously given learning rate. 

 

Different from the autonomous learning, which is a by-product of repeating activities, 

induced learning requires management arrangements. The initial investment -as modelled in 

this paper- can be interpreted as induced learning via an investment in the creation of 

technological knowledge or knowledge transfer. The importance of this kind of learning has 

recently been highlighted by Ittner et al. (2001), Lapré and van Wassenhove (2001), Lapré et 

al. (2000), Hatch and Mowery (1998) and Mukherjee et al. (1998). Further, quality and design 

engineering influence the learning rate, too, see Ittner et al. (2001, p. 564); their influence on 

the learning rate and hence on the costs is -according to Sinclair et al. (2000) and Hatch and 

Mowery (1998, p. 1461)- much higher than the impact of the cumulative production 

quantities. Induced learning can be stimulated by means of employee’s training, job -related 

instructions, handbooks or supervisors, etc. Additionally, product failures can be an important 

source of learning, see Schonberger (1982).  

 

Generally, the definitions of autonomous and induced learning are not clear cut. While Hax 

and Majluf (1982) consider changes in the work-process separately from autonomous 

learning, Day and Montgomery (1983) subsume all effects causing a higher work-efficiency 

under this terminology. A reason for these different definitions might be that investments in 

learning (= induced learning) should also speed up the autonomous learning, clarifying that 

the two kinds of learning are interdependent as stated above. In the following we will refer to 

autonomous learning when learning is caused by repetition, whereas induced learning means 

every management activity in process design or controlled training. 
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For the short-term production planning, the role of learning can be inferred from the literature 

review given by Li and Cheng (1994). Although scheduling is one of the main tasks in short-

term production planning, the effects of learning in this context have been considered by 

Biskup (1999) for the first time. He assumes the learning rate to be constant, i.e. he regards 

autonomous learning solely. With pi, i = 1, …, n, being the normal processing time (i.e. 

processing time without any learning effects) of job i, Biskup (1999) assumes for a single-

machine scheduling environment the following form of autonomous learning,  

 pir = pira,           (1) 

where pir is the processing time of job i if it is scheduled in position r and a = ld slr ≤ 0 is the 

learning index, given as the logarithm of the (standard) learning rate, slr, to the base 2. With 

respect to Eq. (1) the time needed to perform an operation decreases by the number of 

repetitions (Nadler and Smith, 1963 or Yelle, 1979), meaning that learning is primarily based 

on repetitions of time independent work-steps like set-ups, controlling and operating 

machines, reading data, etc. In this context Biskup (1999) was able to show for a single 

machine scheduling that the common due date problem with different (but not job-individual) 

penalties for earliness, tardiness and the completion time and the flowtime problem 

(minimizing the sum of flowtimes) can be solved in polynomial time. In the same context 

Mosheiov (2001a) showed that many well-known solutions for single-machine scheduling 

like the EDD (earliest due date) rule for minimizing maximum lateness, the WSPT (weighted 

smallest processing time) rule for minimizing the sum of weighted completion times or 

Moore’s algorithm for minimizing the number of tardy jobs are not valid under learning 

assumptions. Furthermore, Mosheiov (2001a) demonstrated that two single-machine bi-

criterial scheduling problems can be solved in polynomial time. Mosheiov (2001b) solved the 

flowtime minimization problem for the case that parallel identical machines exist.  
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The target of our paper is to model the prerequisites and effects of autonomous and induced 

learning in a single-machine scheduling environment and -in a second step- to find an optimal 

solution for this scheduling problem including an optimal level of induced learning. For 

achieving this goal, the remainder of the paper is organized as follows: In the second section, 

we present the model formulation. In the third section some structural properties of the 

objective function and of optimal schedules are proofed, which enable us to formulate a 

polynomially bounded solution procedure in the fourth section. The paper concludes with 

extensions of the basic model.  

 

2. Model formulation 

We have in mind a scheduling environment, where the effects of autonomous learning arise 

because similar jobs are produced one after the other on a single machine. The jobs have 

different normal processing times due to (slightly) different components that make up the 

products. Nevertheless, by processing one job after the other the skills of the workers 

continuously improve, e.g. the ability to perform set-ups faster, to deal with the operations of 

the machines and software or to handle raw materials, components or similar operations of 

the jobs at a greater speed. Furthermore, we assume that the management is able to speed up 

this autonomous learning by an initial investment in learning. For modelling these effects of 

induced learning, we apply an improved version of the power form of Eq. (1). 

  

We assume that there are n jobs available at time zero, which have to be processed on a single 

machine. Each job possesses a normal processing time pi, i = 1, …, n, and the jobs are 

indexed according to the longest (normal) processing time (LPT) rule, i.e. p1 ≥ p2 ≥ ... ≥ pn. 

The normal processing time of a job is incurred solely if the job is scheduled first in a 
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sequence. Due to the learning effect the processing times of the following jobs are smaller 

than their normal processing times. As described in the introduction we assume that the 

learning can be controlled: If no learning effort takes place, the standard learning rate, slr, 

occurs and no further costs are incurred. But it might be advantageous to speed up the 

learning (i.e. to reduce the learning rate) and thus to stronger reduce the processing times of 

the later jobs. Decreasing the learning rate down to the new learning rate, nlr, is possible with 

respect to increasing learning costs. Let x be the percentage reduction of the standard learning 

rate and thus nlr = (1 – x)slr, then k(x) are the costs which are incurred by the learning efforts. 

The cost function k(x) is assumed to be weakly convex, i.e. the marginal costs of reducing the 

learning rate are non-decreasing. Furthermore k(x) is assumed to be zero for x = 0. The 

maximal reduction of the learning rate is denoted by xmax. 

 

The goal facing a common due date problem is to jointly minimize the sum of earliness and 

tardiness penalties, see Kanet (1981) or, for an introduction, Gordon et al. (2002) or Baker 

and Scudder (1990). An unrestricted common due date d is given, i.e. d is a decision variable 

or a fixed constant for which d ≥ p i
i

n

=
∑

1

 holds. Furthermore Ci, Ei = max{0, d - Ci} and Ti = 

max {0, Ci - d} are the completion time, earliness and tardiness of job i, i = 1, ..., n, 

respectively. Then the general objective is to find a schedule π and a level of investments in 

learning, x, which jointly minimize 

KL: f(π, x) = ( )∑
=

++
n

1i
ii )x(kTE        (2) 

subject to   
 
pir = pirld nlr           (3) 

 
nlr = (1 - x)slr           (4) 

  
0 ≤ x ≤ xmax < 1         (5) 
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 k(x) is a (weak) convex function in x        (6) 

 

The problem is called KL (Kanet’s problem with Learning) in the following. Our goal was to 

clearly model the cost induced learning in Eq. (2) to (6). Obviously this is not a complete 

model formulation, as the scheduling constraints are missing. They are well-known and can 

be found, for example, in a more general context in Biskup and Feldmann (2001).  

 

Note that we distinguish between autonomous and induced learning and thereby highlight the 

management’s responsibility for the learning speed, i.e. learning is subject to managerial 

discretion and control. Thus we are able to account for different learning rates within one 

plant. Further, modelling induced learning as cost-inducing investment clarifies that resources 

have to be dedicated to knowledge acquiring.  

 

The reduction of processing times according to the job’s  position in the production sequence 

means that the influence of the total production quantity is rather small. The learning takes 

place after a job is finished, meaning that a concept similar to learning cycles as introduced by 

Zangwill and Kantor (1998, p. 911) is applied. After each job -you might think of it as a lot of 

identical units- mistakes are analysed and an improvement occurs when the next job is 

processed. Finally by modelling the learning rate as a function of the initial investment, the 

conjecture of Lapré et al. (2000, p. 608) that only learning projects acquiring both know-why 

and know-how lead to sustainable learning effects has been taken into consideration.  

 

There exist several practical situations in which the problem KL occurs. Consider for 

example a single customer who places a large order over -let us say- twenty very special and 

somehow different machines. These machines shall be ready in half a year, because the 
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customer plans to replace his old machines then. Now the producing firm’s management has 

to decide to which level the workers will be trained and in which order the machines will be 

produced. Machines which are finished too early tie up capital and machines which are 

finished too late dissatisfy the customer and might cause –for example- fines. Another 

example is that of a bulk delivery. If different customers from abroad -let us say US- order a 

number of goods, which are produced in Germany and if these goods are simultaneously 

dispatched (for example by boat), then the problem KL occurs. Again the management faces 

the decision problem to which level the workforce should be trained and in which order the 

goods should be produced to meet the bulk delivery due date. The goods which are late must 

be dispatched individually to higher costs and an early completion ties up capital. 

 

3. Analysis and structural properties of optimal solutions 

The learning effect of job i in position r only depends on the particular learning rate and the 

number of jobs processed prior to job i, i.e. the position of job i. The processing times of the 

jobs occupying the positions 1, 2, ..., r – 1 do not have any influence. Hence the learning 

effect for the jobs can be described on a positional basis independently of the particular 

processing times. For the job scheduled first no learning takes place, the positional weight is 

1ld nlr. For the job on position two its normal processing time is multiplied with 2ld nlr. The 

weight for the job on the third position is 3ld nlr, etc. Hence the positional weights with respect 

to learning are γr(Learning) = rld nlr, r = 1, …, n. Furthermore it is well-known that without 

learning the positional weights of Kanet’s problem are γr(Kanet) = min{(r – 1), (n – r + 1)}. 

Combining these results the objective function (2) can be rewritten as  

f(π, x) = γ r r
r

n

p[ ]
=

∑
1

+ k(x)         (7) 
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with γr = min{(r – 1)rld nlr, (n – r + 1)rld nlr} being the positional weight under learning which 

arises if a job occupies the r-th position. [r] indicates the job scheduled in the r-th position of 

the sequence. 

 

Lemma 1: For a given x, respectively a given learning rate, KL can be solved by calculating 

the weights γr of Eq. (7) and matching the job with the longest processing time to the position 

with the smallest weight, the second longest job to the position with the second smallest 

weight etc. 

Proof: Trivial from argumentation above. �  

 

Note that with respect to Lemma 1 the common due date problems tackled by Biskup (1999) 

and Mosheiov (2001a) could be solved much easier. The formulation of an assignment 

problem is not necessary, the particular problems could be solved by defining the positional 

weights first and afterwards applying a simple matching algorithm as presented in Lemma 1.  

 

Lemma 2: For a given x, respectively a given learning rate, an optimal schedule for KL 

without idle times exists, in which the b-th job is completed at the due date where b is the 

smallest integer greater than or equal to n/2. 

Proof: See Kanet (1981) or Panwalkar et al. (1982). Note that the number of tardy and non-

tardy jobs for Kanet’s problem is independent of the job processing times. As learning solely 

influences the processing times, these results can be transferred directly to KL for every value 

of x. �  

 

Lemma 2 describes two typical and useful properties for common due date scheduling. 

However, the well-known V-shaped property for optimal schedules –non-tardy jobs are 
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sequenced by decreasing processing times while tardy jobs are sequenced by increasing 

processing times– does not necessarily hold for KL. 

 

Lemma 3: Instances of KL exist where non of the optimal schedules is V-shaped. 

Proof: For n = 10 jobs and a learning rate nlr = 0.35 (a = –1.515) the following weights are 

valid: γγ = (0 0.35 0.38 0.37 0.35 0.33 0.21 0.13 0.07 0.03). As the number of non-tardy jobs is 

n/2 = 5 (Lemma 2), the optimal schedule is not V-shaped: The shortest job is scheduled at 

position 3, the second shortest job at position 4, the third shortest job at position 2 or 5, etc. �   

 

Lemma 4: The later a job is sequenced the stronger it is effected by learning.  

Proof: Obvious from the definition of learning and of γr(Learning). �  

 

From a theoretical point of view a consequence of Lemma 4 is that reducing the learning rate 

more and more leads to the final sequence := [1, n, n – 1, n – 2, ..., 2], which is always 

optimal for KL presupposed the costs k(x) are neglected. A further reduction of the learning 

rate does not cause any changes in this final sequence. For example with n = 10 and nlr = 0.3 

the positional weights are γγ = (0 0.300 0.297 0.27 0.244 0.223 0.136 0.081 0.044 0.018). The 

longest job is scheduled first, as its positional weight γ1 is (always) zero. Furthermore it is 

advantageous to schedule the second longest job at the last, the third longest job at the 

penultimate position etc. 

 

Define ( ) ( )( ) ∑
=

γ=











−=

n

1r
]r[r

nlr

* pslrx1Sg:xh
434 21

, where S* is the optimal schedule for a given x. 

( )xh  is defined on the interval ]x;0[ max . 
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Lemma 5: h(x) is monotone decreasing in x.  

Proof: A formal proof is given in the appendix. �   

 

To gain access to the inherent structure of the problem, the following discussion of Lemma 5 

is helpful: If no learning takes place (i.e. nlr = slr = 1, x = 0), the jobs are assigned to the 

positions as in Kanet’s proble m, because the weights γr(Kanet) apply: The longest job is 

scheduled to the first position, the second longest job to the second or last position etc. Now, 

let us analyse the problem exemplarily: We start with nlr = 1 and increase x in (marginal) 

small steps. Because of Lemma 4 the positional weights do not alter proportional, but the 

weights of the rear positions of the sequence participate stronger from the learning than that 

of the prior positions. As soon as nlr is smaller than 1 assigning the second largest job 

alternatively to the second or last position is not valid any more. Now it is strictly 

advantageous to assign the second largest job to the last position of the sequence and the third 

largest job to the second position (again due to Lemma 4): The sequence [1, 3, 5, …, 6, 4, 2] 

is optimal. This sequence remains optimal –while decreasing the learning rate– until two 

positional weights, for example that of the second and penultimate position, i.e. 2ld nlr and (n – 

(n – 1) + 1)(n – 1)ld nlr, are equal. Let us define the underlying value of x to be a critical one, 

i.e. x̂ . For  every x̂  two different sequences are optimal, because two positional weights are 

equal and the jobs assigned to the corresponding positions can be interchanged without 

affecting the objective function value. If the learning rate is decreased any further, it is 

advantageous to interchange the jobs previously occupying these particular positions. 

Continuing the example the sequence [1, 4, 5,…, 6, 3, 2] would be optimal now. Please note 

that it not necessarily have to be the second and the penultimate jobs which are interchanged 

first - this depends on the overall number of jobs. By increasing x, i.e. decreasing the learning 
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rate, more and more this interchange procedure continues at most until the final sequence is 

reached. 

From the argumentation above two aspects should have become evident: Firstly, the objective 

function value decreases with an increasing x, i.e. a decreasing learning rate. Secondly, there 

are no jump discontinuities, as every job interchange in the optimal sequence takes place if 

(and only if) two weights are equal. Hence the objective function is monotone decreasing in x 

respectively in a decreasing learning rate.  

 

Lemma 6: h(x) is piecewise convex. 

Proof: Again, a formal proof can be found in the appendix. �  

 

Similar to Lemma 5, we give a discussion of Lemma 6. We start with nlr = 1 and decrease the 

learning rate by increasing x continuously. As long as a particular sequence is optimal, i.e. as 

long as no interchange of jobs is necessary, h(.) is convex in the particular interval. This 

becomes evident from the fact that for all positions of the sequence the contribution to the 

objective function value is calculated by multiplying ctr = p[r]· γr(Kanet) with rld nlr, r = 1, …, 

n. ctr· rld nlr is obviously convex in nlr. The sum of convex functions results in a convex 

function again. This argumentation is valid as long as the underlying sequence is optimal. 

From a certain value of nlr on a different sequence -obtained by interchanging two jobs- 

becomes optimal. For this sequence the same argumentation applies etc.  

 

h(x) is only piecewise convex (and not convex), because after interchanging two jobs the 

factors p[r] are different at two positions compared to that of the former sequence. This results 

in different slopes of the curve h(x) for different optimal sequences. 
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4. Solution procedure  

From Lemma 6 it is known that h(x) is not convex but piecewise convex. We exploit this 

property in our solution procedure by searching for optimal x’s within each interval. By 

increasing x there are critical values x̂  at which two different sequences are optimal. A 

convex interval of h(x) is bordered by two adjacent critical x̂ ’s. Note that -from the definition 

of the intervals- the underlying optimal sequence does not change within an interval. For 

finding the global optimum of (2) it is necessary to analyse all intervals of h(x). As k(x) is 

considered to be convex, too, for each interval of h(x) a minimum objective function value 

for KL exists. This might be a solution at the border. Furthermore, from Lemma 1 it is 

obvious that for a given x or a given learning rate respectively the optimal sequence and thus 

the optimal objective function value can be found in polynomial time. Consequently, the 

following solution procedure can be applied: 

 

1. Identify the intervals ]x;x̂[...,],x̂;x̂[],x̂;0[ maxm211 : Calculate x̂  for each pair of 

positional weights. This is done by equalling two weights of γr and isolating for x̂ . Order 

the x̂  by increasing values, i.e. m321 x̂...x̂x̂x̂ ≤≤≤≤ . As n(n - 1)/2 pairs of positional 

weights have to be regarded, the maximal number of intervals equals n(n – 1)/2. The real 

number of m + 1 intervals might be somewhat smaller either as some x̂  can be larger than 

xmax or some of the x̂  are identical.  

2. Let κ = 1 and fbest = ∑
=

n

1i
ipn . 

3. Analyse the interval κ:  

• Identify the optimal sequence Sκ by Lemma 1.  
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• Find the minimal objective function value fκ for f(π, x) at xκ. This can be done by 

simple functional analysis, for example via the first derivative, as Sκ does not change 

and hence f(π, x) is convex in the interval κ.   

• If fκ < fbest, then fbest := fκ, Sbest := Sκ and xbest := xκ.  

4. If κ > m, terminate the search procedure. 

5. Increase κ by one and continue with step 3.  

 

Example: Let n = 10 with pi = 11 – i, slr = 1 and k(x) = 250x².  

The first three intervals -rounded five positions after the comma- are [0; 0.24914], [0.24915; 

0.27343], [0.27344; 0.29975]. For example, the border of the first interval is obtained by 

solving )x̂1(ld)x̂1(ld 8332 −− ⋅=⋅  to x̂  = 0.249143 (which is the smallest of all x̂ ). A consequence 

from this fact is that the jobs at the positions 3 and 8, i.e. jobs number 5 and 6, interchange 

first. The optimal solution obtained by the solution procedure lies in the third interval with x 

= 0.283 yielding an objective function value of 62.8281. The optimal sequence is S* = (1, 4, 

6, 7, 9, 10, 8, 5, 3, 2). The due date is set so that the fifth job is completed exactly in d. If a 

unrestrictive large due date was given, the first job is started so that again the fifth job is 

completed exactly in d. 

 

5. Extensions and summary 

We demonstrated the effects of autonomous and induced learning on the problem of Kanet, as 

this is well-known and somehow simple but, nevertheless, a very interesting scheduling 

problem. The solution procedure presented is not restricted to the problem of Kanet. It can be 

extended easily to many more common due date problems. Namely to all common due date 

problems with an objective function consisting of positional weights, i.e. which can be 
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reformulated as in Eq. (7). These are unrestricted single-machine common due date problems 

with 

♣ different, but not job-individual earliness and tardiness penalties α, β:  

fI(π, x) = ( )∑
=

+β+α
n

1i
ii )x(kTE  = ∑

=

γ
n

1r
]r[I,r p + k(x)  

with γr,I = min{α(r – 1)rld nlr, β(n – r + 1)rld nlr}.  

♣ a penalty for assigning a late common due date γ:  

fII(π, x) = ( )∑
=

+γ+β+α
n

1i
ii )x(kdTE  = ∑

=

γ
n

1r
]r[II,r p + k(x)  

with γr,II = min{nγ + α(r – 1)rld nlr, nγ + β(n – r + 1)rld nlr}. 

♣ a penalty on the completion time of the jobs θ:  

fIII(π, x) = ( )∑
=

+θ+β+α
n

1i
iii )x(kCTE  = ∑

=

γ
n

1r
]r[III,r p + k(x)  

with γr,III = min{(n – r + 1)θ + α(r – 1)rld nlr, (n – r + 1)θ + β(n – r + 1)rld nlr}. 

Baker and Scudder (1990) present an excellent introduction to these kind of common due date 

problems. 

 

We have been able to state a formulation of the common due date scheduling problem with 

autonomous and induced learning effects. Furthermore, we could prove some structural 

properties enabling us to develop a polynomial bounded solution procedure. The presented 

procedure is not restricted to the Problem of Kanet but can be applied to all common due date 

problems with an objective function basing on positional weights. From a managerial 

perspective it becomes obvious that a global optimum even in a production planning 

environment typically can only be achieved if learning by doing is accompanied by 

management activities supporting induced learning. To the best of our knowledge within this 
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paper autonomous and induced learning have been considered simultaneously for the first 

time in the context of scheduling.  
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Appendix: 

In the following a formal proof of Lemma 5 and Lemma 6 is given: 

 

Define ( ) ( )( )( ) ∑
=

γ=−=
n

1r
]r[rpslrx1*Sg:xh , where S* is the optimal schedule for a given x. 

( )xh  is defined on the interval ]x;0[ max . This interval can be divided into certain subintervals 

]x;x̂[...,],x̂;x̂[],x̂;0[ maxm211 , where lx̂ , l = 1, ..., m, indicates a critical x, which induces a 

change of the optimal schedule.  

 

Proposition: ( )xh  is piecewise convex on the interval ]x;0[ max . 

Proof: The proof consists of two parts. In the first part it will be shown that ( )xh  is convex in 

each subinterval, where the optimal schedule does not alter with a variation of x. In the 

second step it will be shown that for any x̂  the left derivative can be greater than the right 

derivative, contradicting the definition of convexity. 

 

(i) Considering a subinterval, meaning the optimal schedule does not change, ( )xh  can be 

written as: 

( ) ( ) ( ){ } ( )[ ]
]r[

slrx1ld
n

1r

n

1r
]r[r pr1rn,1rminpxh −

==
∑∑ +−−=γ=    (A1) 

 

Obviously, all the terms are positive. Further only ( )[ ]slrx1ldr − depends on x. Hence the first-

order derivative with respect to x is: 
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( ) ( ) ( ){ } ( )[ ] ( ) ( ) 0eld
x1

1
rlnrp1rn,1rmin

dx
xdh slrx1ld

]r[

n

1r

<






−
−+−−= −

=
∑  (A2) 

 

The second-order derivative is:  

( ) ( ) ( ){ } ( ) ( )[ ] ( ) ( ) ( )( ) 01eldrln
x1

1
eldrrlnp1rn,1rmin

dx
xhd 2

slrx1ld
]r[

n

1r
2

2

≥











−







−
+−−= −

=
∑  

(A3) 

 

(A3) is strictly positive for n > 2 (and zero for n = 1 or n = 2). From (A3) it follows that ( )xh  

is monotone decreasing and convex in x as long as the sequence remains unchanged, 

completing the first part of the proof. 

 

(ii) In the second part, it has to be shown that ( )xh  might not be convex over ]x;0[ max .  

 

Theorem: Let ℜ→I:f  be convex. Then f has a right derivative, rightf ′ , and a left derivative, 

leftf ′ , at every point of the interior of the interval I, ( )Iint , and leftf ′  and rightf ′  are non-

decreasing on ( )Iint . If ( )Iintc∈ , we have ( ) ( )cfcf rightleft ′≤′ . 

Proof: See van Tiel (1984, p. 4). 

 

Considering two adjacent subintervals ]x̂;x̂[],x̂;x̂[ 1lll1l +−  at least two sequences yield the 

same objective function value at lx̂ . Let *
1S be the sequence with job j scheduled on position t 

and job k scheduled on position q > t. Let *
2S  be the sequence with job k scheduled on 

position t before job j on position q. ( )lx̂h  can be written as follows: 

( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( )lj

y

slrx1ld
k

w

slrx1ld
n

k,jr,1r
]r[r

k

y

slrx1ld
j

w

slrx1ld
n

t,qr,1r
]r[rl

x̂hpq1qnpt1tp

pq1qnpt1tpx̂h

=+−+−+γ

=+−+−+γ=

−−

≠=

−−

≠=

∑

∑

444 3444 2144 344 21

444 3444 2144 344 21
  (A4)  

 

In the upper row the objective function value is computed given *
1S  and the second row is 

computed given *
2S . Let kj pp > , meaning that we consider a longer job to become scheduled 
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later in accordance with Lemma 4. For (A4) to hold, the positional weights have to be equal, 

i.e. yw = . 

 

Note that by changing the positions of jobs j and k, the contribution of all other jobs to the 

objective function value is constant. This means all the terms for t,qr ≠  remain unchanged 

and we can symbolize them by a constant ä, when considering the left and right hand side 

derivative: 

( )[ ]( ) ( ) ( ) ( )[ ]( ) ( ) ( )

( )[ ]( ) ( ) ( ) ( )[ ]( ) ( ) ( )

)x̂(h

qlneld
x1

1
1qnqptlneld
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1
1qnqptlneld
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b
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w
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1left
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−−+δ
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−
−+−+







−
−−+δ

=′

−−

−−

4444444 34444444 21

444 8444 76

444444 3444444 21

44 844 76

4444444 34444444 21

444 8444 76

444444 3444444 21

44 844 76

            

           (A5) 

In accordance with kj pp >  let rq >  hold. Because of yw =  and ( ) ( )qlnrln < , (A5) can be 

simplified to: 

bpapbpap jkkj +>+         (A6) 

 

with 0 > a > b. 

 

Showing that (A6) is true completes the proof: 

( ) ( )
1

b
a

ppbppa

bpapbpap

kjkj

jkkj

<⇔

−>−⇔

+>+

       (A7) 

 

The inequality changes because dividing by b means dividing by a negative term. Obviously 

(A7) and hence (A5) are true, contradicting the Theorem stated above. Hence ( )xh  is 

piecewise convex on the interval ]x;0[ max . 


